MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2012 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012

Proceedings of the Forty First Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 9–12, 2012

CLASSIFICATION OF THE MAXIMAL SUBSEMIGROUPS OF THE SEMIGROUP OF ALL PARTIAL ORDER-PRESERVING TRANSFORMATIONS*

Ilinka Dimitrova, Tsvetelina Mladenova

Let PT_n be the semigroup of all partial transformations on an n - element set. A transformation $\alpha \in PT_n$ is called order-preserving if $x \leq y$ implies $x\alpha \leq y\alpha$ for all x, y from the domain of α . In this paper we describe the maximal subsemigroups of the semigroup PO_n of all partial order-preserving transformations.

For $n \in \mathbb{N}$, let $X_n = \{1 < 2 < \cdots < n\}$ be a finite chain with n elements. As usual, we denote by PT_n the semigroup of all partial transformations $\alpha: X_n \to X_n$ under composition. A transformation $\alpha \in PT_n$ is called order-preserving if $x \leq y$ implies $x\alpha \leq y\alpha$ for all x,y from the domain of α . As usual, PO_n denotes the subsemigroup of PT_n of all partial order-preserving transformations of X_n . This semigroup has been extensively studied. In recent years, interest in maximal subsemigroups of the transformation semigroups arises. In particular, Xiuliang Yang [6] characterized the maximal subsemigroups of the semigroup O_n of all full order-preserving transformations. Dimitrova and Koppitz [1] classified the maximal subsemigroups of the ideals of O_n . Ganyushkin and Mazorchuk [3] gave a description of the maximal subsemigroups of the semigroup POI_n of all partial order-preserving injections. In [2], Dimitrova and Koppitz characterized the maximal subsemigroups of the ideals of the semigroup POI_n . In [7], Yi constructed four types of maximal subsemigroups of the semigroup PO_n (excluding the identity map). The purpose of this paper is to give a complete classification of all maximal subsemigroups of the semigroup PO_n .

We begin by recalling some notation and definitions that are used in the paper. For the standard terms and concepts in Semigroup Theory we refer the reader to [5]. Let $\alpha \in PO_n$. We denote by dom α and im α the domain and the image of α , respectively, while $\ker \alpha := \{(x,y) \mid x,y \in \text{dom } \alpha, x\alpha = y\alpha\}$ is a convex equivalence on dom α . The natural number rank $\alpha := |\text{im } \alpha| = |\text{dom } \alpha/\ker \alpha|$ is called the rank of α . For a given subset U of PO_n , we denote by E(U) its set of idempotents.

^{*2000} Mathematics Subject Classification: 20M20.

Key words: transformation semigroups, partial order-preserving transformations, maximal subsemigroups.

Recall also that, for the Green's relations \mathcal{L} , \mathcal{R} , \mathcal{H} and \mathcal{J} on PO_n , we have

$$\alpha \mathcal{L}\beta \iff \text{im } \alpha = \text{im } \beta$$

$$\alpha \mathcal{R}\beta \iff \text{ker } \alpha = \text{ker } \beta$$

$$\alpha \mathcal{J}\beta \iff \text{rank } \alpha = \text{rank } \beta$$

$$\mathcal{H} = \mathcal{L} \cap \mathcal{R}.$$

for every transformations α and β .

The semigroup PO_n is the union of its \mathcal{J} -classes $J_0, J_1, J_2, \ldots, J_n$, where

$$J_k = \{ \alpha \in PO_n \mid \text{rank } \alpha = k \}, \text{ for } k = 0, 1, \dots, n.$$

It follows that the ideals of the semigroup PO_n are unions of \mathcal{J} -classes $J_0, J_1, J_2, \ldots, J_k$, i.e. the sets

$$I_k := \{ \alpha \in PO_n : \text{rank } \alpha \leq k \}, \text{ with } k = 0, 1, \dots, n.$$

The \mathcal{J} -class J_n contains exactly one element, namely the identity, which we denote by ϵ .

