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A semitopological group (topological group) is a group endowed with a topology
for which multiplication is separately continuous (multiplication is jointly continuous
and inversion is continuous). In this paper we give some topological conditions on
a semitopological group that imply that it is a topological group. For example, we
show that every separable pseudocompact group is a topological group. We also show
that every locally pseudocompact group whose multiplication is jointly continuous is
a topological group.

1. Introduction. In this paper we shall continue the study of which topological
properties of a semitopological group ensure that it is actually a topological group. There
have been many contributions to this area of research. Some of these are listed in
[3, 4, 6, 9]. Our approach is based upon topological games. In fact, the present paper is
essentially a sequel to the paper [6]. The main distinction between the present paper and
[6] is that in this paper we have tried to incorporate the notion of pseudocompactness.
There are of course limits to what can be achieved since there are examples of completely
regular pseudocompact semitopological groups that are not topological groups, [7]. On
the other hand, there are some positive results in the literature that show that some
“nice” pseudocompact semitopological groups are topological groups, see [2, 9]. In order
to describe our contribution to this area, we need some definitions.

We will say that a subset A of a topological space X is bounded in X if for any
sequence (Wn : n ∈ N) of open sets in X such that Wn+1 ⊆ Wn and A ∩ Wn 6= ∅ for all
n ∈ N,

⋂

n∈N
Wn 6= ∅. When the space X is bounded in itself and completely regular

we say that it is pseudocompact. It is well-known that such spaces are characterised by
the fact that every real-valued continuous function defined on them is bounded (in fact
this is the usual definition of them). In this paper we need a stronger notion. A subset
A of a topological space X is said to be strongly bounded in X if for every infinite subset
C of A there exists a separable subspace S of X such that the set C ∩ S is infinite and
bounded in S.

Every countably compact space, as well as every separable pseudocompact space is
strongly bounded in itself and it is easy to show that every strongly bounded set in X is
bounded in X . The final ingredient for this paper is the following game.
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Let (X, τ) be a topological space and let D be a dense subset of X . On X we consider
the G∗

S(D)-game played between two players α and β. Player β goes first (always!) and
chooses a nonempty open subset B1 ⊆ X . Player α must then respond by choosing a
nonempty open subset A1 ⊆ B1. Following this, player β must select another nonempty
open subset B2 ⊆ A1 ⊆ B1 and in turn player α must again respond by selecting a
nonempty open subset A2 ⊆ B2 ⊆ A1 ⊆ B1. Continuing this procedure indefinitely, the
players α and β produce a sequence ((An, Bn) : n ∈ N) of pairs of open sets called a
play of the G∗

S(D)-game. We shall declare that α wins a play ((An, Bn) : n ∈ N) of the
G∗

S(D)-game if:

(i)
⋂

n∈N
An 6= ∅ and

(ii) for each sequence (an : n ∈ N) with an ∈ An ∩ D for all n ∈ N, {an : n ∈ N} is
strongly bounded in X .

Otherwise the player β is said to have won this play. Note that if α wins a play
((An, Bn) : n ∈ N) of the G∗

S(D)-game then for each sequence (an : n ∈ N) with an ∈
An ∩ D for all n ∈ N, {an : n ∈ N} is bounded in X . Furthermore, if in addition
An+1 ⊆ An for all n ∈ N then for any open neighbourhood W of

⋂

n∈N
An there exists

an n0 ∈ N such that Ak ⊆ W for all k ≥ n0. By a strategy t for the player β we mean a
‘rule’ that specifies each move of the player β in every possible situation. More precisely,
a strategy t := (tn : n ∈ N) for β is a sequence of τ -valued functions such that

∅ 6= t1(∅) and ∅ 6= tn+1(A1, . . . , An) ⊆ An for each n ∈ N.

