ON BINARY SELF-DUAL CODES OF LENGTH 62 WITH AN AUTOMORPHISM OF ORDER 7

Nikolay Yankov

We classify up to equivalence all optimal binary self-dual \([62,31,12]\) codes having an automorphism of order 7 with 8 independent cycles. Using a method for constructing self-dual codes via an automorphism of odd prime order, we prove that there are exactly 8 inequivalent such codes. Three of the obtained codes have weight enumerator, previously unknown to exist.

1. Introduction. Let \(F_q\) be a finite field with \(q = p^r\) elements. A linear \([n,k]_q\) code \(C\) is a \(k\)-dimensional subspace of \(F_q^n\). We call the codes binary if \(q = 2\). The number of the nonzero coordinates of a vector in \(F_q^n\) is called its weight. An \([n,k,d]_q\) code is an \([n,k]_q\) linear code with minimal nonzero weight \(d\).

Let \((u,v) = \sum_{i=1}^{n} u_i v_i \in F_2\) for \(u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n) \in F_2^n\) be the inner product in \(F_2^n\). Then, if \(C\) is a binary \([n,k]\) code, its dual \(C^\perp = \{u \in F_2^n \mid (u,v) = 0\text{ for all }v \in C\}\) is a \([n,n-k]\) binary code. If \(C \subseteq C^\perp\), then the code \(C\) is termed self-orthogonal, in case of \(C = C^\perp\), \(C\) is called self-dual. An even code is a binary code for which all codewords have even weight. All self-dual binary codes are even. In addition, some of these codes have all codewords of weight divisible by 4. These codes we call doubly-even; a self-dual code with some codeword of weight not divisible by 4 is named singly-even.

Two binary codes are equivalent if one can be obtained from the other by a permutation of the coordinate positions. The permutation \(\sigma \in S_n\) is an automorphism of \(C\), if \(C = \sigma(C)\). The set of all automorphisms of a code forms a group called the automorphism group \(\text{Aut}(C)\). If a code \(C\) have an automorphism \(\sigma\) of odd prime order \(p\), where \(\sigma\) has \(c\) independent \(p\)-cycles and \(f\) fixed points, then \(\sigma\) is said to be of type \(p-(c,f)\).

A duo is any set of two coordinate positions of a code. A cluster is a set of disjoint duos such that any union of two duos is the support of a vector of weight 4 in the code. A \(d\)-set for a cluster is a subset of coordinates such that there is precisely one element of each duo in the \(d\)-set. A defining set for a code will consist of a cluster and a \(d\)-set provided the code is generated by the weight-4 vectors arising from the cluster and the vector whose support is the \(d\)-set.

In this report we investigate the existence of new extremal self-dual codes. We apply a method for constructing such codes, that posses an automorphism of odd prime order
developed by Huffman and Yorgov [4], [7]. In Section 2 we briefly describe the method and in Section 3 we classify all extremal singly-even [62, 31, 12] codes with an automorphism of order 7 with 8 independent cycles in its decomposition. Three of the obtained codes have new weight enumerator.

2. Construction method Let C be a binary self-dual code of length n with an automorphism σ of order 7 with exactly c independent 7-cycles and $f = n - 7c$ fixed points in its decomposition. We may assume that
\[
\sigma = (1, 2, \cdots, 7)(8, 9, \cdots, 17) \cdots (7(c - 1) + 1, 7(c - 1) + 2, \cdots, 7c),
\]
or that σ have new weight enumerator.

Denote the cycles of σ by $\Omega_1, \Omega_2, \ldots, \Omega_f$, and the fixed points by $\Omega_{c+1}, \ldots, \Omega_{c+f}$. Let
\[
F_\sigma(C) = \{ v \in C \mid \sigma v = v \} \quad \text{and} \quad E_\sigma(C) = \{ v \in C \mid \wt(v|\Omega_i) \equiv 0 (\text{mod } 2), i = 1, \ldots, c + f \},
\]
where $v|\Omega_i$ is the restriction of v on Ω_i.

Theorem 1 [4]. Assume C is a self-dual code. The code C is a direct sum of the subcodes $F_\sigma(C)$ and $E_\sigma(C)$. $F_\sigma(C)$ and $E_\sigma(C)$ are subspaces of dimensions $\frac{c+f}{2}$ and $\frac{c(p-1)}{2}$, respectively.

Clearly $v \in F_\sigma(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi : F_\sigma(C) \to \mathbb{F}_2^{c+f}$ be the projection map where if $v \in F_\sigma(C)$, then $(v\pi)_i = v_j$ for some $j \in \Omega_i, i = 1, 2, \ldots, c + f$.

