CLASSIFICATION OF THE MAXIMAL SUBSEMIGROUPS OF THE SEMIGROUP OF ALL PARTIAL ORDER-PRESERVING TRANSFORMATIONS*

Ilinka Dimitrova, Tsvetelina Mladenova

Let $P T_{n}$ be the semigroup of all partial transformations on an n - element set. A transformation $\alpha \in P T_{n}$ is called order-preserving if $x \leq y$ implies $x \alpha \leq y \alpha$ for all x, y from the domain of α. In this paper we describe the maximal subsemigroups of the semigroup $P O_{n}$ of all partial order-preserving transformations.

For $n \in \mathbb{N}$, let $X_{n}=\{1<2<\cdots<n\}$ be a finite chain with n elements. As usual, we denote by $P T_{n}$ the semigroup of all partial transformations $\alpha: X_{n} \rightarrow X_{n}$ under composition. A transformation $\alpha \in P T_{n}$ is called order-preserving if $x \leq y$ implies $x \alpha \leq y \alpha$ for all x, y from the domain of α. As usual, $P O_{n}$ denotes the subsemigroup of $P T_{n}$ of all partial order-preserving transformations of X_{n}. This semigroup has been extensively studied. In recent years, interest in maximal subsemigroups of the transformation semigroups arises. In particular, Xiuliang Yang [6] characterized the maximal subsemigroups of the semigroup O_{n} of all full order-preserving transformations. Dimitrova and Koppitz [1] classified the maximal subsemigroups of the ideals of O_{n}. Ganyushkin and Mazorchuk [3] gave a description of the maximal subsemigroups of the semigroup $P O I_{n}$ of all partial order-preserving injections. In [2], Dimitrova and Koppitz characterized the maximal subsemigroups of the ideals of the semigroup $P O I_{n}$. In [7], Yi constructed four types of maximal subsemigroups of the semigroup $P O_{n}$ (excluding the identity map). The purpose of this paper is to give a complete classification of all maximal subsemigroups of the semigroup $P O_{n}$.

We begin by recalling some notation and definitions that are used in the paper. For the standard terms and concepts in Semigroup Theory we refer the reader to [5]. Let $\alpha \in P O_{n}$. We denote by dom α and $\operatorname{im} \alpha$ the domain and the image of α, respectively, while $\operatorname{ker} \alpha:=\{(x, y) \mid x, y \in \operatorname{dom} \alpha, x \alpha=y \alpha\}$ is a convex equivalence on dom α. The natural number rank $\alpha:=|\operatorname{im} \alpha|=|\operatorname{dom} \alpha / \operatorname{ker} \alpha|$ is called the rank of α. For a given subset U of $P O_{n}$, we denote by $E(U)$ its set of idempotents.

[^0]Recall also that, for the Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{H}$ and \mathcal{J} on $P O_{n}$, we have

$$
\begin{aligned}
\alpha \mathcal{L} \beta \Longleftrightarrow \operatorname{im} \alpha & =\operatorname{im} \beta \\
\alpha \mathcal{R} \beta \Longleftrightarrow \operatorname{ker} \alpha & =\operatorname{ker} \beta \\
\alpha \mathcal{J} \beta \Longleftrightarrow \operatorname{rank} \alpha & =\operatorname{rank} \beta \\
\mathcal{H} & =\mathcal{L} \cap \mathcal{R} .
\end{aligned}
$$

for every transformations α and β.
The semigroup $P O_{n}$ is the union of its \mathcal{J}-classes $J_{0}, J_{1}, J_{2}, \ldots, J_{n}$, where

$$
J_{k}=\left\{\alpha \in P O_{n} \mid \operatorname{rank} \alpha=k\right\}, \text { for } k=0,1, \ldots, n
$$

It follows that the ideals of the semigroup $P O_{n}$ are unions of \mathcal{J}-classes $J_{0}, J_{1}, J_{2}, \ldots, J_{k}$, i.e. the sets

$$
I_{k}:=\left\{\alpha \in P O_{n}: \text { rank } \alpha \leq k\right\}, \text { with } k=0,1, \ldots, n
$$

The \mathcal{J}-class J_{n} contains exactly one element, namely the identity, which we denote by ϵ.

