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PROBLEMS FOR ONE- AND TWO-DIMENSIONAL HEAT
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It is proposed an operational method for obtaining of explicit solutions of space-
nonlocal BVPs for the two-dimensional heat equation. It is based on a direct three-
dimensional operational calculus built on a three-dimensional convolution, combining
the classical Duhamel convolution with two non-classical convolutions for the oper-
ators ∂xx and ∂yy. The corresponding operational calculus uses multiplier fractions
instead of convolution fractions. Extensions of the Duhamel principle to the space
variables are given.

1. Introduction. In M. Gutterman’s paper [1] an operational calculus approach to
Cauchy problems for PDEs with constant coefficients is proposed. This approach is not
applicable to mixed initial-boundary value problems. According to Gutterman, such
problems need new ideas and approaches. Here we use an operational calculus approach,
developed in [8] to cope with BVPs for the two-dimensional heat equation

ut = uxx + uyy + F (x, y, t), 0 < t, 0 < x < a, 0 < y < b,(1)

u(x, y, 0) = f(x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ b,(2)

u(0, y, t) = 0, Φξ{u(ξ, y, t)} = 0, 0 ≤ t, 0 ≤ y ≤ b,(3)

u(x, 0, t) = 0, Ψη{u(x, η, t)} = 0, 0 ≤ t, 0 ≤ x ≤ a,

where Φ and Ψ are non-zero linear functionals on C1[0, a] and C1[0, b], correspondingly,
F (x, y, t) and f(x, y) are given functions. We suppose that each of the supports supp Φ
and supp Ψ of the functionals Φ and Ψ contains at least one point, different from 0
i.e. the problem is nonlocal both with respect to x and y. In the next considerations we
suppose also that Φ and Ψ satisfy the normalizing restrictions Φξ{ξ} = 1 and Ψη{η} = 1.
These restrictions are made for the sake of simplification and they can be ousted by some
unessential technical involvements.
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2. Weak solutions of BVP (1)–(3). It is natural to look for a classical solution
of the BVP (1)–(3), but, in general, the sufficient conditions for the existence of such
solutions may happen to be too restrictive. That’s why we introduce the notion of a weak
solution of (1)–(3). In order to give an exact meaning of this notion, we introduce some
notations. In the domain D = [0, a] × [0, b]× [0,∞) we consider the integral operators

(4) lt{u(x, y, t)} =

∫ t

0

u(x, y, τ)dτ ,

and the right inverse operators Lx and Ly of
∂2

∂x2
and

∂2

∂y2
given by

(5) Lx{u(x, y, t)} =

∫ x

0

(x − ξ)u(ξ, y, t)dξ − xΦξ

{

∫ ξ

0

(ξ − η)u(η, y, t)dη

}

,

and

(6) Ly{u(x, y, t)} =

∫ y

0

(y − η)u(x, η, t)dη − yΨη

{∫ η

0

(η − ς)u(x, ς, t)dς

}

,

correspondingly. These operators are considered on C(D). They satisfy the boundary
value conditions Φx{Lxu} = 0 and Ψy{Lyu} = 0.

Definition 1. A function u(x, y, t) ∈ C1(D) is said to be a weak solution of problem
(1)−(3), if and only if it satisfies the integral relation

(7) LxLyu − ltLyu − ltLxu = LxLyf(x, y) + ltLxLyF (x, y, t).

Formally, (7) is obtained from equation (1) by application of the product operator
ltLxLy, followed by using BVCs (2)–(3). It is easy to show that each classical solution of
(1)–(3) is a weak solution too. If it happens that u ∈ C2(D), then the converse is true.
Nevertheless, we can prove that each weak solution satisfies the BVCs (2)–(3).

Lemma 1. Let u ∈ C1(D) satisfy (7). Then, u satisfies BVCs (2)−(3).

Proof. Taking t = 0 in (7), we find LxLyu(x, y, 0) = LxLyf(x, y). Hence, u(x, y, 0) =
f(x, y). For x = 0 we find −ltLyu(0, y, t) = 0 and, hence u(0, y, t) = 0. Next, apply-

ing Φ to (7), we get −ltLyΦξ{u(ξ, y, t)} = 0. If we apply
∂

∂t
and

∂2

∂y2
, then we get

Φξ{u(ξ, y, t)} = 0. Analogously, we find that u(x, 0, t) = 0 and Ψη{u(x, η, t)} = 0. �

Lemma 2. Assume that u ∈ C1(D) is a solution of (7) with continuous partial deriv-
atives uxx, uyy, ut. Then, u is a classical solution of (1)−(3).

