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Let PTn be the semigroup of all partial transformations on an n - element set. A
transformation α ∈ PTn is called order-preserving if x ≤ y implies xα ≤ yα for all
x, y from the domain of α. In this paper we describe the maximal subsemigroups of
the semigroup POn of all partial order-preserving transformations.

For n ∈ IN, let Xn = {1 < 2 < · · · < n} be a finite chain with n elements. As usual,
we denote by PTn the semigroup of all partial transformations α : Xn → Xn under com-
position. A transformation α ∈ PTn is called order-preserving if x ≤ y implies xα ≤ yα
for all x, y from the domain of α. As usual, POn denotes the subsemigroup of PTn of
all partial order-preserving transformations of Xn. This semigroup has been extensively
studied. In recent years, interest in maximal subsemigroups of the transformation semi-
groups arises. In particular, Xiuliang Yang [6] characterized the maximal subsemigroups
of the semigroup On of all full order-preserving transformations. Dimitrova and Koppitz
[1] classified the maximal subsemigroups of the ideals of On. Ganyushkin and Mazorchuk
[3] gave a description of the maximal subsemigroups of the semigroup POIn of all partial
order-preserving injections. In [2], Dimitrova and Koppitz characterized the maximal
subsemigroups of the ideals of the semigroup POIn. In [7], Yi constructed four types
of maximal subsemigroups of the semigroup POn (excluding the identity map). The
purpose of this paper is to give a complete classification of all maximal subsemigroups
of the semigroup POn.

We begin by recalling some notation and definitions that are used in the paper. For
the standard terms and concepts in Semigroup Theory we refer the reader to [5]. Let
α ∈ POn. We denote by dom α and im α the domain and the image of α, respectively,
while kerα := {(x, y) | x, y ∈ dom α, xα = yα} is a convex equivalence on dom α. The
natural number rank α := |im α| = |dom α/ kerα| is called the rank of α. For a given
subset U of POn, we denote by E(U) its set of idempotents.
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Recall also that, for the Green’s relations L, R, H and J on POn, we have

αLβ ⇐⇒ im α = im β

αRβ ⇐⇒ kerα = kerβ

αJ β ⇐⇒ rank α = rank β

H = L ∩R.

for every transformations α and β.

The semigroup POn is the union of its J -classes J0, J1, J2, . . . , Jn, where

Jk = {α ∈ POn | rank α = k}, for k = 0, 1, . . . , n.

It follows that the ideals of the semigroup POn are unions of J -classes J0, J1, J2, . . . , Jk,
i.e. the sets

Ik := {α ∈ POn : rank α ≤ k}, with k = 0, 1, . . . , n.

The J -class Jn contains exactly one element, namely the identity, which we denote
by ǫ.

We pay attention to the J -class Jn−1. It is convenient to refer to an element α ∈ POn

as belonging to the set [k, s] if |dom α| = k and |im α| = s (1 ≤ s ≤ k ≤ n). Thus the
J -class Jn−1 is the union of [n, n − 1] and [n − 1, n − 1]. Let α ∈ [n, n − 1] and let
kerα = {{1}, . . . , {i−1}, {i, i+1}, {i+2}, . . . , {n}} for some i ∈ {1, 2, . . . , n−1}. Then,
for convenience we will use the notation kerα = (i, i + 1).

Within [n, n − 1] there are exactly (n − 1) different R-classes of the following form

R(i,i+1) := {α ∈ Jn−1 : kerα = (i, i + 1)}, i = 1, . . . , n − 1.

Within [n − 1, n − 1], which consists of one-to-one partial maps, there are exactly n
different R - classes of the following form

Ri := {α ∈ Jn−1 : dom α = Xn \ {i}}, i = 1, . . . , n.

The L - and H-classes in Jn−1 have the following form:

Lj := {α ∈ Jn−1 : im α = Xn \ {j}}, j = 1, . . . , n;

H(i,i+1),j := R(i,i+1) ∩ Lj and Hi,j := Ri ∩ Lj.

The H-classes of POn are trivial, i.e. contain only one element in each case. The
unique element α in the H - class H(i,i+1),j is denoted by α(i,i+1),j . Analogously, the
unique transformation α in the H - class Hi,j is denoted by αi,j . Since α(i,i+1),j is an
idempotent if and only if j = i or j = i + 1 and αi,j is an idempotent if and only if
j = i, it is easy to verify that E(R(i,i+1)) = 2 for i = 1, 2, . . . , n − 1, E(Ri) = 1 for
i = 1, 2, . . . , n, E(Lj) = 3 for j = 2, 3, . . . , n − 1 and E(Lj) = 2 for j = 1, n.

Moreover, for all α, β ∈ Jn−1 the product αβ belongs to Jn−1 (if and only if αβ ∈
Rα ∩ Lβ) if and only if Lα ∩ Rβ contains an idempotent. Therefore, it is obvious that:

Lemma 1. Let i, k ∈ {1, . . . , n − 1} and j, l, s, t ∈ {1, . . . , n}. Then

α(i,i+1),jα(k,k+1),l = α(i,i+1),l and αs,jα(k,k+1),l = αs,l ⇐⇒ j = k, k + 1

α(i,i+1),jαs,t = α(i,i+1),t and αl,jαs,t = αl,t ⇐⇒ j = s

LjR(i,i+1) = Jn−1 ⇐⇒ j = i, i + 1 and LjRl = Jn−1 ⇐⇒ j = l.
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Let us denote by En−1 the set of all idempotents of the class Jn−1. Further, we will
use the following well known result (see [4]).