We pay attention to the \mathcal{J}-class J_{n-1}. It is convenient to refer to an element $\alpha \in P O_{n}$ as belonging to the set $[k, s]$ if $|\operatorname{dom} \alpha|=k$ and $|\operatorname{im} \alpha|=s(1 \leq s \leq k \leq n)$. Thus the \mathcal{J}-class J_{n-1} is the union of $[n, n-1]$ and $[n-1, n-1]$. Let $\alpha \in[n, n-1]$ and let $\operatorname{ker} \alpha=\{\{1\}, \ldots,\{i-1\},\{i, i+1\},\{i+2\}, \ldots,\{n\}\}$ for some $i \in\{1,2, \ldots, n-1\}$. Then, for convenience we will use the notation $\operatorname{ker} \alpha=(i, i+1)$.

Within $[n, n-1]$ there are exactly $(n-1)$ different \mathcal{R}-classes of the following form

$$
R_{(i, i+1)}:=\left\{\alpha \in J_{n-1}: \operatorname{ker} \alpha=(i, i+1)\right\}, \quad i=1, \ldots, n-1
$$

Within $[n-1, n-1]$, which consists of one-to-one partial maps, there are exactly n different \mathcal{R} - classes of the following form

$$
R_{i}:=\left\{\alpha \in J_{n-1}: \operatorname{dom} \alpha=X_{n} \backslash\{i\}\right\}, \quad i=1, \ldots, n .
$$

The \mathcal{L} - and \mathcal{H}-classes in J_{n-1} have the following form:

$$
\begin{gathered}
L_{j}:=\left\{\alpha \in J_{n-1}: \operatorname{im} \alpha=X_{n} \backslash\{j\}\right\}, \quad j=1, \ldots, n ; \\
H_{(i, i+1), j}:=R_{(i, i+1)} \cap L_{j} \text { and } H_{i, j}:=R_{i} \cap L_{j} .
\end{gathered}
$$

The \mathcal{H}-classes of $P O_{n}$ are trivial, i.e. contain only one element in each case. The unique element α in the \mathcal{H} - class $H_{(i, i+1), j}$ is denoted by $\alpha_{(i, i+1), j}$. Analogously, the unique transformation α in the \mathcal{H} - class $H_{i, j}$ is denoted by $\alpha_{i, j}$. Since $\alpha_{(i, i+1), j}$ is an idempotent if and only if $j=i$ or $j=i+1$ and $\alpha_{i, j}$ is an idempotent if and only if $j=i$, it is easy to verify that $E\left(R_{(i, i+1)}\right)=2$ for $i=1,2, \ldots, n-1, E\left(R_{i}\right)=1$ for $i=1,2, \ldots, n, E\left(L_{j}\right)=3$ for $j=2,3, \ldots, n-1$ and $E\left(L_{j}\right)=2$ for $j=1, n$.

Moreover, for all $\alpha, \beta \in J_{n-1}$ the product $\alpha \beta$ belongs to J_{n-1} (if and only if $\alpha \beta \in$ $\left.R_{\alpha} \cap L_{\beta}\right)$ if and only if $L_{\alpha} \cap R_{\beta}$ contains an idempotent. Therefore, it is obvious that:

Lemma 1. Let $i, k \in\{1, \ldots, n-1\}$ and $j, l, s, t \in\{1, \ldots, n\}$. Then

$$
\begin{gathered}
\alpha_{(i, i+1), j} \alpha_{(k, k+1), l}=\alpha_{(i, i+1), l} \quad \text { and } \quad \alpha_{s, j} \alpha_{(k, k+1), l}=\alpha_{s, l} \quad \Longleftrightarrow j=k, k+1 \\
\alpha_{(i, i+1), j} \alpha_{s, t}=\alpha_{(i, i+1), t} \quad \text { and } \quad \alpha_{l, j} \alpha_{s, t}=\alpha_{l, t} \quad \Longleftrightarrow j=s \\
L_{j} R_{(i, i+1)}=J_{n-1} \Longleftrightarrow j=i, i+1 \quad \text { and } L_{j} R_{l}=J_{n-1} \Longleftrightarrow j=l
\end{gathered}
$$

Let us denote by E_{n-1} the set of all idempotents of the class J_{n-1}. Further, we will use the following well known result (see [4]).

Proposition 1. $P O_{n}=\left\langle E_{n-1}\right\rangle \cup\{\epsilon\}=\left\langle J_{n-1}\right\rangle \cup\{\epsilon\}$.
Definition 1. Let $A \subseteq X_{n}$ and let π be an equivalence relation on a subset Y of X_{n}. We say that A is a transversal of π (denoted by $A \# \pi$) if $|A \cap \bar{x}|=1$ for every equivalence class $\bar{x} \in Y / \pi$.

Let us denote by Λ_{n-1} the collection of all subsets of X_{n} of cardinality $n-1$, i.e. all sets $X_{n} \backslash\{i\}$ for $i=1,2, \ldots, n$. Let Ω_{n-1} be the collection of all convex equivalence relations on X_{n} with weight $n-1$, i.e. all equivalence relations $(i, i+1)$ for $i=1,2, \ldots, n-1$.

Remark 1. For all $\alpha \in[n, n-1]$, we have $\operatorname{im} \alpha \in \Lambda_{n-1}$ and $\operatorname{ker} \alpha \in \Omega_{n-1}$. For all $\alpha \in[n-1, n-1]$, we have im $\alpha \in \Lambda_{n-1}$ and dom $\alpha \in \Lambda_{n-1}$.

Definition 2. Let Λ be a non-empty proper subset of Λ_{n-1} and let Ω be a non-empty proper subset of Ω_{n-1}. The pair (Λ, Ω) is called a coupler of $\left(\Lambda_{n-1}, \Omega_{n-1}\right)$ if the following three conditions are satisfied:

1) Every element of Λ is not a transversal to any element of Ω;
2) For every $B \in \Lambda_{n-1} \backslash \Lambda$ there exists $\pi \in \Omega$ such that $B \# \pi$;
3) For every $\rho \in \Omega_{n-1} \backslash \Omega$ there exists $A \in \Lambda$ such that $A \# \rho$.

Lemma 2. Every maximal subsemigroup of $P O_{n}$ contains the ideal I_{n-2}.
Proof. Let S be a maximal subsemigroup of $P O_{n}$. Assume that $J_{n-1} \subset S$, then $I_{n-2} \subset I_{n-1}=\left\langle J_{n-1}\right\rangle \subseteq S$. If $J_{n-1} \nsubseteq S$, then $J_{n-1} \nsubseteq\left\langle S \cup I_{n-2}\right\rangle$ since I_{n-2} is an ideal. This implies $I_{n-2} \subset S$ by the maximality of S.

Now, we are able to present the main results of this paper, the characterization of the maximal subsemigroups of the semigroup $P O_{n}$. Recall that in [7], Yi constructed four types of maximal subsemigroups of the semigroup $P O_{n}$. They are all particular cases of the fourth type of the next theorem.