We pay attention to the \mathcal{J} -class J_{n-1} . It is convenient to refer to an element $\alpha \in PO_n$ as belonging to the set [k,s] if $|\text{dom }\alpha|=k$ and $|\text{im }\alpha|=s$ $(1 \leq s \leq k \leq n)$. Thus the \mathcal{J} -class J_{n-1} is the union of [n,n-1] and [n-1,n-1]. Let $\alpha \in [n,n-1]$ and let $\ker \alpha = \{\{1\},\ldots,\{i-1\},\{i,i+1\},\{i+2\},\ldots,\{n\}\}$ for some $i \in \{1,2,\ldots,n-1\}$. Then, for convenience we will use the notation $\ker \alpha = (i,i+1)$.

Within [n, n-1] there are exactly (n-1) different \mathcal{R} -classes of the following form

$$R_{(i,i+1)} := \{ \alpha \in J_{n-1} : \ker \alpha = (i,i+1) \}, \quad i = 1,\dots,n-1.$$

Within [n-1, n-1], which consists of one-to-one partial maps, there are exactly n different \mathcal{R} - classes of the following form

$$R_i := \{ \alpha \in J_{n-1} : \text{dom } \alpha = X_n \setminus \{i\} \}, \quad i = 1, \dots, n.$$

The \mathcal{L} - and \mathcal{H} -classes in J_{n-1} have the following form:

$$L_j := \{ \alpha \in J_{n-1} : \text{im } \alpha = X_n \setminus \{j\} \}, \quad j = 1, \dots, n;$$

$$H_{(i,i+1),j} := R_{(i,i+1)} \cap L_j \text{ and } H_{i,j} := R_i \cap L_j.$$

The \mathcal{H} -classes of PO_n are trivial, i.e. contain only one element in each case. The unique element α in the \mathcal{H} - class $H_{(i,i+1),j}$ is denoted by $\alpha_{(i,i+1),j}$. Analogously, the unique transformation α in the \mathcal{H} - class $H_{i,j}$ is denoted by $\alpha_{i,j}$. Since $\alpha_{(i,i+1),j}$ is an idempotent if and only if j=i or j=i+1 and $\alpha_{i,j}$ is an idempotent if and only if j=i, it is easy to verify that $E(R_{(i,i+1)})=2$ for $i=1,2,\ldots,n-1$, $E(R_i)=1$ for $i=1,2,\ldots,n$, $E(L_j)=1$ for $i=1,2,\ldots,n$.

Moreover, for all $\alpha, \beta \in J_{n-1}$ the product $\alpha\beta$ belongs to J_{n-1} (if and only if $\alpha\beta \in R_{\alpha} \cap L_{\beta}$) if and only if $L_{\alpha} \cap R_{\beta}$ contains an idempotent. Therefore, it is obvious that:

Lemma 1. Let
$$i, k \in \{1, \ldots, n-1\}$$
 and $j, l, s, t \in \{1, \ldots, n\}$. Then
$$\alpha_{(i,i+1),j}\alpha_{(k,k+1),l} = \alpha_{(i,i+1),l} \text{ and } \alpha_{s,j}\alpha_{(k,k+1),l} = \alpha_{s,l} \iff j = k, k+1$$

$$\alpha_{(i,i+1),j}\alpha_{s,t} = \alpha_{(i,i+1),t} \text{ and } \alpha_{l,j}\alpha_{s,t} = \alpha_{l,t} \iff j = s$$

$$L_jR_{(i,i+1)} = J_{n-1} \iff j = i, i+1 \text{ and } L_jR_l = J_{n-1} \iff j = l.$$

Let us denote by E_{n-1} the set of all idempotents of the class J_{n-1} . Further, we will use the following well known result (see [4]).

```
Proposition 1. PO_n = \langle E_{n-1} \rangle \cup \{\epsilon\} = \langle J_{n-1} \rangle \cup \{\epsilon\}.
```

Definition 1. Let $A \subseteq X_n$ and let π be an equivalence relation on a subset Y of X_n . We say that A is a transversal of π (denoted by $A \# \pi$) if $|A \cap \bar{x}| = 1$ for every equivalence class $\bar{x} \in Y/\pi$.

Let us denote by Λ_{n-1} the collection of all subsets of X_n of cardinality n-1, i.e. all sets $X_n \setminus \{i\}$ for i = 1, 2, ..., n. Let Ω_{n-1} be the collection of all convex equivalence relations on X_n with weight n-1, i.e. all equivalence relations (i, i+1) for i = 1, 2, ..., n-1.

