МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2012 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012 Proceedings of the Forty First Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 9–12, 2012

ABOUT TOPOLOGICAL GROUPS AND THE BAIRE PROPERTY IN REMAINDERS*

Alexander Arhangel'skii, Mitrofan Choban[#], Ekaterina Mihaylova[#]

In this paper we study the remainders with Baire property of topological groups.

1. Introduction. By a space we understand a Tychonoff topological space. We use the terminology from [11]. The present paper is a continuation of the articles [1, 2], which contain the definitions of an *o*-homogeneous space, a fan-complete space, a *q*-complete space, a sieve-complete space, an *lo*-homogeneous space, a *do*-homogeneous space, a *co*-homogeneous space.

A remainder of a space X is the subspace $Y \setminus X$ of a Tychonoff extension Y of X. The space Y is an extension of X if X is a dense subspace of Y.

In this article we consider what kind of remainders can have a space.

Problem A. Let \mathcal{P} be a property and Y be an extension of a space X. Under which conditions the remainder $Y \setminus X$ has the property \mathcal{P} ?

In [3, 4, 5, 6, 7, 8] the Problem A was examined for topological groups. Some results for rectifiable spaces were obtained in [9].

A particular case of the Problem A is the next question

Question A. Under which conditions the Stone-Čech compactification βX of a space X is the Stone-Čech compactification of the remainder $\beta X \setminus X$?

In [4], Theorem 1.1, A. V. Arhangel'skii has proved: If a topological group G is a dense subspace of the Čech-complete space X and G is not Čech-complete, then the subspace $Y = X \setminus G$ is dense in X and has the Baire property. We establish that analogous result is true for a more large classes of spaces.

One of the first remarcable results concerning Problem A was obtained by E. Cech, M. Henriksen and J. R. Isbel. Theorem of E. Čech affirms that for any space X the character $\chi(x, \beta X)$ of any point $x \in \beta X \setminus X$ is uncountable. Theorem of M. Henriksen and J. R. Isbel affirms that the remainder $\beta X \setminus X$ is a Lindelöf space if and only if the space X is of countable type (see [11, 12]).

^{*2000} Mathematics Subject Classification: 54A35, 63E35, 54D50.

Key words: topological group, extension, Baire property, fan-complete space.

[#]Partially supported by a contract of Sofia University of 2012.

2. On remainders of topological groups. Let G be a topological group. Let ρG be the Raikov completion of a topological group G. If the topological group G is densely fan-complete, then the Raikov completion ρG is a paracompact Čech-complete space.

A space X is called a *paracompact p-space* if it admits a perfect mapping onto a metrizable space. A feathered group is a topological group whose underlying space is a paracompact *p*-space. A topological group is a feathered group if and only if it is a space of pointwise countable type (see [10]).

In [9] it was proved that a topological group G is densely fan-complete if and only if it is fan-complete and, consequently, G is a dense G_{δ} -subspace of some pseudocompact space. Any topological group is an *o*-homogeneous space. Thus from Theorem 4.4 in [2] it follows:

Corollary 2.1. Let Y be a densely fan-complete extension of a topological group G. Then, either the remainder $Z = Y \setminus G$ has the Baire property, or G is a fan-complete space.

In [9] it was proved that a topological group G is densely q-complete if and only if it is q-complete and there exits a countably compact subgroup H such that the quotient space G/H is metrizable and the projection $\pi : G \to G/H$ is open and closed. Moreover, a q-complete topological group is a G_{δ} -subset in some countably compact extension. Thus from Theorem 4.5 in [2] it follows:

Corollary 2.2. Let Y be a densely q-complete extension of a topological group G. Then, either the remainder $Z = Y \setminus G$ has the Baire property, or G is a q-complete space. From Theorem 4.5 in [2] it follows

Corollary 2.3. Let Y be a densely sieve-complete extension of a topological group G. Then, either the remainder $Z = Y \setminus G$ has the Baire property, or G is a paracompact Čech-complete space.

Corollary 2.4 (A. V. Arhangel'skii [4]). Let Y be a Čech-complete extension of a topological group G. Then, either the remainder $Z = Y \setminus G$ has the Baire property, or G is a paracompact Čech-complete space.

Example 2.5. Let $\xi \in \beta \omega \setminus \omega$ and $X = \{\xi\} \cup \omega$. We put $L = \mathbb{R}^X$ and $B = C_p(X) \subseteq L$. D. J. Lutzer and R. A. McCoy [13] proved that the space *B* is not complete metrizable and has the Baire property. Since *B* is not Čech-complete, from Corollary 2.3 (or from Theorem 1.1 of [4]) it follows that $Y = L \setminus B$ is a dense subspace of *L* and has the Baire property. Thus the linear space *L* is a complete metrizable extension of the spaces *B*, *Y* with the Baire property, *B* is a linear subspace and it is not complete metrizable.

3. Embedding into remainders of topological groups. The following fact is a generalization of Theorem 2.18 from [8].

Theorem 3.1. Let Y be a space. Then there exist a compact abelian group A and a dense subgroup B of A such that:

1. $X = A \setminus B$ is a pseudocompact space.

2. Y is a closed subspace of the space X.

3. A is a compactification of the space X.

Proof. There exists a compact space K such that Y is a nowhere dense subspace of the space K and the subspace $\Phi = K \setminus cl_K Y$ is not paracompact and has not G_{δ} -points.