The domain of t1 is {∅}, (where ∅ denotes the sequence of length 0) and the domain of
t2 is {(A) : A ∈ τ and ∅ 6= A ⊆ t1(∅)}. For n ≥ 3 the domain of each function tn is
precisely the set of all finite sequences (A1, A2, . . . , An−1) of length n− 1 in τ \ {∅} such
that

A1 ⊆ t1(∅) and Aj ⊆ tj(A1, . . . , Aj−1) for all 2 ≤ j ≤ n − 1.

Such a finite sequence (A1, A2, . . . , An−1) or infinite sequence (An : n ∈ N) is called a
t-sequence. A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if
each t-sequence is won by β. We will call a topological space (X, τ) a strongly boundedly

Baire if it is regular and there exists a dense subset D of X such that the player β
does not have a winning strategy in the G∗

S(D)-game played on X . It follows from [10,
Theorem 1] that each strongly boundedly Baire space is in fact a Baire space and it is
easy to see that each strongly boundedly Baire space has at least one q∗D-point. Indeed,
if t := (tn : n ∈ N) is any strategy for β then there is a t-sequence (An : n ∈ N) where
α wins. In this case each point of

⋂

n∈N
An is a q∗D-point. Recall that a point x ∈ X is

called a q∗D-point (with respect to some dense subset D of X) if there exists a sequence
of neighbourhoods (Un : n ∈ N) of x such that for every sequence (xn : n ∈ N) with
xn ∈ Un ∩ D for all n ∈ N, {xn : n ∈ N} is bounded in X .

The remainder of this paper is divided into 2 parts. In the next section we will show
that every strongly boundedly Baire semitopological group is a paratopological group
and then in Section 3 we will show that each strongly boundedly Baire semitopological
group is in fact a topological group.

2. Paratopological groups. We begin with some definitions. Let X , Y and Z be
topological spaces then we will say that a function f : X × Y → Z is strongly quasi-
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continuous at (x, y) ∈ X × Y if for each neighbourhood W of f(x, y) and each product
of open sets U × V ⊆ X × Y containing (x, y) there exists a nonempty open subset
U ′ ⊆ U and a neighbourhood V ′ of y such that f(U ′ × V ′) ⊆ W . Further, a function
f : X × Y → Z is said to be separately continuous on X × Y if for each x0 ∈ X and
y0 ∈ Y the functions y 7→ f(x0, y) and x 7→ f(x, y0) are both continuous on Y and X
respectively.

Lemma 1. Let X be a strongly boundedly Baire space, Y a topological space and Z
a completely regular space. If f : X × Y → Z is a separately continuous function and

D is a dense subset of Y, then for each q∗D-point y0 ∈ Y the mapping f is strongly

quasi-continuous at each point of X × {y0}.

Proof. Let DX be any dense subset of X such that β does not have a winning
strategy in the G∗

S(DX)-game played on X . (Note: such a dense subset is guaranteed by
the fact that X is a strongly boundedly Baire space.) We need to show that f is strongly
quasi-continuous at each point (x0, y0) ∈ X ×{y0}. So in order to obtain a contradiction
let us assume that f is not strongly quasi-continuous at some point (x0, y0) ∈ X × {y0}.
Then there exist open neighbourhoods W of f(x0, y0), U of x0 and V of y0 so that
f(U ′ × V ′) 6⊆ W for each nonempty open subset U ′ of U and neighbourhood V ′ ⊆ V of
y0. By the complete regularity of Z there exists a continuous function g : Z → [0, 1] such
that g(f(x0, y0)) = 1 and g(Z \ W ) = {0}. Let W ′ := {z ∈ Z : g(z) > 3/4} ⊆ W . Note
that by possibly making U smaller we may assume that f(x, y0) ∈ W ′ for all x ∈ U . We
will now inductively define a strategy t := (tn : n ∈ N) for the player β in the G∗

S(DX)-
game played on X , but first we shall (a) denote by (On : n ∈ N) any sequence of open
neighbourhoods of y0 with the property that for each sequence (yn : n ∈ N) in D with
yn ∈ On for all n ∈ N, {yn : n ∈ N} is bounded in Y and (b) set A0 := U and V0 := V .