Remark 1. For all $\alpha \in [n, n-1]$, we have im $\alpha \in \Lambda_{n-1}$ and $\ker \alpha \in \Omega_{n-1}$. For all $\alpha \in [n-1, n-1]$, we have im $\alpha \in \Lambda_{n-1}$ and dom $\alpha \in \Lambda_{n-1}$.

Definition 2. Let Λ be a non-empty proper subset of Λ_{n-1} and let Ω be a non-empty proper subset of Ω_{n-1} . The pair (Λ, Ω) is called a coupler of $(\Lambda_{n-1}, \Omega_{n-1})$ if the following three conditions are satisfied:

- 1) Every element of Λ is not a transversal to any element of Ω ;
- 2) For every $B \in \Lambda_{n-1} \setminus \Lambda$ there exists $\pi \in \Omega$ such that $B \# \pi$;
- 3) For every $\rho \in \Omega_{n-1} \setminus \Omega$ there exists $A \in \Lambda$ such that $A \# \rho$.

Lemma 2. Every maximal subsemigroup of PO_n contains the ideal I_{n-2} .

Proof. Let S be a maximal subsemigroup of PO_n . Assume that $J_{n-1} \subset S$, then $I_{n-2} \subset I_{n-1} = \langle J_{n-1} \rangle \subseteq S$. If $J_{n-1} \not\subseteq S$, then $J_{n-1} \not\subseteq \langle S \cup I_{n-2} \rangle$ since I_{n-2} is an ideal. This implies $I_{n-2} \subset S$ by the maximality of S. \square

Now, we are able to present the main results of this paper, the characterization of the maximal subsemigroups of the semigroup PO_n . Recall that in [7], Yi constructed four types of maximal subsemigroups of the semigroup PO_n . They are all particular cases of the fourth type of the next theorem.

Theorem 1. A subsemigroup S of PO_n is maximal if and only if it belongs to one of the following types:

- 1. $S_{\epsilon} := I_{n-1}$.
- 2. $S_{(i,i+1)} := I_{n-2} \cup J_n \cup (J_{n-1} \setminus R_{(i,i+1)})$ for $i = 1, 2, \dots, n-1$.
- 3. $S_i := I_{n-2} \cup J_n \cup (J_{n-1} \setminus R_i) \text{ for } i = 1, 2, \dots, n.$
- 4. $S_{(\Lambda,\Omega)} := I_{n-2} \cup J_n \cup (\cup \{L_j : X_n \setminus \{j\} \in \Lambda\}) \cup \cup (\cup \{R_i : X_n \setminus \{i\} \in \Lambda_{n-1} \setminus \Lambda\}) \cup (\cup \{R_{(i,i+1)} : (i,i+1) \in \Omega\}),$ where (Λ,Ω) is a coupler of $(\Lambda_{n-1},\Omega_{n-1})$.
- 5. $S_{\Lambda} := I_{n-2} \cup J_n \cup (\cup \{L_j : X_n \setminus \{j\} \in \Lambda\}) \cup \cup (\cup \{R_i : X_n \setminus \{i\} \in \Lambda_{n-1} \setminus \Lambda\})$, where Λ is a non-empty proper subset of Λ_{n-1} and for every $\pi \in \Omega_{n-1}$ there exists $A \in \Lambda$ such that $A \# \pi$.

Proof. Using Lemma 1, it is not difficult to prove that each one of the given types is a subsemigroup of PO_n . Now, we are going to prove that they are maximal.