Theorem 2 [4], $\pi(F_\sigma(C))$ is a binary $[c + f, (c + f)/2]$ self-dual code.

Denote by $E_\sigma(C)^*$ the code $E_\sigma(C)$ with the last f coordinates deleted. So $E_\sigma(C)^*$ is a self-orthogonal binary code of length $7c$. For v in $E_\sigma(C)^*$ we let $v|\Omega_i = (v_0, v_1, \ldots, v_6)$ correspond to the polynomial $v_0 + v_1 x + v_6 x^6$ from P, where P is the set of even-weight polynomials in $F_2[x]/(x^7 - 1)$. Thus we obtain the map $\varphi : E_\sigma(C)^* \to P^c$. P is a cyclic code of length 7 with generator polynomial $x + 1$ and check polynomial $1 + x + \cdots + x^6$.

It is known [4], [8] that $\varphi(E_\sigma(C)^*)$ is a P-module and for each $u, v \in \varphi(E_\sigma(C)^*)$ it holds
\[
(1) \quad u_1(x)v_1(x^{-1}) + u_2(x)v_2(x^{-1}) + \cdots + u_c(x)v_c(x^{-1}) = 0.
\]

Denote $h_1(x) = x^3 + x^2 + 1$ and $h_2(x) = x^3 + x^2 + 1$. As $x^6 + x^5 + \cdots + x + 1 = h_1(x)h_2(x)$, we have $P = I_1 \oplus I_2$, where I_j is an irreducible cyclic code of length 7 with parity-check polynomial $h_j(x), j = 1, 2$. Thus $M_j = \{ u_i \in \varphi(E_\sigma(C)^*) \mid u_i \in I_j, i = 1, 2 \}$ is code over the field $I_j, j = 1, 2$. It is known [8] that $\varphi(E_\sigma(C)^*) = M_1 \oplus M_2$ and $\dim M_1 = \dim M_2 = c$. The polynomials $e_1(x) = e_2(x) = x^6 + x^5 + x^4 + 1$ generate the ideals I_1 and I_2 defined above. Any nonzero element of $I_j = \{ 0, e_j, xe_j, \ldots, x^6e_j \}, j = 1, 2$ generates a binary cyclic [7, 3, 4] code. Since the minimal weight of the code C is 12, every vector of $\varphi(E_\sigma(C)^*)$ must contain at least 3 nonzero coordinates.

The following result is a particular case of Theorem 3 from [7]:

Theorem 3. Let the permutation σ be an automorphism of the self-dual codes C and C'. A sufficient condition for equivalence of C and C' is that C' can be obtained from C by application of a product of some of the following transformations:

a) a substitution $x \to x^t$ for $t = 1, 2, \cdots, 6$ in $\varphi(E_\sigma(C)^*)$;

b) a multiplication of the j-th coordinate of $\varphi(E_\sigma(C)^*)$ by x^{t_j} where t_j is an integer, $0 \leq t_j \leq 6$, for $j = 1, 2, \cdots, c$.
c) a permutation of the first c cycles of C;
d) a permutation of the last f coordinates of C.

Since the transformation $x \rightarrow x^3$ from Theorem 3 a) interchanges $e_1(x)$ into $e_2(x)$ and vice versa, then we can assume, without loss of generality, that $\dim M_1 \leq \dim M_2$. Once chosen, the code M_1 determines M_2 and the whole $\varphi(E_\sigma(C)^*)$. Thus we can examine only M_1.

All possible weight enumerators of extremal self-dual codes of lengths 38 to 72 are known [2]. For the singly-even self-dual [62, 31, 12] code there are two possibilities:

$$W_{62.1} = 1 + 2308y^{12} + 23767y^{14} + 279405y^{16} + 1622272y^{18} + \cdots,$$

$$W_{62.2} = 1 + (1860 + 32\beta)y^{12} + (28055 - 160\beta)y^{14} + (255533 + 96\beta)y^{16} + \cdots,$$

where $0 \leq \beta \leq 93$. Thus far only codes with weight enumerator $W_{62.2}$ where $\beta = 0, 9, 10, 15$ are known [2], [5].