Proposition 1. POn = 〈En−1〉 ∪ {ǫ} = 〈Jn−1〉 ∪ {ǫ}.

Definition 1. Let A ⊆ Xn and let π be an equivalence relation on a subset Y of

Xn. We say that A is a transversal of π (denoted by A # π) if |A ∩ x̄| = 1 for every

equivalence class x̄ ∈ Y/π.

Let us denote by Λn−1 the collection of all subsets of Xn of cardinality n−1, i.e. all sets
Xn \ {i} for i = 1, 2, . . . , n. Let Ωn−1 be the collection of all convex equivalence relations
on Xn with weight n − 1, i.e. all equivalence relations (i, i + 1) for i = 1, 2, . . . , n − 1.

Remark 1. For all α ∈ [n, n − 1], we have im α ∈ Λn−1 and kerα ∈ Ωn−1. For all
α ∈ [n − 1, n − 1], we have im α ∈ Λn−1 and dom α ∈ Λn−1.

Definition 2. Let Λ be a non-empty proper subset of Λn−1 and let Ω be a non-empty

proper subset of Ωn−1. The pair (Λ, Ω) is called a coupler of (Λn−1, Ωn−1) if the following

three conditions are satisfied:

1) Every element of Λ is not a transversal to any element of Ω;

2) For every B ∈ Λn−1 \ Λ there exists π ∈ Ω such that B # π;

3) For every ρ ∈ Ωn−1 \ Ω there exists A ∈ Λ such that A # ρ.

Lemma 2. Every maximal subsemigroup of POn contains the ideal In−2.

Proof. Let S be a maximal subsemigroup of POn. Assume that Jn−1 ⊂ S, then
In−2 ⊂ In−1 = 〈Jn−1〉 ⊆ S. If Jn−1 6⊆ S, then Jn−1 6⊆ 〈S ∪ In−2〉 since In−2 is an ideal.
This implies In−2 ⊂ S by the maximality of S. �

Now, we are able to present the main results of this paper, the characterization of the
maximal subsemigroups of the semigroup POn. Recall that in [7], Yi constructed four
types of maximal subsemigroups of the semigroup POn. They are all particular cases of
the fourth type of the next theorem.

Theorem 1. A subsemigroup S of POn is maximal if and only if it belongs to one of

the following types:

1. Sǫ := In−1.

2. S(i,i+1) := In−2 ∪ Jn ∪ (Jn−1 \ R(i,i+1)) for i = 1, 2, . . . , n − 1.

3. Si := In−2 ∪ Jn ∪ (Jn−1 \ Ri) for i = 1, 2, . . . , n.

4. S(Λ,Ω) := In−2 ∪ Jn ∪ (∪{Lj : Xn \ {j} ∈ Λ}) ∪
∪ (∪{Ri : Xn \ {i} ∈ Λn−1 \ Λ}) ∪ (∪{R(i,i+1) : (i, i + 1) ∈ Ω}),
where (Λ, Ω) is a coupler of (Λn−1, Ωn−1).

5. SΛ := In−2 ∪ Jn ∪ (∪{Lj : Xn \ {j} ∈ Λ}) ∪
∪ (∪{Ri : Xn \ {i} ∈ Λn−1 \ Λ}), where Λ is a non-empty proper subset of Λn−1

and for every π ∈ Ωn−1 there exists A ∈ Λ such that A # π.

Proof. Using Lemma 1, it is not difficult to prove that each one of the given types
is a subsemigroup of POn. Now, we are going to prove that they are maximal.
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1. Since POn = In−1 ∪ {ǫ} and In−1 is an ideal of POn it is clear that Sǫ = In−1 is
a maximal subsemigroup of POn.

2. Let α ∈ POn \ S(i,i+1). Then, α ∈ R(i,i+1) and α ∈ Lj for some j ∈ {1, 2, . . . , n},
i.e. α = α(i,i+1),j . Since Lj ∩ Rj contains an idempotent from Lemma 1, we obtain
α(i,i+1),jRj = R(i,i+1). Therefore, since Rj ⊂ S(i,i+1), we deduce that 〈α, S(i,i+1)〉 =
OPn, i.e. S(i,i+1) is maximal.

3. The proof is similar to that of S(i,i+1).
4. Let α ∈ POn \ S(Λ,Ω) and let α = α(i,i+1),j . Then, Xn \ {j} /∈ Λ and so Rj ⊂

S(Λ,Ω). Moreover, (i, i + 1) /∈ Ω and from Definition 2 it follows that Xn \ {i} ∈ Λ
or Xn \ {i + 1} ∈ Λ. Without loss of generality assume that Xn \ {i} ∈ Λ. Then
Li ⊂ S(Λ,Ω). From Lemma 1, it follows that Liα(i,i+1),j = Lj and LjRj = Jn−1.
Therefore, 〈α(i,i+1),j , S(Λ,Ω)〉 = OPn. The proof when α = αi,j is similar. Hence, we
deduce that S(Λ,Ω) is maximal subsemigroup of POn.