- 1. Since $PO_n = I_{n-1} \cup \{\epsilon\}$ and I_{n-1} is an ideal of PO_n it is clear that $S_{\epsilon} = I_{n-1}$ is a maximal subsemigroup of PO_n .
- 2. Let $\alpha \in PO_n \setminus S_{(i,i+1)}$. Then, $\alpha \in R_{(i,i+1)}$ and $\alpha \in L_j$ for some $j \in \{1, 2, ..., n\}$, i.e. $\alpha = \alpha_{(i,i+1),j}$. Since $L_j \cap R_j$ contains an idempotent from Lemma 1, we obtain $\alpha_{(i,i+1),j}R_j = R_{(i,i+1)}$. Therefore, since $R_j \subset S_{(i,i+1)}$, we deduce that $\langle \alpha, S_{(i,i+1)} \rangle = OP_n$, i.e. $S_{(i,i+1)}$ is maximal.
 - 3. The proof is similar to that of $S_{(i,i+1)}$.
- 4. Let $\alpha \in PO_n \setminus S_{(\Lambda,\Omega)}$ and let $\alpha = \alpha_{(i,i+1),j}$. Then, $X_n \setminus \{j\} \notin \Lambda$ and so $R_j \subset S_{(\Lambda,\Omega)}$. Moreover, $(i,i+1) \notin \Omega$ and from Definition 2 it follows that $X_n \setminus \{i\} \in \Lambda$ or $X_n \setminus \{i+1\} \in \Lambda$. Without loss of generality assume that $X_n \setminus \{i\} \in \Lambda$. Then $L_i \subset S_{(\Lambda,\Omega)}$. From Lemma 1, it follows that $L_i\alpha_{(i,i+1),j} = L_j$ and $L_jR_j = J_{n-1}$. Therefore, $\langle \alpha_{(i,i+1),j}, S_{(\Lambda,\Omega)} \rangle = OP_n$. The proof when $\alpha = \alpha_{i,j}$ is similar. Hence, we deduce that $S_{(\Lambda,\Omega)}$ is maximal subsemigroup of PO_n .
 - 5. The proof is similar to that of $S_{(\Lambda,\Omega)}$.

For the converse part let S be a maximal subsemigroup of PO_n . Then, from Lemma 2 we have $S = I_{n-2} \cup T$, where $T \subseteq J_n \cup J_{n-1} = \{\epsilon\} \cup J_{n-1}$. If $\epsilon \notin T$, then $T = J_{n-1}$ and thus $S = S_{\epsilon}$. If $\epsilon \in T$ then $T = \{\epsilon\} \cup T'$, where $T' \subseteq J_{n-1}$. We will consider three cases: $J_{n-1} \setminus T' \subseteq [n-1,n-1]$; $J_{n-1} \setminus T' \subseteq [n,n-1]$; $J_{n-1} \setminus T' \cap [n-1,n-1] \neq \emptyset$ and $J_{n-1} \setminus T' \cap [n,n-1] \neq \emptyset$.

Case 1. Let $J_{n-1} \setminus T' \subseteq [n-1, n-1]$. Since $PO_n = \langle E_{n-1} \rangle$ (see Proposition 1) there exists at least one idempotent $\alpha_{i,i} \notin S$ for some $i \in \{1, 2, ..., n\}$. We show that in this case $T' \cap R_i = \emptyset$. Suppose that $\alpha_{i,j} \in T'$ for some $j \in \{1, 2, ..., n\}$ and $j \neq i$. Then, from Lemma 1, we have $\alpha_{i,j}\alpha_{(j,j+1),i} = \alpha_{i,i} \in T'$, that is a contradiction. Therefore, we obtain $S = S_i$, by the maximality of S.

Case 2. The proof is similar to that of Case 1. Here we obtain $S = S_{(i,i+1)}$.

Case 3. Let $(J_{n-1} \setminus T') \cap [n-1, n-1] \neq \emptyset$ and $(J_{n-1} \setminus T') \cap [n, n-1] \neq \emptyset$. Since $[n, n-1] \subseteq \langle E_{n-1} \cap O_n \rangle$ it follows that there exists at least one idempotent $\alpha_{(i,i+1),i} \notin T'$ or $\alpha_{(i,i+1),i+1} \notin T'$ for some $i \in \{1, 2, \ldots, n-1\}$. Let $\alpha_{(i,i+1),i} \notin T'$ and let

$$\Lambda = \{ \text{im } \alpha : \alpha \in T' \cap R_{(i,i+1)} \}.$$

Then $\Lambda \neq \emptyset$ since if $T' \cap R_{(i,i+1)} = \emptyset$ then $S \subset S_{(i,i+1)}$ which is a contradiction with the maximality of S. Moreover, $\Lambda \subset \Lambda_{n-1}$, since im $\alpha_{(i,i+1),i} \notin \Lambda$.