Proof. Applying the operator
∂

∂t

∂4

∂x2∂y2
to (7), we get ut = uxx + uyy + F (x, y, t).

The fulfillment of the boundary value conditions follows from Lemma 1. �

Our final aim is to reduce the solution of BVP (1)–(3) to the following two nonlocal
one-dimensional BVPs:

(8) vt = vxx, 0 < t, 0 < x < a,

v(x, 0) = f(x), 0 ≤ x ≤ a, v(0, t) = 0, Φξ{v(ξ, t)} = 0, 0 ≤ t, and
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(9) wt = wyy , 0 < t, 0 < y < b,

w(y, 0) = g(y), 0 ≤ y ≤ b, w(0, t) = 0, Ψη{u(η, t)} = 0, 0 ≤ t.

Next, with appropriate functions f(x) and g(y), we consider the one-dimensional
problems (8) and (9) independently of problem (1)–(3).

Definition 2. The functions v = v(x, t) ∈ C1([0, a] × [0,∞)) and w = w(y, t) ∈
C1([0, b] × [0,∞)) are said to be weak solutions of problems (8) and (9), if they satisfy
the integral relations

Lxv − ltv = Lxf(x) and(10)

Lyw − ltw = Lyg(y),(11)

correspondingly.

Lemma 3. If v(x, t) ∈ C1([0, a]× [0,∞)) satisfies (10), then v(x, t) satisfies the initial
and boundary value conditions v(x, 0) = f(x), v(0, t) = 0, Φξ{v(ξ, t)} = 0.

The proof is similar to that of Lemma 1, but it is a simpler one. We skip it.

Such is the relation between problem (9) and equation (11), as well.

Lemma 4. If v(x, t) with vxx(x, t), vt(x, t) ∈ C([0, a] × [0,∞)) satisfies (10), then
v(x, t) is a classical solution of (8).

A similar statement holds for (11) too. The proof is similar to that of Lemma 2.

Lemma 5. Let v(x, t) ∈ C1([0, a] × [0,∞)) and w(y, t) ∈ C1([0, b] × [0,∞)) be weak
solutions of problems (8) and (9), correspondingly. Then, u(x, y, t) = v(x, t)w(y, t) ∈
C(D) is a weak solution of the BVP

ut = uxx + uyy,(12)

u(x, y, 0) = f(x)g(y),(13)

u(0, y, t) = 0, Φξ{u(ξ, y, t)} = 0,(14)

u(x, 0, t) = 0, Ψη{u(x, η, t)} = 0.

in the sense of Definition 1.

Remark. If v and w are classical solutions, then we may assert that u = vw is a
classical solution of (12)–(14) too.

Proof. By Definition 2, we have:

(15) Lxv = ltv + Lxf(x), Lyw = ltw + Lyg(y).

According to Definition 1 we are to prove that:

LxLyvw − ltLyvw − ltLxvw = LxLyf(x)g(y).

Using (15), we find

LxLyvw − ltLyvw − ltLxwv = LxvLyw − lt(vLyw) − lt(wLxv) =

= (ltv + Lxf(x))(ltw + Lyg(y)) − lt(v(ltw + Lyg(y))) − lt(w(ltv + Lxf(x))) =

= (ltv)(ltw) − lt(v(ltw)) − lt(w(ltv)) + (Lxf(x))(Lyg(y)).

In order to prove the assertion of the lemma, it remains to show that (ltv)(ltw) −
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lt(v(ltw)) − lt(w(ltv)) = 0. Indeed,

(ltv)(ltw) − lt(v(ltw)) − lt(w(ltv)) =

(∫ t

0

v(x, τ)dτ

) (∫ t

0

w(y, τ)dτ

)

−

−

∫ t

0

v(x, τ)

(∫ τ

0

w(y, θ)dθ

)

dτ −

∫ t

0

w(y, τ)

(∫ τ

0

v(x, θ)dθ

)

dτ = 0

Thus we proved the relation (7) for u = vw and f(x, y) = f(x)g(y). Hence, u = vw

is a weak solution of (12)–(14).
3. Convolutions. Here we briefly remind the convolutions, introduced in [8].
3.1. One-dimensional convolutions.

