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PROBLEMS FOR ONE- AND TWO-DIMENSIONAL HEAT
EQUATION®

Ivan Dimovski, Yulian Tsankov

It is proposed an operational method for obtaining of explicit solutions of space-
nonlocal BVPs for the two-dimensional heat equation. It is based on a direct three-
dimensional operational calculus built on a three-dimensional convolution, combining
the classical Duhamel convolution with two non-classical convolutions for the oper-
ators Oz, and Oyy. The corresponding operational calculus uses multiplier fractions
instead of convolution fractions. Extensions of the Duhamel principle to the space
variables are given.

1. Introduction. In M. Gutterman’s paper [1] an operational calculus approach to
Cauchy problems for PDEs with constant coefficients is proposed. This approach is not
applicable to mixed initial-boundary value problems. According to Gutterman, such
problems need new ideas and approaches. Here we use an operational calculus approach,
developed in [8] to cope with BVPs for the two-dimensional heat equation

(1) Ut = Uggy + Uyy + F(z,y,t), 0<t, 0<z<a 0<y<b,
(2) u(z,y,0) = f(z,y), 0<z<a, 0<y<b,
(3) U(O,y,t) =0, Q)E{u(gvyat)} =0, 0<t, 0<y< ba

u(z,0,t) =0, V. {u(z,n,t)} =0, 0<t, 0<z<a,

where ® and ¥ are non-zero linear functionals on C'[0, a] and C'[0, b], correspondingly,
F(z,y,t) and f(x,y) are given functions. We suppose that each of the supports supp ®
and supp ¥ of the functionals ® and ¥ contains at least one point, different from 0
i.e. the problem is nonlocal both with respect to z and y. In the next considerations we
suppose also that ® and VU satisfy the normalizing restrictions ®¢{{} = 1 and ¥, {n} = 1.
These restrictions are made for the sake of simplification and they can be ousted by some
unessential technical involvements.
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2. Weak solutions of BVP (1)—(3). It is natural to look for a classical solution
of the BVP (1)—(3), but, in general, the sufficient conditions for the existence of such
solutions may happen to be too restrictive. That’s why we introduce the notion of a weak
solution of (1)—(3). In order to give an exact meaning of this notion, we introduce some
notations. In the domain D = [0,a] x [0,b] x [0,00) we consider the integral operators

x|
(4) umm%mzéu@%ﬂm
82 2

0
and the right inverse operators L, and L, of — 92 8 ~5 given by
x

and
n

. e
(5) Lz{U(x,y,t)}:/O (= &u(,y,t dfx@g{ ; u(n,y, )dn},

©) Luwa%w}:/ﬂ@fmwam yin -y, { [ zcw@}

correspondingly. These operators are considered on C(D). They satisfy the boundary
value conditions ®,{L,u} =0 and ¥,{L,u} = 0.

Definition 1. A function u(x,y,t) € C1(D) is said to be a weak solution of problem
(1)=(3), if and only if it satisfies the integral relation
(7) L,Lyu—1l;Lyu—1l;Lyu=LyLy,f(z,y)+ Ly L,F(x,y,t).

Formally, (7) is obtained from equation (1) by application of the product operator
l¢LyL,, followed by using BVCs (2)—(3). It is easy to show that each classical solution of
(1)—(3) is a weak solution too. If it happens that u € C?(D), then the converse is true.
Nevertheless, we can prove that each weak solution satisfies the BVCs (2)—(3).

Lemma 1. Let u € C*(D) satisfy (7). Then, u satisfies BVCs (2)—(3).

Proof. Takingt = 01in (7), we find L, Lyu(x,y,0) = LyL, f(z,y). Hence, u(z,y,0) =
f(z,y). For z = 0 we find —{;L,u(0,y,t) = 0 and, hence u(0,y,t) = 0. Next, apply-
2

0
ing ® to (7), we get —I;L,Pe{u(§,y,t)} = 0. If we apply En and then we get

0
oy?’
P {u(€,y,t)} = 0. Analogously, we find that u(z,0,t) = 0 and ¥, {u(z,n,t)} =0. O

Lemma 2. Assume that u € C'(D) is a solution of (7) with continuous partial deriv-
atives Ugy, Uyy, . Then, u is a classical solution of (1)—(3).

4

0
Proof. Applying the operator 92D 20,7
The fulfillment of the boundary value condltlons follows from Lemma 1. [

o (7), we get Uy = Ugy + Uyy + F(2,y,1).