Now let

 $\overline{\Omega} = \{ \ker \beta \in \Omega_{n-1} : \text{ there exists im } \alpha \in \Lambda \text{ such that im } \alpha \# \ker \beta \}.$

Further, we put:

$$U = \bigcup \{\alpha_{(i,i+1),j} : X_n \setminus \{j\} \in \Lambda\},\$$

$$V = \bigcup \{\alpha_{(p,p+1),q} : (p,p+1) \in \overline{\Omega} \setminus (i,i+1), \ X_n \setminus \{q\} \in \Lambda_{n-1} \setminus \Lambda \}$$

and

$$V' = \bigcup \{\alpha_{p,q} : X_n \setminus \{p\} \in \Lambda, \ X_n \setminus \{q\} \in \Lambda_{n-1} \setminus \Lambda\}.$$

Then.

$$UV = UV' = (R_{(i,i+1)} \setminus U) \cup M,$$

where $M \subseteq I_{n-2}$. Since $T' \cap (R_{(i,i+1)} \setminus U) = \emptyset$, we deduce

(1)
$$T' \cap [V \cup V' \cup (R_{(i,i+1)} \setminus U)] = \emptyset.$$

Finally, if $\overline{\Omega} = \Omega_{n-1}$, then by equation (1), we obtain $S \subseteq S_{\Lambda}$ and thus $S = S_{\Lambda}$ by the maximality of S. If $\overline{\Omega}$ is a proper subset of Ω_{n-1} , then we put $\Omega = \Omega_{n-1} \setminus \overline{\Omega}$. The pair (Λ, Ω) is a coupler of $(\Lambda_{n-1}, \Omega_{n-1})$ and by equation (1) we have $S \subseteq S_{(\Lambda,\Omega)}$. Therefore, we deduce $S = S_{(\Lambda,\Omega)}$ by the maximality of S. \square

There are exactly $2^n + 2n - 2$ maximal subsemigroups of PO_n .

REFERENCES

- [1] I. DIMITROVA, J. KOPPITZ. On the Maximal Subsemigroups of Some Transformation Semi-groups. Asian-European Journal of Mathematics, 1 (2008), No 2, 189–202.
- [2] I. DIMITROVA, J. KOPPITZ. The Maximal Subsemigroups of the Ideals of Some Semi-groups of Partial Injections. *Discussiones Mathematicae, General algebra and applications*, **29** (2009), 153–167.
- [3] O. GANYUSHKIN, V. MAZORCHUK. On the Structure of IO_n . Semigroup Forum, **66** (2003), 455–483.
- [4] G. M. S. Gomes, J. M. Howie. On the Rank of Certain Semigroups of Order-preserving Transformations. Semigroup Forum, 51 (1992), 275–282.
- [5] J. M. HOWIE. Fundamentals of Semigroup Theory. Oxford University Press, 1995.
- [6] X. Yang. A Classification of Maximal Subsemigroups of Finite Order-Preserving Transformation Semigroups. Communications in Algebra, 28 (2000), 1503-1513.
- Z. YI. Maximal Subsemigroup of Partial Order-Preserving Transformation Semigroup PO_n.
 J. Guizhou Norm. Univ., Nat. Sci., 29 (2011), No. 2, 88–90.

Faculty of Mathematics and Natural Science South-West University "Neofit Rilski" 2700 Blagoevgrad, Bulgaria e-mail: ilinka_dimitrova@yahoo.com

ail: ilinka_dimitrova@yahoo.com tzvetelina20@abv.bg

ВЪРХУ МАКСИМАЛНИТЕ ПОДПОЛУГРУПИ НА МОНОИДА ОТ ВСИЧКИ ЧАСТИЧНИ ЗАПАЗВАЩИ НАРЕДБАТА ПРЕОБРАЗОВАНИЯ

Илинка А. Димитрова, Цветелина Н. Младенова

Моноида PT_n от всички частични преобразования върху едно n-елементно множество относно операцията композиция на преобразования е изучаван в различни аспекти от редица автори. Едно частично преобразование α се нарича запазващо наредбата, ако от $x \leq y$ следва, че $x\alpha \leq y\alpha$ за всяко x,y от дефиниционното множество на α . Обект на разглеждане в настоящата работа е моноида PO_n състоящ се от всички частични запазващи наредбата преобразования. Очевидно PO_n е под-моноид на PT_n . Направена е пълна класификация на максималните подполугрупи на моноида PO_n . Доказано е, че съществуват пет различни вида максимални подполугрупи на разглеждания моноид. Броят на всички максимални подполугрупи на PO_n е точно 2^n+2n-2 .