1) f, g ∈ C[0,∞) : (f
t
∗ g)(t) =

∫ t

0

f(t − τ)g(τ)dτ (Duhamel convolution).

2) f, g ∈ Cx = C[0, a] : (f
x
∗ g)(x) = −

1

2
Φ̃ξ {h(x, ξ)} , (Dimovski [2])

with Φ̃ = Φξ ◦ lξ and

h(x, η) =

∫ η

x

f(η + x − ς)g(ς)dς −

∫ η

−x

f(|η − x − ς|)g(|ς|) sgn(ς(η − x − ς))dς.

3) f, g ∈ Cy = C[0, b] : (f
y
∗ g)(y) = −

1

2
Ψ̃η {h(y, η)}, with Ψ̃ = Ψη ◦ lη (Dimovski [2]).

3.2. Two-dimensional convolutions. Define

1) f, g ∈ C([0, a]× [0,∞)) : f(x, t)
(x,t)
∗ g(x, t) =

∫ t

0

f(x, t − τ)
x
∗ g(x, τ)dτ, (see [4]).

2) f, g ∈ C([0, b] × [0,∞)) : f(y, t)
(y,t)
∗ g(y, t) =

∫ t

0

f(y, t − τ)
y
∗ g(y, τ)dτ, (see [?]).

Theorem 1. If f, g ∈ C([0, a] × [0, b]), then

(16) f(x, y)
(x,y)
∗ g(x, y) = −

1

2
Φ̃ξ

{

∫ ξ

x

f(ξ + x − σ, y)
y
∗ g(σ, y)dσ−

−

∫ ξ

−x

f(|ξ − x − σ|, y)
y
∗ g(|σ|, y) sgn(ξ − x − σ)σ dσ

}

is a bilinear, commutative and associative operation in C([0, a] × [0, b]), such that

LxLyu(x, y, t) = {x, y}
(x,y)
∗ u(x, y, t).

For a proof see [5].

Theorem 2. Let u, v ∈ C(D). Then, the operation

(17) u(x, y, t)
v
∗ (x, y, t) =

∫ t

0

u(x, y, t − τ)
(x,y)
∗ v(x, y, τ)dτ,

where by
x,y
∗ is denoted the operation (16), is a bilinear, commutative and associative

operation in C(D), such that

(18) ltLxLyu(x, y, t) = {x y} ∗ u(x, y, t).

For a proof see [8].
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4. Ring of the multiplier fractions of (C(D), ∗). We consider the convolution
algebra (C, ∗), where C = C(D). Our direct operational calculus approach which we
apply to the two-dimensional heat equation is outlined in [9]. Here we remind only some
notations.

The multipliers of the form {u(x, y, t)}∗ are denoted by {u} or u and the result of the
application of the operator u∗ to a function F ∈ C(D) is denoted simply by {u}F or uF .

Definition 3. Let f be a function of the variable x only in C[0, a] and g be a function
of the variable y only in C[0, a], but both considered as functions of C(D). The operators

[f ]y,t and [g]x,t defined by [f ]y,tu = f
x
∗ u and [g]x,tu = g

y
∗u are said to be partially

numerical operators with respect to x, t and y, t correspondingly.

The set of all the multipliers of the convolution algebra (C, ∗) is a commutative ring
M. The multiplicative set N of the non-zero non-divisors of 0 in M is non-empty, since

at least the operators {x}
x
∗ and {y}

y
∗ are non-divisors of 0.

Next we introduce the ring M = N
−1

M of the multiplier fractions of the form
A

B
where

A ∈ M and B ∈ N. The standard algebraic procedure of constructing this ring, named
“localization”, is described, e.g. in Lang [6]. Basic for our construction are the algebraic

inverses Sx =
1

Lx

and Sy =
1

Ly

of the multipliers Lx and Ly in M, correspondingly. If

u ∈ C2(D), then, in general, Sxu and Syu are different from uxx and uyy, but they are
connected with them.

Lemma 6. Let uxx, uyy, ut be continuous on D. Then,

uxx = Sxu + Sx{(xΦξ{1} − 1)u(0, y, t)} − [Φξ{u(ξ, y, t)}]x,

uyy = Syu + Sy{(yΨη{1} − 1)u(x, 0, t)} − [Ψη{u(x, η, t)}]y,

ut = su − [u(x, y, 0)]t,

(See [4] and [9]).