Step 1. Select (x1, y1) ∈ X × Y and open sets V1 and t1(∅) so that:

(i) y0 ∈ V1 := {y ∈ V0 ∩ O1 : f(x0, y) ∈ W ′};

(ii) (x1, y1) ∈ (A0 ∩ DX) × (V1 ∩ D) and f(x1, y1) 6∈ W ;

(iii) t1(∅) := {x ∈ A0 : f(x, y1) 6∈ W}.

Now suppose that (xj , yj), Vj and tj have been defined for each t-sequence (A1, A2, . . .,
Aj−1) of length (j − 1), 1 ≤ j ≤ n so that for each 1 ≤ j ≤ n

(i) y0 ∈ Vj := {y ∈ Vj−1 ∩ Oj : f(xj−1, y) ∈ W ′};

(ii) (xj , yj) ∈ (Aj−1 ∩ DX) × (Vj ∩ D) and f(xj , yj) 6∈ W ;

(iii) tj(A1, . . . , Aj−1) := {x ∈ Aj−1 : f(x, yj) 6∈ W}.

Step n+1. For each t-sequence (A1, . . . , An) of length n we select (xn+1, yn+1) ∈ X×Y
and open sets Vn+1 and tn+1(A1, . . . , An) so that:

(i) y0 ∈ Vn+1 := {y ∈ Vn ∩ On+1 : f(xn, y) ∈ W ′};

(ii) (xn+1, yn+1) ∈ (An ∩ DX) × (Vn+1 ∩ D) and f(xn+1, yn+1) 6∈ W ;

(iii) tn+1(A1, . . . , An) := {x ∈ An : f(x, yn+1) 6∈ W}.
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This completes the definition of t := (tn : n ∈ N). Now since t is not a winning strategy
for the player β in the G∗

S(DX)-game there exists a t-sequence (An : n ∈ N) where α wins
and since xn+1 ∈ An ∩ DX for all n ∈ N there exists a separable subspace S ⊆ X and a
subsequence (xnk

: k ∈ N) of (xn : n ∈ N) such that {xnk
: k ∈ N} ⊆ S and {xnk

: k ∈ N}
is bounded in S. Define ϕ : Y → Cp(S) - [the continuous real-valued functions defined on
S endowed with the topology of pointwise convergence on S] by, ϕ(y)(s) := (g ◦ f)(s, y)
for all s ∈ S. Then ϕ is well-defined and continuous on Y . Now, since yn ∈ On ∩ D for
all n ∈ N, {yn : n ∈ N} is bounded in Y and so {ϕ(ym) : m ∈ N} is bounded in Cp(S).

Thus, by [5, Corollary 2.3], {ϕ(ym) : m ∈ N}
τp

is a compact subspace of Cp(S). Hence
the sequence (ϕ(yn) : n ∈ N) has a cluster point h ∈ C(S). Now, for each fixed k ∈ N,

f(xnk
, yi) ∈ f({xnk

} × Vi) ⊆ f({xnk
} × Vnk+1) ⊆ W ′

for all i > nk, since yi ∈ Vi for all i ∈ N. Therefore, ϕ(yi)(xnk
) ∈ (3/4, 1] for all i > nk and

so h(xnk
) ∈ [3/4, 1] ⊆ (2/3, 1] for all k ∈ N. Since h is continuous, for every k ∈ N there

exists a relatively open subset Uk of S such that xnk
∈ Uk ⊆ Ank−1 and h(Uk) ⊆ (2/3, 1].