Theorem 1. A subsemigroup S of $P O_{n}$ is maximal if and only if it belongs to one of the following types:

1. $S_{\epsilon}:=I_{n-1}$.
2. $S_{(i, i+1)}:=I_{n-2} \cup J_{n} \cup\left(J_{n-1} \backslash R_{(i, i+1)}\right)$ for $i=1,2, \ldots, n-1$.
3. $S_{i}:=I_{n-2} \cup J_{n} \cup\left(J_{n-1} \backslash R_{i}\right)$ for $i=1,2, \ldots, n$.
4. $S_{(\Lambda, \Omega)}:=I_{n-2} \cup J_{n} \cup\left(\cup\left\{L_{j}: X_{n} \backslash\{j\} \in \Lambda\right\}\right) \cup$
$\cup\left(\cup\left\{R_{i}: X_{n} \backslash\{i\} \in \Lambda_{n-1} \backslash \Lambda\right\}\right) \cup\left(\cup\left\{R_{(i, i+1)}:(i, i+1) \in \Omega\right\}\right)$,
where (Λ, Ω) is a coupler of $\left(\Lambda_{n-1}, \Omega_{n-1}\right)$.
5. $S_{\Lambda}:=I_{n-2} \cup J_{n} \cup\left(\cup\left\{L_{j}: X_{n} \backslash\{j\} \in \Lambda\right\}\right) \cup$
$\cup\left(\cup\left\{R_{i}: X_{n} \backslash\{i\} \in \Lambda_{n-1} \backslash \Lambda\right\}\right)$, where Λ is a non-empty proper subset of Λ_{n-1} and for every $\pi \in \Omega_{n-1}$ there exists $A \in \Lambda$ such that $A \# \pi$.

Proof. Using Lemma 1, it is not difficult to prove that each one of the given types is a subsemigroup of $P O_{n}$. Now, we are going to prove that they are maximal.

1. Since $P O_{n}=I_{n-1} \cup\{\epsilon\}$ and I_{n-1} is an ideal of $P O_{n}$ it is clear that $S_{\epsilon}=I_{n-1}$ is a maximal subsemigroup of $P O_{n}$.
2. Let $\alpha \in P O_{n} \backslash S_{(i, i+1)}$. Then, $\alpha \in R_{(i, i+1)}$ and $\alpha \in L_{j}$ for some $j \in\{1,2, \ldots, n\}$, i.e. $\alpha=\alpha_{(i, i+1), j}$. Since $L_{j} \cap R_{j}$ contains an idempotent from Lemma 1 , we obtain $\alpha_{(i, i+1), j} R_{j}=R_{(i, i+1)}$. Therefore, since $R_{j} \subset S_{(i, i+1)}$, we deduce that $\left\langle\alpha, S_{(i, i+1)}\right\rangle=$ $O P_{n}$, i.e. $S_{(i, i+1)}$ is maximal.
3. The proof is similar to that of $S_{(i, i+1)}$.
4. Let $\alpha \in P O_{n} \backslash S_{(\Lambda, \Omega)}$ and let $\alpha=\alpha_{(i, i+1), j}$. Then, $X_{n} \backslash\{j\} \notin \Lambda$ and so $R_{j} \subset$ $S_{(\Lambda, \Omega)}$. Moreover, $(i, i+1) \notin \Omega$ and from Definition 2 it follows that $X_{n} \backslash\{i\} \in \Lambda$ or $X_{n} \backslash\{i+1\} \in \Lambda$. Without loss of generality assume that $X_{n} \backslash\{i\} \in \Lambda$. Then $L_{i} \subset S_{(\Lambda, \Omega)}$. From Lemma 1, it follows that $L_{i} \alpha_{(i, i+1), j}=L_{j}$ and $L_{j} R_{j}=J_{n-1}$. Therefore, $\left\langle\alpha_{(i, i+1), j}, S_{(\Lambda, \Omega)}\right\rangle=O P_{n}$. The proof when $\alpha=\alpha_{i, j}$ is similar. Hence, we deduce that $S_{(\Lambda, \Omega)}$ is maximal subsemigroup of $P O_{n}$.
5. The proof is similar to that of $S_{(\Lambda, \Omega)}$.