Our final aim is to reduce the solution of BVP (1)—(3) to the following two nonlocal
one-dimensional BVPs:

(8) vt =0z, 0<t, 0<z<a,
v(z,0) = f(x), 0<z<a, v(0,t)=0, PAv(&t)} =0, 0<¢t and
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(9) w=wy, 0<t 0<y<b,
w(y,0) =g(y), 0<y<b w(0,t)=0, Vpfu(n,t)} =0, 0<t
Next, with appropriate functions f(x) and g(y), we consider the one-dimensional
problems (8) and (9) independently of problem (1)—(3).
Definition 2. The functions v = v(z,t) € C1([0,a] x [0,00)) and w = w(y,t) €
(

CL([0,b] x [0,00)) are said to be weak solutions of problems (8) and (9), if they satisfy
the integral relations

(10) Lov—lw=L,f(z) and
(11) Lyw — lyw = Lyg(y),
correspondingly.

Lemma 3. If v(z,t) € C*([0,a] x [0,0)) satisfies (10), then v(x,t) satisfies the initial
and boundary value conditions v(x,0) = f(z), v(0,t) =0, ®{v(,t)} =0.

The proof is similar to that of Lemma 1, but it is a simpler one. We skip it.

Such is the relation between problem (9) and equation (11), as well.

Lemma 4. If v(z,t) with vy, (z,t), ve(x,t) € C([0,a] x [0,00)) satisfies (10), then
v(x,t) is a classical solution of (8).

A similar statement holds for (11) too. The proof is similar to that of Lemma 2.

Lemma 5. Let v(z,t) € C1([0,a] x [0,00)) and w(y,t) € C1([0,b] x [0,00)) be weak
solutions of problems (8) and (9), correspondingly. Then, u(x,y,t) = v(x,t)w(y,t) €
C(D) is a weak solution of the BVP

(12) Ut = Ugg + Uyy,

(13) u(z,y,0) = f(z)g(y),

(14) u(O,y, t) =0, (I)E{u(ga y,t)} =0,
u(z,0,t) =0, Y {u(z,n,t)}=0.

in the sense of Definition 1.

Remark. If v and w are classical solutions, then we may assert that u = vw is a
classical solution of (12)—(14) too.

Proof. By Definition 2, we have:
(15) Lyv=4Lv+ Lyf(x), Lyw=lLw+ Lyg(y).
According to Definition 1 we are to prove that:
L,L,ow — l; Lyvw — [y Lyvw = Ly Ly, f(x)g(y).
Using (15), we find
L,Lyvw — l;Lyvw — [y Lywv = LyvLyw — I (vLyw) — ly(wLgv) =
= (lw + La f(2))(lew + Lyg(y)) — Le(v(lew + Lyg(y))) — le(w(lw + Lo f(2))) =
= () (lw) = li(v(lew)) = L(w(lw)) + (Lo f(2))(Lyg(y))-
In order to prove the assertion of the lemma, it remains to show that (l;v)(l;w) —
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le(v(lzw)) — le(w(lyv)) = 0. Indeed,

(o) (lew) = L (vliw)) = L(w(lev)) = </Otv(:c,7)d7> (/Otw(y,T)dT> _
—/Otv(ac,T) (/()Tw(y,e)de) dr—/otw(yﬂ') (/(:u(:c,e)de) dr =0

Thus we proved the relation (7) for u = vw and f(z,y) = f(z)g(y). Hence, u = vw
is a weak solution of (12)—(14).

3. Convolutions. Here we briefly remind the convolutions, introduced in [8].

3.1. One-dimensmnal convolutlons

1) f,g € C[0,00) / f(t—7)g(r)dr  (Duhamel convolution).

2) g€ Co = Cl0,a]: (fEg)(@) = e (h(x,€)},  (Dimovski [2)
with ® = ®¢ ole and

) = | "t e —Qe@ds— [ fn— - <Dglls]) sen(sn — @ — <))de.

3) f.g€ Cy=C[0,b]: (f*g)(y) = ,%\i,n {h(y,n)}, with & = ¥, o1, (Dimovski [2]).

3.2. Two-dimensional convolutions. Define .
1) f.g € C([0,a] x [0,00)) : f(a£) % g, t) :/ Fla,t— ) S g(w.r)dr,  (sce [4)).
(y,

2) f.9€ C([0,6] x [0,00)) : fl, 1) % /fy,m Lo(y,r)dr,  (see [7]).
Theorem 1. If f, g € C([0,a] x [0,b]), then

T,y ~ 3
(16) f(fc,y)( * )g(%y) = —%‘Ps {/ fE+z—0,y) *g(0,y)do—

§
— [ f(¢—x—oly)*g(|ol,y)sen(§ —x —o)o da}

—x

is a bilinear, commutative and associative operation in C(]0,a] x [0,b]), such that
(z,9)
Lo Lyu(z,y,t) = {z,y} * u(z,y,1).