Hence the set
⋂

k∈N

⋃

i≥k Ui

S
is nonempty. [Here, X

S
denotes the closure of a subset X

of S with respect to the relative topology on S]. Let x∞ ∈
⋂

k∈N

⋃

i≥k Ui

S
⊆ S. Then

h(x∞) ∈ [2/3, 1]. On the other hand, if we again fix k ∈ N then

f(Ui × {yk}) ⊆ f(Ani−1 × {yk}) ⊆ f(Ai−1 × {yk}) ⊆ f(Ak × {yk}) ⊆ Z \ W

for all i > k. Therefore, f(
⋃

i>k Ui

S
× {yk}) ⊆ Z \W for each k ∈ N and so f(x∞, yk) ∈

Z\W for each k ∈ N; which implies that h(x∞) = 0. This however, contradicts our earlier
conclusion that h(x∞) ∈ [2/3, 1]. Hence f is strongly quasi-continuous at (x0, y0). 2

We shall call any semitopological group (G, ·, τ) whose multiplication is jointly con-
tinuous a paratopological group.

Lemma 2. Let (G, ·, τ) be a completely regular semitopological group whose multipli-

cation is strongly quasi-continuous at (e, e). If there exists a dense subset D of G and a

sequence of neighbourhoods (Un : n ∈ N) of e so that every sequence (zn : n ∈ N) in D
with zn ∈ Un ·Un for all n ∈ N, {zn : n ∈ N} is strongly bounded in G, then (G, ·, τ) is a

paratopological group.

Proof. Since (G, ·, τ) is a semitopological group it is sufficient to show that the
mapping π : G × G → G defined by, π(g, h) := g · h is jointly continuous at (e, e). So in
order to obtain a contradiction we will assume that π is not jointly continuous at (e, e).
Therefore by the regularity of (G, τ) there exists an open neighbourhood W of e so that
for every neighbourhood U of e, U · U 6⊆ W . By the complete regularity of (G, τ) there
exists a continuous function f : G → [0, 1] such that f(e) = 1 and f(G \ W ) = {0}.
Let V := {g ∈ G : f(g) > 3/4} ⊆ W and let V ∗ := {g ∈ G : (g, e) ∈ int π−1(V )}.
Then by the strong quasi-continuity of π at (e, e), e ∈ V ∗. We will now inductively
define sequences (zn : n ∈ N) and (vn : n ∈ N) in D and decreasing neighbourhoods
(Zn : n ∈ N) and (Vn : n ∈ N) of e.

Step 1. Choose v1 ∈ V ∗ ∩ D and a neighbourhood Z1 of e so that Z1 ⊆ U1 and
(v1 · Z1) · Z1 ⊆ V . Then choose z1 ∈ (Z1 · Z1\W ) ∩ D and a neighbourhood V1 of e so
that V1 ⊆ U1 and V1 · z1 ⊆ G\W .

For purely notational reasons we will define V0 := U0 := G. Now suppose that vj ,
zj ∈ D and Zj , Vj have been defined for each 1 ≤ j ≤ n so that:
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(i) vj ∈ (V ∗ ∩ Vj−1) ∩ D and (vj · Zj) · Zj ⊆ V ;

(ii) zj ∈ (Zj · Zj\W ) ∩ D and Vj · zj ⊆ G\W ;

(iii) Zj ⊆ Zj−1 ∩ Uj and Vj ⊆ Vj−1 ∩ Uj .

Step n + 1. Choose vn+1 ∈ (V ∗ ∩ Vn) ∩ D and a neighbourhood Zn+1 of e so that
Zn+1 ⊆ Zn∩Un+1 and (vn+1 ·Zn+1)·Zn+1 ⊆ V . Then choose zn+1 ∈ (Zn+1 ·Zn+1\W )∩D
and a neighbourhood Vn+1 of e so that Vn+1 ⊆ Vn ∩ Un+1 and Vn+1 · zn+1 ⊆ G \ W .
This completes the induction. Now, since vn+1 = vn+1 · e ∈ Vn · Vn ⊆ Un · Un for each
n ∈ N, {vn : n ∈ N} is strongly bounded in G. Therefore there exists a separable subset
S of G and a subsequence (vnk