5. Formal (generalized) solution of (1)–(3). Let us consider problem (1)–(3).
The equation (1) ut = uxx + uyy + F (x, y, t) together with the initial and boundary
conditions (2) and (3) can be reduced to a single algebraic equation for u in M. Indeed,
by Lemma 6, using (2) and (3), we get:

uxx = Sxu, uyy = Syu, ut = s u − [f(x, y]t.

Then, (1)–(3) takes the following algebraic form in M:

(19) (s − Sx − Sy)u = [f(x, y)]t + F (x, y, t).

We may solve (19) in M, provided s− Sx − Sy is a non-divisor of zero in M. Next, a
sufficient condition for this is given by:

Theorem 3. If a ∈ supp Φ and b ∈ supp Ψ, then the element s − Sx − Sy is a non-
divisor of zero in M.

Remark. Theorem 3 is a special case of Theorem 13 in [9].

Corollary. If a ∈ supp Φ and b ∈ supp Ψ, then the boundary value problem (1)−(3)
has unique solution.
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Indeed, the homogeneous BVP (1)–(3) reduces to the algebraic equation (s − Sx −
Sy)u = 0 in M and, hence, u ≡ 0, since s − Sx − Sy is a non-divisor of zero in M.

From now on, we suppose that a ∈ supp Φ and b ∈ supp Ψ.

The formal solution of (19) is

(20) u =
1

s − Sx − Sy

([f(x, y)]t + F (x, y, t)).

Similarly, considering the algebras (C[0, a]× [0,∞),
x,t
∗ ) and (C[0, b]× [0,∞),

y,t
∗ ) and

their rings of multiplier fractions Mx,t and My,t, the problem (8) and (9) have the formal

solutions v =
1

s − Sx

[f(x)]t, w =
1

s − Sy

[g(y)]t in Mx,t and My,t since s−Sx and s−Sy

are non-divisors of zero (see [3]).

6. Interpretation of the formal (generalized) solution of (1)–(3) as a func-
tion.

6.1. Our next task is to interpret (20) as a function of C([0, a] × [0, b] × [0,∞)). To
this end, we consider (1)–(3) for F (x, y, t) ≡ 0 and f(x, y) = xy. We denote its weak
solution, if it exists, by U = U(x, y, t). We have the following algebraic representation of
this solution:

U =
1

s − Sx − Sy

[xy]x,y =
1

s − Sx − Sy

(, LxLy) =
1

SxSy(s − Sx − Sy)
.

Analogically, we denote the weak solutions of the problems (8) and (9) for f(x) = x

and g(y) = y by V = V (x, t) and W = W (y, t), correspondingly. Then, the algebraic
representations of these solutions are

V =
1

Sx(s − Sx)
and W =

1

Sy(s − Sy)
.

Theorem 4. Assume that V =
1

Sx(s − Sx)
and W =

1

Sy(s − Sy)
are weak solutions of

(8) and (9) for f(x) = x and g(y) = y, correspondingly. Then, U =
1

SxSy(s − Sx − Sy)
=

{V W}, where WV = V (x, t)W (y, t) is the ordinary product of V and W , is a weak
solution of (1)−(3) for F (x, y, t) ≡ 0 and f(x, y) = xy.

The proof follows immediately from Lemma 5.

The generalized solution of problem (1)–(3) for arbitrary f(x, y), and F (x, y, t) can
be represented in the form:

u = SxSy

(

1

SxSy(s − Sx − Sy)
[f(x, y)]t +

1

SxSy(s − Sx − Sy)
F (x, y, t)

)

.

As a function it has the form

(21) u =
∂4

∂x2∂y2

[

U
x,y
∗ f(x, y) + U

F
∗(x, y, t)

]

provided the denoted derivatives exist.
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Let us consider the problem (1)–(3) for F (x, y, t) ≡ 0. Then,

u =
∂4

∂x2∂y2

(

U(x, y, t)
x,y
∗ f(x, y)

)

=
∂4

∂x2∂y2

(

(V (x, t)W (y, t))
x,y
∗ f(x, y)

)

=

=
∂2

∂x2

(

V (x, t)
x
∗

∂2

∂y2

(

W (y, t)
y
∗ f(x, y)

)

)

= V (x, t)
x

∗̃

(

W (y, t)
y

∗̃ f(x, y)

)

.

where the operations
x

∗̃ in C[0, a] and
y

∗̃ in C[0, b], correspondingly, are defined as

f(x)
x

∗̃ g(x) =
∂2

∂x2
(f(x)

x
∗ g(x)) and f(y)

y

∗̃ g(y) =
∂2

∂y2
(f(y)

y
∗ g(y)).