3. Codes with an automorphism of type 7-(8,6). Let C be a binary self-dual [62, 31, 12] code having an automorphism of type $7 - (8, 6)$. According to Theorem 1, $\dim \varphi(E_\sigma(C)^*) = \dim M_1 + \dim M_2 = 8$, and $\varphi(E_\sigma(C)^*)$ is a code of length 8. All inequivalent self-orthogonal [8, 8, 3] codes over the set of all even-weight polynomials P in $F_2[x]/(x^2 - 1)$ under the inner product (1) are constructed in [6]. There are exactly 271 codes when $\dim M_1 = 3$, and 1446 codes when $\dim M_1 = 4$. Denote by $H_j, j = 1, \ldots, 1717$ the self-orthogonal codes of length 8 constructed in [6].

According to Theorem 2 the code $\pi(F_\sigma(C))$ is a binary [14, 7, ≥ 2] self-dual code. There are four such codes, namely $7i_2, 3i_2 \oplus e_8, i_2 \oplus d_{12}$, and $2e_7$ (see [3]).

Let X_c and X_f be the coordinates of the cycle and fixed positions, respectively. Since $d = 12$, every 2-weight vector in $\pi(F_\sigma(C))$ must have a support contained entirely in X_c. Thus the case $7i_2$ is obviously impossible. In the case $3i_2 \oplus e_8$ the three 2-weight vectors from $3i_2$ should take six out of the eight positions in X_c. We have to choose 2 cycle positions and 6 fixed points of the e_8 component, whereas the automorphism group of e_8 is 3-transitive, so taking a 4-weight vector v we can fix 3 out of the 4 elements of its support in X_c and then we have $wt(\pi^{-1}(v)) = 7.1 + 3 = 10 - a contradiction$.

Consider the case $\pi(F_\sigma(C)) \cong 2e_7$. This code have two clusters $Q_1 = \{1, 2\}, \{3, 4\}, \{5, 6\}$, $Q_2 = \{\{8, 9\}, \{10, 11\}, \{12, 13\}\}$, and two d-sets, $d_1 = \{1, 3, 5, 7\}, d_2 = \{8, 10, 12, 14\}$, that form a defining set. We have to arrange eight of the coordinate positions $\{1, \ldots, 14\}$ to be cycle positions X_c and six to be fixed positions X_f. Since we are looking for a code with minimum distance $d = 12$, every vector with weight 4 in C_π must have at least two elements of its support in X_c. The cluster Q_1 and the d-set d_1 generates e_7, so there are 7 codewords of weight 4 with supports $\{1, 2, 3, 4\}, \{1, 2, 5, 6\}, \{1, 3, 5, 7\}, \{1, 4, 6, 7\}, \{2, 3, 6, 7\}, \{2, 4, 5, 7\}$, and $\{3, 4, 5, 6\}$. The automorphism group of e_7 is 2-transitive, so w.l.g. we can assume $1, 2 \in X_c$. But the vector of weight 4 with support $\{3, 4, 5, 6\}$ has at least two cycle coordinates. So we can choose $\{1, 2, 3, 4\} \subset X_c, \{5, 6, 7\} \subset X_f$. After computing all $\binom{12}{7}$ possible choices for the remaining 3 fixed points, it turns out that all codes $F_\sigma(C)$ have minimal weight 10.

Consider the case $\pi(F_\sigma(C)) \cong i_2 \oplus d_{12}$. Every vector of weight two in this code has support in the cycle positions, so the positions corresponding to direct summand i_2 must be cycle. Also d_{12} has a cluster $Q = \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}, \{11, 12\}$ and d-set $\{1, 3, 5, 7, 9, 11\}$ so the six fixed coordinates X_f cannot contain two duos or one duo and two points from disjoint duos. Thus X_f contains six coordinates from all six different
proved the following

Proposition 1. Up to equivalence there is only one possible generator matrix

\[
G = \begin{pmatrix}
11000000 & 000000 \\
00010010 & 110000 \\
00001101 & 011000 \\
00001001 & 001100 \\
00101000 & 000110 \\
00100010 & 000011 \\
00000010 & 111110 \\
\end{pmatrix}
\]

for \(\pi(F_\sigma(C))\) in an optimal binary self-dual \([62, 31, 12]\) code having an automorphism of type \(7 - (8, 6)\).

Although we have constructed the two direct summands for the code \(C\), we have to attach them together. Let the subcode \(F_\sigma(C)\) is fixed as generated by the matrix \(G\) from Proposition 1. We have to consider all even equivalent possibilities for the second subcode \(E_\sigma(C)\).