For the converse part let S be a maximal subsemigroup of $P O_{n}$. Then, from Lemma 2 we have $S=I_{n-2} \cup T$, where $T \subseteq J_{n} \cup J_{n-1}=\{\epsilon\} \cup J_{n-1}$. If $\epsilon \notin T$, then $T=J_{n-1}$ and thus $S=S_{\epsilon}$. If $\epsilon \in T$ then $T=\{\epsilon\} \cup T^{\prime}$, where $T^{\prime} \subseteq J_{n-1}$. We will consider three cases: $J_{n-1} \backslash T^{\prime} \subseteq[n-1, n-1] ; J_{n-1} \backslash T^{\prime} \subseteq[n, n-1] ;\left(J_{n-1} \backslash T^{\prime}\right) \cap[n-1, n-1] \neq \emptyset$ and $\left(J_{n-1} \backslash T^{\prime}\right) \cap[n, n-1] \neq \emptyset$.

Case 1. Let $J_{n-1} \backslash T^{\prime} \subseteq[n-1, n-1]$. Since $P O_{n}=\left\langle E_{n-1}\right\rangle$ (see Proposition 1) there exists at least one idempotent $\alpha_{i, i} \notin S$ for some $i \in\{1,2, \ldots, n\}$. We show that in this case $T^{\prime} \cap R_{i}=\emptyset$. Suppose that $\alpha_{i, j} \in T^{\prime}$ for some $j \in\{1,2, \ldots, n\}$ and $j \neq i$. Then, from Lemma 1, we have $\alpha_{i, j} \alpha_{(j, j+1), i}=\alpha_{i, i} \in T^{\prime}$, that is a contradiction. Therefore, we obtain $S=S_{i}$, by the maximality of S.

Case 2. The proof is similar to that of Case 1. Here we obtain $S=S_{(i, i+1)}$.
Case 3. Let $\left(J_{n-1} \backslash T^{\prime}\right) \cap[n-1, n-1] \neq \emptyset$ and $\left(J_{n-1} \backslash T^{\prime}\right) \cap[n, n-1] \neq \emptyset$. Since $[n, n-1] \subseteq\left\langle E_{n-1} \cap O_{n}\right\rangle$ it follows that there exists at least one idempotent $\alpha_{(i, i+1), i} \notin T^{\prime}$ or $\alpha_{(i, i+1), i+1} \notin T^{\prime}$ for some $i \in\{1,2, \ldots, n-1\}$. Let $\alpha_{(i, i+1), i} \notin T^{\prime}$ and let

$$
\Lambda=\left\{\operatorname{im} \alpha: \alpha \in T^{\prime} \cap R_{(i, i+1)}\right\}
$$

Then $\Lambda \neq \emptyset$ since if $T^{\prime} \cap R_{(i, i+1)}=\emptyset$ then $S \subset S_{(i, i+1)}$ which is a contradiction with the maximality of S. Moreover, $\Lambda \subset \Lambda_{n-1}$, since im $\alpha_{(i, i+1), i} \notin \Lambda$.

Now let

$$
\bar{\Omega}=\left\{\operatorname{ker} \beta \in \Omega_{n-1}: \text { there exists } \operatorname{im} \alpha \in \Lambda \text { such that } \operatorname{im} \alpha \# \operatorname{ker} \beta\right\} .
$$

Further, we put:

$$
\begin{gathered}
U=\bigcup\left\{\alpha_{(i, i+1), j}: X_{n} \backslash\{j\} \in \Lambda\right\} \\
V=\bigcup\left\{\alpha_{(p, p+1), q}:(p, p+1) \in \bar{\Omega} \backslash(i, i+1), X_{n} \backslash\{q\} \in \Lambda_{n-1} \backslash \Lambda\right\}
\end{gathered}
$$

and

$$
V^{\prime}=\bigcup\left\{\alpha_{p, q}: X_{n} \backslash\{p\} \in \Lambda, X_{n} \backslash\{q\} \in \Lambda_{n-1} \backslash \Lambda\right\}
$$