: k ∈ N) of (vn : n ∈ N) such that {vnk
: k ∈ N} ⊆ S

and {vnk
: k ∈ N} is bounded in S. Define, ϕ : G → Cp(S) by, ϕ(y)(s) := f(s · y) for

all s ∈ S. Then ϕ is well-defined and continuous on G. Now, since zn ∈ Un · Un ∩ D
for each n ∈ N, {zn : n ∈ N} is bounded in G (in fact strongly bounded in G) and so

{ϕ(zn) : n ∈ N} is bounded in Cp(S). Thus, by [5, Corollary 2.3], {ϕ(zn) : n ∈ N}
τp

is
compact. Hence the sequence (ϕ(zn) : n ∈ N) has a cluster point h ∈ C(S). Fix n ∈ N,
then

vn · zi ∈ vn · Zi · Zi ⊆ vn · Zn · Zn ⊆ V

for all i ≥ n. Therefore, for each k ∈ N, ϕ(zi)(vnk
) ∈ (3/4, 1] for all i ≥ nk and so

h(vnk
) ∈ [3/4, 1] for all k ∈ N. Since h is continuous for every k ∈ N, there exists a

relatively open subset Nk of S such that vnk
∈ Nk ⊆ Vnk−1 and h(Nk) ⊆ (2/3, 1]. Thus

the set
⋂

k∈N

⋃

i≥k Ni

S
is nonempty. [Here X

S
denotes the closure of a subset X of

S with respect to the relative topology on S]. Let v∞ ∈
⋂

k∈N

⋃

i≥k Ni

S
⊆ S. Then

h(v∞) ∈ [2/3, 1]. On the other hand, if we again fix k ∈ N, then

Ni · zk ⊆ Vni−1 · zk ⊆ Vi−1 · zk ⊆ Vk · zk ⊆ G \ W

for all i > k. Therefore, (
⋃

i>k Ni)·zk ⊆ G\W for each k ∈ N and so v∞ ·zk ∈ G\W (i.e.,
ϕ(zk)(v∞) = 0 for each k ∈ N); which implies that h(v∞) = 0. This however, contradicts
our earlier conclusion that h(x∞) ∈ [2/3, 1]. Hence (G, ·, τ) is a paratopological group. 2

The proof of Theorem 1 (below) follows the proof of [6, Theorem 1] and so is not
reproduced here.

Theorem 1. Let (G, ·, τ) be a completely regular semitopological group. If (G, τ) is a

strongly boundedly Baire space then (G, ·, τ) is a paratopological group.

3. Continuity of inversion. Let X and Y be topological spaces. Then a function
f : X → Y is said to be quasi-continuous at x ∈ X if for each neighbourhood W of f(x)
and neighbourhood U of x there exists a nonempty open set V ⊆ U such that f(V ) ⊆ W .
The following lemma is based upon [1, 2, 8].

Lemma 3. Let (G, ·, τ) be a paratopological group. If (G, τ) is a strongly boundedly

Baire space then, inversion is quasi-continuous at e.

Proof. In order to obtain a contradiction let us assume that inversion is not quasi-
continuous at e ∈ G. Then there exist neighbourhoods U and W of e such that for each
nonempty open subset V of U , V −1 6⊆ W . Note that by possibly making U smaller (and
using the fact that (G, ·, τ) is a paratopological group) we may assume that U · U ⊆ W .
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Next, we let D be any dense subset of G such that β does not have a winning strategy
in the G∗

S(D)-game played on G. We inductively define a strategy t := (tn : n ∈ N) for β
in the G∗

S(D)-game played on G, but first we set A0 := U and x0 := e.

Step 1. Choose x1 ∈ A0 so that (x−1
0 · x1)

−1 = x−1
1 6∈ W . Then choose U1 to be

any open neighbourhood of e, contained in U , such that x1 · U1 ⊆ A0. Then define
t1(∅) := x1 · U1.

Now, suppose that xj , Uj and tj have been defined for each t-sequence (A1, . . . , Aj−1)
of length (j − 1), 1 ≤ j ≤ n so that:

(i) xj ∈ Aj−1 and (x−1
j−1 · xj)

−1 6∈ W ;

(ii) Uj is an open neighbourhood of e, contained in U , and xj · Uj ⊆ Aj−1;

(iii) tj(A1, . . . , Aj−1) := xj · Uj .

