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ON A SUMMABILITY METHOD DEFINED BY MEANS OF

HERMITE POLYNOMIALS*

Georgi S. Boychev

A summability method, defined by mean of the Hermite polynomials, is proposed.
For this summation method Tauberian theorems are given

The classical Hermite polynomials {Hn(z)}+∞

n=0 are uniquely defined by the equalities
∫ +∞

−∞

exp(−x2)Hm(x)Hn(x)dx =
√

πn!2nδm n, m, n = 0, 1, 2, . . . ,

and the requirement that the coefficient of xn in the n-th polynomial to be positive [1,
5.5, (5.5.1)].

Let us introduce the functions λ(z) =
√

2 exp(z2/2) and cn(z) = (2n/e)n/2 cos[(2n +
1)1/2z − nπ/2]. Hermite polynomials have the representation (n ≥ 1) [2]

(1) Hn(z) = λ(z)cn(z){1 + hn(z)},
where {hn(z)}+∞

n=1 are holomorphic functions in G = C\(−∞, +∞) and

hn(z) = O(n−1/2) (n → +∞)

uniformly on every compact subset of G.
A series of kind

(2)
+∞
∑

n=0

anHn(z)

we call Hermite series.
Let 0 < τ < +∞. We introduce the denotations S(τ) = {z ∈ C : | Im z| < τ} and

S∗(τ) = C\S(τ). Obviously, S(τ) is the infinite strip bounded by the lines Im z = ±τ .
We assume that S(∞) = C, S(0) = ∅, S∗(0) = G and S∗(∞) = ∅.

Theorem 1 [3, (IV.3.1)]. (a) If the series (2) converges at a point z0 ∈ G, then it is

uniformly convergent on every compact subset of the strip S(τ0) with τ0 = |Imz0|.
(b) If

(3) τ0 = max

[

0,− lim
n→+∞

sup(2n + 1)−1/2 log |(2n/e)n/2an|
1

n

]

,

then the series (2) is uniformly convergent on every compact subset of the strip S(τ0)
and diverges in S∗(τ0).
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Remarks. (1) The equality (3) can be regarded as a formula of Cauchy-Hadamard
type for the Hermite series of the kind (2).

(2) In the proofs of (a) and (b) it is used the asymptotic formula (1).

An important property of the series (2) is given by the following

Theorem 2 [3, (IV.4.6)]. If the series (2) is convergent at a point z0 ∈ G, then

lim
z→z0

+∞
∑

n=0

anHn(z) =

+∞
∑

n=0

anHn(z0),

when z ∈ S(τ0) (τ0 = | Im z0|) and |z − z0| = O(| Im(z − z0)|).
This proposition is called Abel’s theorem for the series of the kind (2).

Let z0 ∈ G, τ0 = | Im z0|,

Hn(z, z0) =
Hn(z)

Hn(z0)
, n = 0, 1, 2, . . . ,

and

D(z0) = {S(τ0)\(−∞, +∞)} ∩ {z ∈ C : Re z = z0}.
A series

(4)

+∞
∑

n=0

an

is called H(z, z0) summable (or Hermite summable at the point z0) if the series
+∞
∑

n=0

anHn(z, z0) 6= ∞

is convergent in strip S(τ0) and there exists

lim
z→z0

+∞
∑

n=0

anHn(z, z0) 6= ∞,

when z ∈ D(z0).

Every H(z, z0)-summation is regular and this property is a corollary of Theorem 2.

Our aim here is to prove a Tauberian theorem of Litlewood type for the Hermite
summation, namely

Theorem 3. Let z0 ∈ G. If the series (4) is H(z, z0)-summable and

(5) an = O(n−1) (n → ∞)

then it is convergent.

Proof. We assume that a0 = 0, which is not an essential restriction. Let ε ∈ [0, τ)
and for definiteness assume that Im z0 = τ . Then, using the asymptotic formula (1), we
obtain that

Hn(Re z0 + i(τ − ε), z0) = Q(τ, ε) exp(−ε
√

2n + 1){1 + qn(τ, ε)},
where Q(τ, ε) 6= 0, lim

ε→0
Q(τ, ε) = 1, qn(τ, 0) = 0 and

qn(τ, ε) = O(n−1/2) (n → ∞)

uniformly with respect to ε on any interval [0, ωτ ] with ω ∈ (0, 1).
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Suppose that ω = 1/2 and ε ∈ (0, τ/2]. We define

(6) f1(τ, ε) = Q(τ, ε)
∞
∑

n=1

an exp(−ε
√

2n + 1),

(7) f2(τ, ε) = Q(τ, ε)

∞
∑

n=1

an exp(−ε
√

2n + 1)qn(τ, ε)

and

(8) f(τ, ε) = f1(τ, ε) + f2(τ, ε).

The assumption that the series (4) is Hermite summable at the point z0 implies the
existence of

(9) lim
ε→0

f(τ, ε) 6= ∞.

It is easy to prove that the series in the right hand of (7) is uniformly convergent with
respect to ε ∈ [0, τ/2]. Hence, there exists

(10) lim
ε→0

f2(τ, ε) 6= ∞.

Then (9), (10), and (8) imply lim
ε→0

f1(τ, ε) 6= ∞. Further, using that Q(τ, ε) 6= 0,

lim
ε→0

Q(τ, ε) = 1, and (6), we obtain

lim
ε→0

∞
∑

n=1

an exp(−ε
√

2n + 1) 6= ∞.

But the equality (5) implies

an = O

(
√

2n + 1 −
√

2n − 1√
2n + 1

)

(n → ∞).

By Theorem 104 from [4] it follows that the series (4) is convergent. �

From Theorem 3 it follows Tauberian’s theorem for the Hermite summation, namely

Theorem 4. Let z0 ∈ G. If the series (4) is H(z, z0)-summable and an = o(n−1)
(n → ∞), then it is convergent.

Let us note that the following assertion holds:

Theorem 5. Let z0 ∈ G, 0 < δ < 1 and

−K1n
−1 < an ≤ K2n

−δ(n = 1, 2, . . . ),

where K1 and K2 are a positive contstants. If the series (4) is H(z, z0)-summable, then

it is convergent.

The proof of this theorem is similar to that of Theorem 3, but by using Theorem 103
from [4].

A simple corollary of Theorem 5 is:

Theorem 6. Let z0 ∈ G, 0 < δ < 1 and 0 ≤ an ≤ Kn−δ (n = 1, 2, . . . ), where K is

a positive constant. If the series (4) is H(z, z0)-summable, then it is convergent.

We call this statement Tauberian theorem of Landau’s type for the H(z, z0)-summation.

Finally, we note that the following simple assertion holds:
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Theorem 7. Let τ be a real number with τ 6= 0. The series (4) is H(z, iτ)-summable

if and only if it is H(z,−iτ)-summable.

Theorem 7 gives rise of the following hypothesis:
If the series (4) is H(z, z0)-summable, then it is H(z, zeta)-summable for every ζ with

| Im ζ| = | Im z0|.
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ВЪРХУ ЕДИН МЕТОД НА СУМИРАНЕ, ДЕФИНИРАН ЧРЕЗ

ПОЛИНОМИТЕ НА ЕРМИТ

Георги С. Бойчев

В статията се разглежда метод за сумиране на редове, дефиниран чрез полино-

мите на Ермит. За този метод на сумиране са дадени някои Тауберови теореми.
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