For a proof see [5].
Theorem 2. Let u,v € C(D). Then, the operation
t .
(1) (e 0 e0) = [ ot =) ol r)dr
0

where by & is denoted the operation (16), is a bilinear, commutative and associative
operation in C(D), such that

(18) L Lyu(z,y,t) = {zy} *u(z,y,t).

For a proof see [8].
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4. Ring of the multiplier fractions of (C (D), *). We consider the convolution
algebra (C, ), where C = C(D). Our direct operational calculus approach which we
apply to the two-dimensional heat equation is outlined in [9]. Here we remind only some
notations.

The multipliers of the form {u(z,y,t)}* are denoted by {u} or u and the result of the
application of the operator ux to a function F' € C(D) is denoted simply by {u}F or uF.

Definition 3. Let f be a function of the variable x only in C[0,a] and g be a function
of the variable y only in C[0, a], but both considered as functions of C(D). The operators
[fly.e and [gls defined by [flyu = f¥u and (9]0 = ggu are said to be partially
numerical operators with respect to x, t and y, t correspondingly.

The set of all the multipliers of the convolution algebra (C, *) is a commutative ring
M. The multiplicative set N of the non-zero non-divisors of 0 in M is non-empty, since

at least the operators {x}i and {y}i are non-divisors of 0.

A
Next we introduce the ring 9t = 91~ 19 of the multiplier fractions of the form = where

A € 9 and B € M. The standard algebraic procedure of constructing this ring, named
“localization”, is described, e.g. in Lang [6]. Basic for our construction are the algebraic

1
inverses S, = — and S, = —
v T I, VT I,
u € C?(D), then, in general, S,u and Syu are different from ., and u,,, but they are
connected with them.

of the multipliers L, and L, in 9, correspondingly. If

Lemma 6. Let ugy, Uyy, ut be continuous on D. Then,

uyy = Syu+ Sy{(y¥,{1} — Du(z,0,t)} — [¥y{ulz,n,t)}y,
u = su— [u(z,y,0)],

(See [4] and [9]).

5. Formal (generalized) solution of (1)—(3). Let us consider problem (1)—(3).
The equation (1) u; = Uzg + uyy + F(z,y,t) together with the initial and boundary
conditions (2) and (3) can be reduced to a single algebraic equation for « in 9. Indeed,
by Lemma 6, using (2) and (3), we get:

Uy = Sgll,  Uyy = Sy, ur = su— [f(z,yl:.

Then, (1)—(3) takes the following algebraic form in 9
(19) (s = Sz = Sy)u = [f(z,y)]s + F(z,y,1).

We may solve (19) in 9, provided s — S, — Sy is a non-divisor of zero in M. Next, a
sufficient condition for this is given by:

Theorem 3. If a € supp® and b € supp ¥, then the element s — S, — Sy is a non-
divisor of zero in 9.

Remark. Theorem 3 is a special case of Theorem 13 in [9].

Corollary. If a € supp® and b € supp ¥, then the boundary value problem (1)—(3)
has unique solution.
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Indeed, the homogeneous BVP (1)—(3) reduces to the algebraic equation (s — S, —
Sy)u =0 in 9 and, hence, u = 0, since s — S, — Sy, is a non-divisor of zero in M.

From now on, we suppose that a € supp ® and b € supp V.

The formal solution of (19) is

1

(20) u= m([f($7y)]t+F($ayvt))-

Similarly, considering the algebras (C10, a] x [0, 00), * At) and (C[0,b] x [0, oo),yit) and
their rings of multiplier fractions 9, ; and 9, ;, the problem (8) and (9) have the formal
— S, [f(@)]e, w=

are non-divisors of zero (see [3]).

solutions v = [g(y)]¢ in M, ¢ and M, ; since s — S, and s — 5,
s

*Sy

6. Interpretation of the formal (generalized) solution of (1)—(3) as a func-
tion.

6.1. Our next task is to interpret (20) as a function of C([0,a] x [0,b] x [0,00)). To
this end, we consider (1)—(3) for F(z,y,t) = 0 and f(z,y) = zy. We denote its weak
solution, if it exists, by U = U(z,y,t). We have the following algebraic representation of
this solution:

1 1
U =

5 4 T :77LIL = .
5= 5, =5, ey = ;g =g Celu) = g g g

Analogically, we denote the weak solutions of the problems (8) and (9) for f(z) =«
and g(y) =y by V = V(x, t) and W = W(y,t), correspondingly. Then, the algebraic
representations of these solutions are

1 1
Theorem 4. Assume thatV = —————— and W = —————— are weak solutions o
Sy(s —Sz) Sy(s_sy) . f

(8) and (9) for f(x) = x and g(y) =y, correspondingly. Then, U = =

SzSy(s — Sz —Sy)
{VW?}, where WV = V(x,t)W(y,t) is the ordinary product of V and W, is a weak
solution of (1)—(3) for F(z,y,t) =0 and f(z,y) = xy.

The proof follows immediately from Lemma 5.

The generalized solution of problem (1)—(3) for arbitrary f(x,y), and F(z,y,t) can
be represented in the form:

1

As a function it has the form
84 x,y F
= 92202 *f(x7y)+U*(Iay7t):|
provided the denoted derivatives exist.
168
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Let us consider the problem (1)—(3) for F(x,y,t) = 0. Then,
ot z,y ot T,y
U 52a2 (U(%y,t) * f(%y)) = 9207 ((V(%t)W(y,t)) * f(%y)> =

- ;‘7 (mw ; 5’7 (W(y,wif(x,y))) = V(x,t)% (W(ut)if(w) :

where the operations f? in C[0, a] and g in C[0,b], correspondingly, are defined as
z 0? @ Y 0?
J@)g() = 55 (/@) kg(@) and [()*9(y) = 55(F() = 9):

If f(z,y) = fi(2)f2(y), then

w= (V. t) 5 Fi@) Wy 0) % 20).
This is the desired explicit solution of (1)—(3) for f(z,y) = f1(z)f2(y).

6.2. Let us consider BVP (1)—(3) with F(z,y,t) =0 and
1 2 =z vy
) = Lol o = g = (5 — 56l ) (3 - Bwta’) ).

We denote the solution of this problem by 2 = Q(x, y,t). Then, we have the following
algebraic representation of (20):
1 1

Q= m@x{x}%{y}) = 5252(s 5, 5,)

Analogically, we denote the weak solutions of problems (8) and (9) for f(z) = L,{z} =
1 2z 3 1 ooy 3

$ G 6@5{5 }and g(y) = Ly{y} = 52 =% " g‘I’n{ﬂ } by H = H(x,t) and

K = K(y,t), correspondingly. Then, the algebraic representations of these solutions are

1
and K =

H=— -
S2(s —S,) S2(s—Sy)

1 1
Theorem 5. Assume that H = m and K = m are weak solutions
3
T

3
of (8) and (9) for f(z) = i %@5{53} and g(y) = % - %\Iln{n3}, correspondingly.
1
= {HK}, where HK = H(z,t)K(y,t) is the ordinary
S28%(s — Sz — Sy)
product of H and H, is a weak solution of (1)—(3) for F(xz,y,t) = 0 and f(x,y) =
@ vy
T Teen ) (L Yy, %)),
(%5 - 5octe) (% - Bwatr)

The proof follows immediately from Lemma 5.

The solution of problem (1)—(3) for arbitrary f(x,y) and F(x,y,t) can by represented
in the form:

2 02 1 1
= F t

Then, Q) =
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which can be interpreted as

88 z,y t
Assuming some smoothness conditions for the given functions, we may assert that
(22) is either weak, or classical solution of (1)—(3).
In order to reveal further the structure of the solution, we may introduce the auxiliary
operations

2

f@)B9(0) = 5 (@ g(@) and Fw)B90) = 55 (7w Eolw))
Let us consider problem (1)—(3) for F(x,y,t) = 0. We get

82 T 2

w= gz (V0% 5 (W0 ¥ @) ) = V) 807008 5o,
If f(z,y) = f1(2)f2(y), then
u= (V) ERE) V0 E )

7. Example. In the next problem, the functionals ® and ¥ are of Samarski-Ionkin
type (see [7]). Here we are looking for a classical solution of the BVP considered.