Fix a point $e \in \Phi \subseteq K$. Then, there exists a compact abelian group A with the properties:

1. K is a subspace of the space A and e is the unity of the group A. 140 2. For any continuous mapping $f : K \longrightarrow H$ into a compact abelian group H for which f(e) is the unity of H there exists a continuous homomorphism $\overline{f} : A \longrightarrow H$ such that $f = \overline{f} | B$.

3. The group G algebraically generated by the set K in A is dense in A.

Put $Z = K \setminus Y$ and denote by B the subgroup of A algebraically generated by the set Z. Now, put $X = A \setminus B$. Let $F_1 = K \cup \{x^{-1} : x \in K\}$ and $F_n = F_1^n$ for each $n \in \mathbb{N}$. Then, $G = \cup \{F_n : n \in \mathbb{N}\}$ and each set F_n is nowhere dense in A.

By construction, the set B is dense in A. Thus each set $B_n = F_n \cap B$ is nowhere dense in B.

Claim 1. The subspace Y is closed in X.

The set K is compact and $Y = K \cap X$.

Claim 2. The group *B* is not locally compact.

If B is locally compact, then B is open-and-closed in A, that is a contradiction.

Claim 3. The space A is a compactification of the space X.

This assertion follows from Claim 2.

Claim 4. The space X is not Lindelöf.

Assume that the space X is Lindelöf. Since A is a compactification of the space B and $X = A \setminus B$, by virtue of Theorem of M. Henriksen and J. R. Isbel the space B is of countable type (see [11, 12]). Then, in B there exists a compact subgroup C of countable character such that $C \cap K \subseteq \Phi$. The natural projection $g : A \longrightarrow A/C$ is an open-and-closed continuous homomorphism and $g^{-1}(g(B)) = B$. Thus A, X and Y are Lindelöf p-spaces. Since C is compact, there exist $n \in \mathbb{N}$ and an open non-empty subset V of C such that $V \subseteq C \cap F_n$. Then we can assume that $C = V \subseteq F_n$. In this case $C \cap K = \{e\}$ and the space K has a countable base at the point e, a contradiction. Claim is proved.

Claim 5. The space X is pseudocompact.

Since A is not a paracompact p-space, the set X is G_{δ} -dense in A and X is pseudocompact [8, 9]. The proof is complete.

REFERENCES

- A. V. ARHANGEL'SKII, M. M. CHOBAN, E. P. MIHAYLOVA. About homogeneous spaces and conditions of completeness of spaces. *Math. and Education in Math.*, 41 (2012), 129–133.
- [2] A. V. ARHANGEL'SKII, M. M. CHOBAN, E. P. MIHAYLOVA. About homogeneous spaces and Baire property in remainders, *Math. and Education in Math.*, **41** (2012), 134–138.
- [3] A. V. ARHANGEL'SKII. Remainders in compactifications and generalized metrizability properties, *Topology and Appl.*, 150 (2005), 79–90.
- [4] A. V. ARHANGEL'SKII. The Baire property in remainders of topological groups and other results, Comment. Math. Univ. Carolinae, 50 (2009) No 2, 273–279.
- [5] A. V. ARHANGELSKII. Some connections between properties of topological groups and of their remainders. *Moscow Univ. Math. Bull.*, 54 (1999) No 3, 1–6.
- [6] A. V. ARHANGEL'SKII. Remainders in compactifications and generalized metrizability properties, TOPOLOGY AND APPL., 150 (2005), 79–90.
- [7] A. V. ARHANGEL'SKII. More on remainders close to metrizable spaces. *Topology and Appl.*, 154 (2007), 1084–1088.
- [8] A. V. ARHANGEL'SKII. Two types of remainders of topological groups, Comment. Math. Univ. Carolinae, 49 (2008), 119–126.

- [9] A. V. ARHANGEL'SKII, M. M. CHOBAN. Remainders of rectifiable spaces. *Topology and Appl.*, 157 (2010), 789–799.
- [10] A. V. ARHANGEL'SKII, M. G. TKACHENKO. Topological groups and related structures. Atlantis Press, Amsterdam-Paris, 2008.
- [11] R. ENGELKING. General Topology. PWN, Warszawa, 1977.
- [12] M. HENRIKSEN, J. R. ISBEL. Some properties of compactifications. Duke Math. Jour., 25 (1958), 83–106.
- [13] D. J. LUTZER, R. A. MCCOY. Category in function spaces. Pacific J. Math., 89 (1980), 1–24.

Alexander Arhangel'skii 33, Kutuzovskii prospekt Moscow 121165, Russia e-mail: arhangel.alex@gmail.com

Ekaterina Mihaylova St. Kliment Ohridski University of Sofia 5, James Bourchier Blvd 1164 Sofia, Bulgaria e-mail: katiamih@fmi.uni-sofia.bg Mitrofan Choban Department of Mathematics Tiraspol State University 5, Iablochikin MD 2069, Kishinev, Republic of Moldova e-mail: mmchoban@gmail.com

ОТНОСНО ТОПОЛОГИЧНИ ГРУПИ И СВОЙСТВОТО НА БЕР В ПРИРАСТА

Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова

Изследвани са прирасти със свойството на Бер на топологични групи.