If f(x, y) = f1(x)f2(y), then

u = (V (x, t)
x

∗̃ f1(x))(W (y, t)
y

∗̃ f2(y)).

This is the desired explicit solution of (1)–(3) for f(x, y) = f1(x)f2(y).

6.2. Let us consider BVP (1)–(3) with F (x, y, t) ≡ 0 and

f(x, y) = Lx{x}Ly{y} =
1

S2
xS2

y

=

(

x3

6
−

x

6
Φξ{ξ

3}

)(

y3

6
−

y

6
Ψη{η

3}

)

.

We denote the solution of this problem by Ω = Ω(x, y, t). Then, we have the following
algebraic representation of (20):

Ω =
1

s − Sx − Sy

(Lx{x}Ly{y}) =
1

S2
xS2

y(s − Sx − Sy)
.

Analogically, we denote the weak solutions of problems (8) and (9) for f(x) = Lx{x} =
1

S2
x

=
x3

6
−

x

6
Φξ{ξ

3} and g(y) = Ly{y} =
1

S2
y

=
y3

6
−

y

6
Ψη{η

3} by H = H(x, t) and

K = K(y, t), correspondingly. Then, the algebraic representations of these solutions are

H =
1

S2
x(s − Sx)

and K =
1

S2
y(s − Sy)

.

Theorem 5. Assume that H =
1

S2
x(s − Sx)

and K =
1

S2
y(s − Sy)

are weak solutions

of (8) and (9) for f(x) =
x3

6
−

x

6
Φξ{ξ

3} and g(y) =
y3

6
−

y

6
Ψη{η

3}, correspondingly.

Then, Ω =
1

S2
xS2

y(s − Sx − Sy)
= {HK}, where HK = H(x, t)K(y, t) is the ordinary

product of H and H, is a weak solution of (1)−(3) for F (x, y, t) ≡ 0 and f(x, y) =
(

x3

6
−

x

6
Φξ{ξ

3}

)(

y3

6
−

y

6
Ψη{η

3}

)

.

The proof follows immediately from Lemma 5.

The solution of problem (1)–(3) for arbitrary f(x, y) and F (x, y, t) can by represented
in the form:

u = S2
xS2

y

(

1

S2
xS2

y(s − Sx − Sy)
[f(x, y)]t +

1

S2
xS2

y(s − Sx − Sy)
F (x, y, t)

)
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which can be interpreted as

(22) u =
∂8

∂x4∂y4

[

Ω
x,y
∗ f(x, y) + Ω

t
∗F (x, y, t)

]

.

Assuming some smoothness conditions for the given functions, we may assert that
(22) is either weak, or classical solution of (1)–(3).

In order to reveal further the structure of the solution, we may introduce the auxiliary
operations

f(x)
x
◦ g(x) =

∂2

∂x2
(f(x)

x

∗̃ g(x)) and f(y)
y
◦ g(y) =

∂2

∂y2
(f(y)

y

∗̃ g(y)).

Let us consider problem (1)–(3) for F (x, y, t) ≡ 0. We get

u =
∂2

∂x2

(

V (x, t)
x

∗̃
∂2

∂y2

(

W (y, t)
y

∗̃ f(x, y)

))

= V (x, t)
x
◦ (W (y, t)

y
◦ f(x, y)).

If f(x, y) = f1(x)f2(y), then

u = (V (x, t)
x
◦ f1(x))(W (y, t)

y
◦ f2(y)).

7. Example. In the next problem, the functionals Φ and Ψ are of Samarski-Ionkin
type (see [7]). Here we are looking for a classical solution of the BVP considered.

Problem. Solve the boundary value problem:

ut = uxx + uyy, 0 < x < a, 0 < y < b, t > 0, u(x, y, 0) = f(x, y),

(23) u(0, y, t) = 0, u(x, 0, t) = 0,

∫ a

0

u(ξ, y, t)dξ = 0,

∫ b

0

u(x, η, t)dη = 0.

Solution. We consider the following two one-dimensional BVPs:

(24) vt = vxx, 0 < x < a, t > 0, v(x, 0) = f(x), v(0, t) = 0,

∫ a

0

v(ξ, t)dξ = 0,

and

(25) wt = wyy, 0 < y < b, t > 0, w(y, 0) = g(y), w(0, t) = 0,

∫ b

0

w(η, t)dη = 0,

(here Φ{f} =
2

a2

∫ a

0

f(ξ)dξ and Ψ{g} =
2

b2

∫ b

0 g(η)dη).