5. The proof is similar to that of S(Λ,Ω).
For the converse part let S be a maximal subsemigroup of POn. Then, from Lemma

2 we have S = In−2 ∪ T , where T ⊆ Jn ∪ Jn−1 = {ǫ} ∪ Jn−1. If ǫ /∈ T , then T = Jn−1

and thus S = Sǫ. If ǫ ∈ T then T = {ǫ} ∪ T ′, where T ′ ⊆ Jn−1. We will consider three
cases: Jn−1 \ T ′ ⊆ [n − 1, n − 1]; Jn−1 \ T ′ ⊆ [n, n − 1]; (Jn−1 \ T ′) ∩ [n − 1, n − 1] 6= ∅
and (Jn−1 \ T ′) ∩ [n, n − 1] 6= ∅.

Case 1. Let Jn−1 \T ′ ⊆ [n− 1, n− 1]. Since POn = 〈En−1〉 (see Proposition 1) there
exists at least one idempotent αi,i /∈ S for some i ∈ {1, 2, . . . , n}. We show that in this
case T ′ ∩ Ri = ∅. Suppose that αi,j ∈ T ′ for some j ∈ {1, 2, . . . , n} and j 6= i. Then,
from Lemma 1, we have αi,jα(j,j+1),i = αi,i ∈ T ′, that is a contradiction. Therefore, we
obtain S = Si, by the maximality of S.

Case 2. The proof is similar to that of Case 1. Here we obtain S = S(i,i+1).
Case 3. Let (Jn−1 \ T ′) ∩ [n − 1, n − 1] 6= ∅ and (Jn−1 \ T ′) ∩ [n, n − 1] 6= ∅. Since

[n, n−1] ⊆ 〈En−1∩On〉 it follows that there exists at least one idempotent α(i,i+1),i /∈ T ′

or α(i,i+1),i+1 /∈ T ′ for some i ∈ {1, 2, . . . , n − 1}. Let α(i,i+1),i /∈ T ′ and let

Λ = {im α : α ∈ T ′ ∩ R(i,i+1)}.

Then Λ 6= ∅ since if T ′ ∩R(i,i+1) = ∅ then S ⊂ S(i,i+1) which is a contradiction with the
maximality of S. Moreover, Λ ⊂ Λn−1, since im α(i,i+1),i /∈ Λ.

Now let

Ω = {kerβ ∈ Ωn−1 : there exists im α ∈ Λ such that im α # kerβ}.

Further, we put:

U =
⋃

{α(i,i+1),j : Xn \ {j} ∈ Λ},

V =
⋃

{α(p,p+1),q : (p, p + 1) ∈ Ω \ (i, i + 1), Xn \ {q} ∈ Λn−1 \ Λ}

and

V ′ =
⋃

{αp,q : Xn \ {p} ∈ Λ, Xn \ {q} ∈ Λn−1 \ Λ}.

Then,

UV = UV ′ = (R(i,i+1) \ U) ∪ M,

where M ⊆ In−2. Since T ′ ∩ (R(i,i+1) \ U) = ∅, we deduce

(1) T ′ ∩ [V ∪ V ′ ∪ (R(i,i+1) \ U)] = ∅.
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Finally, if Ω = Ωn−1, then by equation (1), we obtain S ⊆ SΛ and thus S = SΛ by the
maximality of S. If Ω is a proper subset of Ωn−1, then we put Ω = Ωn−1 \ Ω. The pair
(Λ, Ω) is a coupler of (Λn−1, Ωn−1) and by equation (1) we have S ⊆ S(Λ,Ω). Therefore,
we deduce S = S(Λ,Ω) by the maximality of S. �

There are exactly 2n + 2n − 2 maximal subsemigroups of POn.
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ВЪРХУ МАКСИМАЛНИТЕ ПОДПОЛУГРУПИ НА МОНОИДА ОТ

ВСИЧКИ ЧАСТИЧНИ ЗАПАЗВАЩИ НАРЕДБАТА

ПРЕОБРАЗОВАНИЯ

Илинка А. Димитрова, Цветелина Н. Младенова

Моноида PTn от всички частични преобразования върху едно n-елементно мно-

жество относно операцията композиция на преобразования е изучаван в различ-

ни аспекти от редица автори. Едно частично преобразование α се нарича запазва-

що наредбата, ако от x ≤ y следва, че xα ≤ yα за всяко x, y от дефиниционното

множество на α. Обект на разглеждане в настоящата работа е моноида POn

състоящ се от всички частични запазващи наредбата преобразования. Очевидно

POn е под-моноид на PTn. Направена е пълна класификация на максималните

подполугрупи на моноида POn. Доказано е, че съществуват пет различни вида

максимални подполугрупи на разглеждания моноид. Броят на всички максимал-

ни подполугрупи на POn е точно 2n + 2n − 2.
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