Step n + 1. For each t-sequence (A1, . . . , An) of length n choose xn+1 ∈ An so that
(x−1

n ·xn+1)
−1 6∈ W . Note that this is possible since x−1

n ·An is a nonempty open set and

x−1
n · An ⊆ x−1

n · (xn · Un) = Un ⊆ U.

Then choose Un+1 to be any open neighbourhood of e, contained in U , such that xn+1 ·
Un+1 ⊆ An. Finally, define tn+1(A1, . . . , An) := xn+1 · Un+1.

This completes the definition of t := (tn : n ∈ N). Now, since t is not a winning
strategy for β, there exists a t-sequence (An : n ∈ N) where α wins. Hence there exists

a 2 ≤ k ∈ N such that Ak−1 ⊆
(
⋂

n∈N
An

)

· U since An+1 ⊆ An for all n ∈ N and
(
⋂

n∈N
An

)

· U is an open neighbourhood of
⋂

n∈N
An. Thus,

xk ∈ Ak−1 ⊆ (
⋂

n∈N
An) · U ⊆ Ak+1 · U ⊆ xk+1 · Uk+1 · U ⊆ xk+1 · U · U

= xk+1 · U · U ⊆ xk+1 · W.

Therefore, (x−1
k · xk+1)

−1 = x−1
k+1 · xk ∈ W . However, this contradicts the way xk+1 was

chosen. This shows that inversion is quasi-continuous at e. 2

Lemma 4 ([6, Lemma 4]). Let (G, ·, τ) be a paratopological group. If the inversion is

quasi-continuous at e, then (G, ·, τ) is a topological group.

The following theorem is now just a consequence of Theorem 1, Lemma 3 and
Lemma 4.

Theorem 2. Let (G, ·, τ) be a completely regular semitopological group. If (G, τ) is a

strongly boundedly Baire then (G, ·, τ) is a topological group.

Remark. In the proof of Lemma 3 the only consequence of the assumption that
(G, τ) was strongly boundedly Baire was that for the given strategy t there existed a
t-sequence (An : n ∈ N) with the properties that (i)

⋂

n∈N
An 6= ∅ and (ii) for each open

neighbourhood W of
⋂

n∈N
An there existed a k ∈ N such that Ak ⊆ W . Therefore, if

(G, ·, τ) is locally pseudocompact and regular, then α has an obvious way of making this
happen. Namely, for their first move they choose ∅ 6= A1 ⊆ t1(∅) so that A1 lies in a
pseudocompact subset of G. Thus, every regular locally pseudocompact paratopological
group is a topological group, [3, Question 2.4.5].

58



Corollary 1 [6, Theorem 2]. Let (G, ·, τ) be a completely regular semitopological

group. If (G, τ) is a strongly Baire, then (G, ·, τ) is a topological group.

Corollary 2 [9, Corollary 2.7 part (c)]. Every completely regular separable pseudo-

compact semitopological group is a topological group.
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ПСЕВДОКОМПАКТНИ ПОЛУ-ТОПОЛОГИЧНИ ГРУПИ

Митрофан М. Чобан, Петър Ст. Кендеров, Уорън Б. Муурс

Полу-топологична група (съответно, топологична група) е група, снабдена с то-
пология, относно която груповата оперция произведение е частично непрекъс-
ната по всяка от променливите (съответно, непрекъсната по съвкупност от про-
менливите и обратната операция е също непрекъсната). В настоящата работа
ние даваме условия, от топологичен характер, една полу-топологична група да
е всъщност топологична група. Например, ние показваме, че всяка сепарабелна
псевдокомпактна полу-топологична група е топологична група. Показваме съ-
що, че всяка локално псевдокомпактна полу-топологична група, чиято групова
операция е непрекъсната по съвкупност от променливите е топологична група.
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