Let \(G'\) be the subgroup of symmetric group \(S_8\) consisting of all permutations on the first eight coordinates, which are induced by an automorphism of the code generated by \(G\). Let \(S = \text{Stab}(G')\) be the stabilizer of \(G'\) on the set of the fixed points. We have that \(S = ((12), (34), (45), (56), (68), (38)(67))\). Let \(\tau \in S_8\) be a permutation. Denote by \(C_j^\tau\), \(j = 1, \ldots, 1717\) the \([62, 31]\) self-dual code determined by the matrix \(G\) as a generator for \(F_\sigma(C)\) and \(H_j\) with columns permuted by \(\tau\) as a generator matrix for \(E_\sigma(C)^*\). It is easy to see that if \(\tau_1\) and \(\tau_2\) belong to one and the same left coset of \(S_8\) to \(S\), then the codes \(C_j^{\tau_1}\) and \(C_j^{\tau_2}\) are equivalent. The set \(T = \{(2j)(1i) \mid 1 \leq i < j \leq 8\}\) is a left transversal of \(S_8\) with respect to \(S\). After calculating all codes \(C_j^\tau\), \(j = 1, \ldots, 1717\), \(\tau \in T\) we summarize the results as follows:

Theorem 4. There are exactly 8 inequivalent binary \([62, 31, 12]\) codes having an automorphism of type \(7 - (8, 6)\). The exist at least three codes with weight enumerator \(W_{62,2}\) for \(\beta = 16\).

Remark 1. All constructed codes have weight enumerator \(W_{62,2}\). Note that the value \(\beta = 16\) for \(W_{62,2}\) has not occurred up until now. For every obtained code we list in Table 1 the order of the automorphism group, the weight enumerator and all constructing

| Code | \(\varphi(E_\sigma(C))\) | \(u_1, \ldots, u_{16}\) | \(\tau\) | \(|\text{Aut}(C)|\) | \(A_{12}\) | \(A_{14}\) |
|------|----------------|------------------|---------|----------------|--------|--------|
| 2 | \(H_{11}\) | \(B_{1,3}\) | 0111202 | 132 | 42 | 1924 |
| 2 | \(H_{172}\)| \(B_{1,3}\) | 1222467 | 132 | 42 | 1924 |
| 2 | \(H_{278}\)| \(B_{1,4}\) | 00100244| 28 | 42 | 1924 |
| 2 | \(H_{1098}\)| \(B_{1,4}\) | 000224750| 23 | 42 | 1924 |
| 2 | \(H_{1690}\)| \(B_{1,4}\) | 02313564| (17)(28) | 42 | 1924 |
| 16 | \(H_{1370}\)| \(B_{1,4}\) | 01214555| 23 | 14 | 2372 |
| 16 | \(H_{1309}\)| \(B_{1,4}\) | 01222052| (13)(25) | 14 | 2372 |
| 16 | \(H_{1412}\)| \(B_{1,4}\) | 01232226| (15)(26) | 42 | 2372 |

Table 1. All binary self-dual \([62, 31, 12]\) codes with automorphism of type \(7 - (8, 6)\).
components. The subcode $E_\sigma(C)$ can be obtained using the following two matrices

$$B_{1,3} = \begin{pmatrix} e_1 & e_1 \end{pmatrix}, \quad B_{1,4}^T = \begin{pmatrix} e_1 & v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 \end{pmatrix}.$$

In the column denoted by u_1, \ldots the elements $0, e_1, \ldots, x^6e_1$ from I_1 are listed with numbers $0, 1, \ldots, 7$, respectively.

Remark 2. In the course of this research we have used Q-extensions [1] for computing minimal weight and automorphism groups. For computing the transversal we use the system for computational algebra GAP v.4.

REFERENCES

Nikolay Ivanov Yankov
University of Shumen
Faculty of Mathematics and Informatics
115, Universitetska Str.
9700 Shumen, Bulgaria
e-mail: jankov_niki@yahoo.com
ДВОИЧНИ САМОДУАЛНИ КОДОВЕ С ДЪЛЖИНА 62
ПРИТЕЖАВАЩИ АВТОМОРФИЗЪМ ОТ РЕД 7

Николай Янков

Класифицирани са с точност до еквивалентност всички оптимални двоични само-
дуални [62, 31, 12] кодове, които притежават автоморфизъм от ред 7 с 8 незави-
сими цикъла при разлагане на независими цикли. Използвайки метода за конс-
труиране на самодуални кодове, притежаващи автоморфизъм от нечетен прост
ред е доказано, че съществуват точно 8 нееквивалентни такива кода. Три от
получените кодове имат тегловна функция, каквато досега не бе известно да
съществува.