Then,

$$
U V=U V^{\prime}=\left(R_{(i, i+1)} \backslash U\right) \cup M
$$

where $M \subseteq I_{n-2}$. Since $T^{\prime} \cap\left(R_{(i, i+1)} \backslash U\right)=\emptyset$, we deduce

$$
\begin{equation*}
T^{\prime} \cap\left[V \cup V^{\prime} \cup\left(R_{(i, i+1)} \backslash U\right)\right]=\emptyset \tag{1}
\end{equation*}
$$

Finally, if $\bar{\Omega}=\Omega_{n-1}$, then by equation (1), we obtain $S \subseteq S_{\Lambda}$ and thus $S=S_{\Lambda}$ by the maximality of S. If $\bar{\Omega}$ is a proper subset of Ω_{n-1}, then we put $\Omega=\Omega_{n-1} \backslash \bar{\Omega}$. The pair (Λ, Ω) is a coupler of ($\Lambda_{n-1}, \Omega_{n-1}$) and by equation (1) we have $S \subseteq S_{(\Lambda, \Omega)}$. Therefore, we deduce $S=S_{(\Lambda, \Omega)}$ by the maximality of S.

There are exactly $2^{n}+2 n-2$ maximal subsemigroups of $P O_{n}$.

REFERENCES

[1] I. Dimitrova, J. Koppitz. On the Maximal Subsemigroups of Some Transformation Semigroups. Asian-European Journal of Mathematics, 1 (2008), No 2, 189-202.
[2] I. Dimitrova, J. Koppitz. The Maximal Subsemigroups of the Ideals of Some Semigroups of Partial Injections. Discussiones Mathematicae, General algebra and applications, 29 (2009), 153-167.
[3] O. Ganyushkin, V. Mazorchuk. On the Structure of $I O_{n}$. Semigroup Forum, 66 (2003), 455-483.
[4] G. M. S. Gomes, J. M. Howie. On the Rank of Certain Semigroups of Order-preserving Transformations. Semigroup Forum, 51 (1992), 275-282.
[5] J. M. Howie. Fundamentals of Semigroup Theory. Oxford University Press, 1995.
[6] X. Yang. A Classification of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups. Communications in Algebra, 28 (2000), 1503-1513.
[7] Z. Yi. Maximal Subsemigroup of Partial Order-Preserving Transformation Semigroup $P O_{n}$. J. Guizhou Norm. Univ., Nat. Sci., 29 (2011), No. 2, 88-90.

Faculty of Mathematics and Natural Science
South-West University "Neofit Rilski"
2700 Blagoevgrad, Bulgaria
e-mail: ilinka_dimitrova@yahoo.com
tzvetelina20@abv.bg

ВЪРХУ МАКСИМАЛНИТЕ ПОДПОЛУГРУПИ НА МОНОИДА ОТ ВСИЧКИ ЧАСТИЧНИ ЗАПАЗВАЩИ НАРЕДБАТА ПРЕОБРАЗОВАНИЯ

Илинка А. Димитрова, Цветелина Н. Младенова

Моноида $P T_{n}$ от всички частични преобразования върху едно n-елементно множество относно операцията композиция на преобразования е изучаван в различни аспекти от редица автори. Едно частично преобразование α се нарича запазващо наредбата, ако от $x \leq y$ следва, че $x \alpha \leq y \alpha$ за всяко x, y от дефиниционното множество на α. Обект на разглеждане в настоящата работа е моноида $P O_{n}$ състоящ се от всички частични запазващи наредбата преобразования. Очевидно $P O_{n}$ е под-моноид на $P T_{n}$. Направена е пълна класификация на максималните подполугрупи на моноида $P O_{n}$. Доказано е, че съществуват пет различни вида максимални подполугрупи на разглеждания моноид. Броят на всички максимални подполугрупи на $P O_{n}$ е точно $2^{n}+2 n-2$.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 20M20.
 Key words: transformation semigroups, partial order-preserving transformations, maximal subsemigroups.