Let f, g ∈ C[0, a]. Then, in the case of Φξ{f(ξ)} =
2

a2

∫ a

0 f(ξ)dξ and Ψ{g} =

2

b2

∫ b

0 g(η)dη the convolutions
x
∗ and

y
∗ are two times differentiable.

Lemma 7. Let f, g ∈ C[0, a] and

∫ a

0

f(ξ)dξ =

∫ a

0

g(ξ)dξ = 0. Then, we have

(f
x

∗̃ g)(x) =
∂2

∂x2

(

(f
x
∗ g)(x)

)

= −
1

a2

(∫ a

x

f(a + x − ς)g(ς)dς−

−

∫ a

−x

f(|a − x − ς|)g(|ς|) sgn(ς(a − x − ς))dς − 2

∫ x

0

f(x − ς)g(ς)dς

)

.

Proof. By direct check. �
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Lemma 8. Let f, g ∈ C1[0, a] and f(0) = g(0) =

∫ a

0

f(ξ)dξ =

∫ a

0

g(ξ)dξ = 0, then

f
x
◦ g =

∂4

∂x4

(

(f
x
∗ g)(x)

)

=
∂2

∂x2

(

(f
x

∗̃ g)(x)

)

=

= −
1

a2





∫ a

x

f ′(a + x − ς)g′(ς)dς −

∫ a

−x

f ′(|a − x − ς|) g′(|ς|) dς + 2

x
∫

0

f ′(x − ς)g′(ς)dς



 .

Proof. By direct check. �

If f(x, y) = f1(x)f2(y), then the solution of (23) is:

(26) u = (V (x, t)
x

∗̃ f1(x)) (W (y, t)
y

∗̃ f2(y)).

We are to use representation (22) from 6.2. of the solution of (20).

The solution of (24) for f(x) =
x3

6
−

a2x

12
= Lx{x} is

H(x, t) = −2

∞
∑

n=1

e−λ2

n
t

(

2

(

1

λ3
n

+
1

λ2
n

λnt

)

sin λnx −
1

λ2
n

x cosλnx

)

, where λn =
2nπ

a
.

Analogically, the solution of (25) for g(y) =
y3

6
−

b2y

12
= Ly{y} is

K(y, t) = −2

∞
∑

m=1

e−µ2

m
t

(

2

(

1

µ3
m

+
1

µ2
m

λnt

)

sin µmy −
1

µ2
m

x cosµmy

)

, where µm =
2mπ

b
.

H and K are obtained following Ionkin’s (see [7]) approach.

Theorem 6. Let f ∈ C(D) be such that fx(x, y), fy(x, y) ∈ C([0, a] × [0, b]) and
∫ a

0

f(ξ, y)dη =

∫ b

0

f(x, η)dη = 0. Then,

(27) u = H(x, t)
x
◦ (K(y, t)

y
◦ f(x, y))

is a weak solution of (23).

If suppose additionally f(x, y) ∈ C2(D), then (27) would be a classical solution of
(23).

If f(x, y) = f1(x)f2(y), then the solution of (23) is:

u = (H(x, t)
x
◦ f1(x))(K(y, t)

y
◦ f2(y)).
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ТОЧНИ РЕШЕНИЯ НА НЕЛОКАЛНИ ГРАНИЧНИ ЗАДАЧИ ЗА

ЕДНО- И ДВУМЕРНИ УРАВНЕНИЯ НА ТОПЛОПРОВОДНОСТА

Иван Хр. Димовски, Юлиан Ц. Цанков

Предложен е метод за намиране на явни решения на клас двумерни уравнения на
топлопроводността с нелокални условия по пространствените променливи. Мето-
дът е основан на директно тримерно операционно смятане. Класическата дюаме-
лова конволюция е комбинирана с две некласически конволюции за операторите
∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане из-
ползва мултипликаторни частни. Мултипликаторните частни позволяват да се
продължи принципът на Дюамел за пространствените променливи и да се на-
мерят явни решения на разглежданите гранични задачи. Общите разглеждания
са приложени в случая на гранични условия от типа на Йонкин. Намерени са
експлицитни решения в затворен вид.
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