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In this paper we study the remainders with Baire property of topological groups.

1. Introduction. By a space we understand a Tychonoff topological space. We use
the terminology from [11]. The present paper is a continuation of the articles [1, 2], which
contain the definitions of an o-homogeneous space, a fan-complete space, a q-complete
space, a sieve-complete space, an lo-homogeneous space, a do-homogeneous space, a co-
homogeneous space.

A remainder of a space X is the subspace Y \ X of a Tychonoff extension Y of X .
The space Y is an extension of X if X is a dense subspace of Y .

In this article we consider what kind of remainders can have a space.

Problem A. Let P be a property and Y be an extension of a space X. Under which

conditions the remainder Y \ X has the property P?

In [3, 4, 5, 6, 7, 8] the Problem A was examined for topological groups. Some results
for rectifiable spaces were obtained in [9].

A particular case of the Problem A is the next question

Question A. Under which conditions the Stone-Čech compactification βX of a space

X is the Stone-Čech compactification of the remainder βX \ X?

In [4], Theorem 1.1, A. V. Arhangel’skii has proved: If a topological group G is a dense
subspace of the Čech-complete space X and G is not Čech-complete, then the subspace
Y = X \G is dense in X and has the Baire property. We establish that analogous result
is true for a more large classes of spaces.

One of the first remarcable results concerning Problem A was obtained by E. Čech,
M. Henriksen and J. R. Isbel. Theorem of E. Čech affirms that for any space X the
character χ(x, βX) of any point x ∈ βX \ X is uncountable. Theorem of M. Henriksen
and J. R. Isbel affirms that the remainder βX \ X is a Lindelöf space if and only if the
space X is of countable type (see [11, 12]).
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2. On remainders of topological groups. Let G be a topological group. Let ρG
be the Raikov completion of a topological group G. If the topological group G is densely
fan-complete, then the Raikov completion ρG is a paracompact Čech-complete space.

A space X is called a paracompact p-space if it admits a perfect mapping onto a
metrizable space. A feathered group is a topological group whose underlying space is a
paracompact p-space. A topological group is a feathered group if and only if it is a space
of pointwise countable type (see [10]).

In [9] it was proved that a topological group G is densely fan-complete if and only if
it is fan-complete and, consequently, G is a dense Gδ-subspace of some pseudocompact
space. Any topological group is an o-homogeneous space. Thus from Theorem 4.4 in [2]
it follows:

Corollary 2.1. Let Y be a densely fan-complete extension of a topological group G.

Then, either the remainder Z = Y \ G has the Baire property, or G is a fan-complete

space.

In [9] it was proved that a topological group G is densely q-complete if and only if it is
q-complete and there exits a countably compact subgroup H such that the quotient space
G/H is metrizable and the projection π : G → G/H is open and closed. Moreover, a
q-complete topological group is a Gδ-subset in some countably compact extension. Thus
from Theorem 4.5 in [2] it follows:

Corollary 2.2. Let Y be a densely q-complete extension of a topological group G.

Then, either the remainder Z = Y \G has the Baire property, or G is a q-complete space.

From Theorem 4.5 in [2] it follows
Corollary 2.3. Let Y be a densely sieve-complete extension of a topological group

G. Then, either the remainder Z = Y \G has the Baire property, or G is a paracompact

Čech-complete space.

Corollary 2.4 (A. V. Arhangel’skii [4]). Let Y be a Čech-complete extension of a

topological group G. Then, either the remainder Z = Y \G has the Baire property, or G
is a paracompact Čech-complete space.

Example 2.5. Let ξ ∈ βω\ω and X = {ξ}∪ω. We put L = R
X and B = Cp(X) ⊆ L.

D. J. Lutzer and R. A. McCoy [13] proved that the space B is not complete metrizable
and has the Baire property. Since B is not Čech-complete, from Corollary 2.3 (or from
Theorem 1.1 of [4]) it follows that Y = L \B is a dense subspace of L and has the Baire
property. Thus the linear space L is a complete metrizable extension of the spaces B, Y
with the Baire property, B is a linear subspace and it is not complete metrizable.

3. Embedding into remainders of topological groups. The following fact is a
generalization of Theorem 2.18 from [8].

Theorem 3.1. Let Y be a space. Then there exist a compact abelian group A and a

dense subgroup B of A such that:

1. X = A \ B is a pseudocompact space.

2. Y is a closed subspace of the space X.

3. A is a compactification of the space X.

Proof. There exists a compact space K such that Y is a nowhere dense subspace of
the space K and the subspace Φ = K \ clKY is not paracompact and has not Gδ-points.

Fix a point e ∈ Φ ⊆ K. Then, there exists a compact abelian group A with the
properties:

1. K is a subspace of the space A and e is the unity of the group A.
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2. For any continuous mapping f : K −→ H into a compact abelian group H for
which f(e) is the unity of H there exists a continuous homomorphism f̄ : A −→ H such
that f = f̄ |B.

3. The group G algebraically generated by the set K in A is dense in A.
Put Z = K \ Y and denote by B the subgroup of A algebraically generated by the

set Z. Now, put X = A \ B. Let F1 = K ∪ {x−1 : x ∈ K} and Fn = Fn
1 for each n ∈ N.

Then, G = ∪{Fn : n ∈ N} and each set Fn is nowhere dense in A.
By construction, the set B is dense in A. Thus each set Bn = Fn ∩ B is nowhere

dense in B.
Claim 1. The subspace Y is closed in X .
The set K is compact and Y = K ∩ X .
Claim 2. The group B is not locally compact.
If B is locally compact, then B is open-and-closed in A, that is a contradiction.
Claim 3. The space A is a compactification of the space X .
This assertion follows from Claim 2.
Claim 4. The space X is not Lindelöf.
Assume that the space X is Lindelöf. Since A is a compactification of the space B

and X = A \ B, by virtue of Theorem of M. Henriksen and J. R. Isbel the space B
is of countable type (see [11, 12]). Then, in B there exists a compact subgroup C of
countable character such that C ∩ K ⊆ Φ. The natural projection g : A −→ A/C is an
open-and-closed continuous homomorphism and g−1(g(B)) = B. Thus A, X and Y are
Lindelöf p-spaces. Since C is compact, there exist n ∈ N and an open non-empty subset
V of C such that V ⊆ C ∩ Fn. Then we can assume that C = V ⊆ Fn. In this case
C∩K = {e} and the space K has a countable base at the point e, a contradiction. Claim
is proved.

Claim 5. The space X is pseudocompact.
Since A is not a paracompact p-space, the set X is Gδ-dense in A and X is pseudo-

compact [8, 9]. The proof is complete.
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ОТНОСНО ТОПОЛОГИЧНИ ГРУПИ И СВОЙСТВОТО
НА БЕР В ПРИРАСТА

Александър В. Архангелски, Митрофан М. Чобан,
Екатерина П. Михайлова

Изследвани са прирасти със свойството на Бер на топологични групи.
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