Problem. Solve the boundary value problem:

Up = Upg T Uyy, O0<z<a, 0<y<b t>0, u(zr,y0) =f(z,vy),
a b
(23) u(0,y,t) =0, wu(z,0,t) =0, / u(&,y,t)d€ =0, / u(zx,m, t)dn = 0.
0 0

Solution. We consider the following two one-dimensional BVPs:

(24) v =vee, 0<w<a, t>0, v(z,0)=f(z), v(0,t)=0, /av(f,t)dSO,
0

and

b
(25) Wt = Wyy, 0<y< ba t >0, w(y,O) = g(y)a w(oat) =0, / w(ﬂvt)dﬂ =0,
0

(here (7} = = [ £(€)ds and Wla} = 5 [ on)an).
Let f,g € C[0,a]. Then, in the case of ®{f(£)} = %foaf(f)dg and U{g} =

2
= fob g(n)dn the convolutions % and ¥ are two times differentiable.

Lemma 7. Let f,g € C[0,a] and /a f(&d¢ = /ag(g)df = 0. Then, we have
0 0

1E0)) = g ((F0)@) = ([ sl - Qoo

" Fla— = — <glls) sen(s(a — = — ))ds —2 / e —c)g(c)dc) |

—x

Proof. By direct check. [
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Lemma 8. Let f,g € C[0,a] and f(0) = g(0) = /Oa f(&)d¢ = /Oag(g)df =0, then

x o4

Fog= 2 (7o) = 2 ((Fow) -

= 7% /a fllat+z—<)g'(s)ds — _aA f’(la*w*§I)g’(l<l)d§+2/f’(x*<)g’(<)d€

Proof. By direct check. [
If f(z,y) = fi(z)f2(y), then the solution of (23) is:

(26) w= V(e t)F fi(2) Wy, D * foly)).

We are to use representation (22) from 6.2. of the solution of (20).

3 a2z

The solution of (24) for f(x) = % ~ 1 L, {z} is
oo
1 1 1 2
H(z,t) = —22 et (2 ()\—3 + )\—QAnt) sin \,x — )\—QI cos )\n:v), where \,, = %.
n=1 n n

n

3 b2
Analogically, the solution of (25) for ¢g(y) = % - 1_2y =L,{y}is
o0
1 1 1 2
K(y,t)=-2 Z et (2 (—3 + _2>\nt) SIN fiy — —5~T COS ,umy), where pt,,, = %
M Him Him
m=1

H and K are obtained following Tonkin’s (see [7]) approach.
Theorem 6. Let f € C(D) be such that f.(z,y), fy(z,y) € C([0,a] x [0,D]) and

a b
/ f(E,y)dn:/ f(x,n)dn = 0. Then,
0 0

B y
(27) u=H(z,t)o (K(y,t)o f(z,y))
is a weak solution of (23).
If suppose additionally f(x,y) € C?(D), then (27) would be a classical solution of
(23).
If f(z,y) = fi(z)f2(y), then the solution of (23) is:

w=(H(z, )6 fi(2))(K(y,1)  fa(y)).
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TOYHUN PEINIEHN A HA HEJIOKAJIHU TPAHVNYHU 3AJAYNA 3A
EJHO- 1 ABYMEPHU YPABHEHUA HA TOIIJIOITPOBOJHOCTA
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NBan Xp. Aumoscku, FOauau 1. ITankos

IIpeioxken e METOJ| 38 HAMUPaHe Ha SIBHU PEIleHns] Ha KJIac JIByMEPHHU yPABHEHWS HA
TOTJIOIIPOBOAHOCTTA C HEJIOKAJIHHU YCJIOBHS TI0 IIPOCTPAHCTBEHUTE MTpOoMeHmBr. MeTo-
JIbT € OCHOBaH Ha JUPEKTHO TPUMEPHO OIepaIioHHo cMsitane. Kiracuaeckara jioame-
JIOBa, KOHBOJIIOIS € KOMOMHUPAaHa C JIBe HEKJTACHIECKN KOHBOJIIOIAN 32 OTEPATOPUTE
Ozz M Oyy B eJiHA TpUMepHa KOHBOJIOIWA. ChbOTBETHOTO OIEPAIMOHHO CMSTaHe W3-
[10JI3Ba, MYJITUILJIMKATOPHU YacTHU. MyJITUIIMKATOPHATE YaCTHU MTO3BOJISIBAT 18, CE
MPOLJIYKY NIPUHIAILT Ha Jlfoames 3a MPOCTPAHCTBEHUTE TPOMEHJIUBA U JIa Ce Ha-
MEpPSAT sIBHU PEIEeHUs HA PA3IJIeKJaHUTe IPaHnIHU 3aaa4du. Obumre pas3riiex 1aHust
Ca TPIJIOXKEHW B CIIydasl Ha MDAHHYHH YCIOBHs OT Tuma Ha Momkmu. Hamepenu ca
EKCIUTUIATHA PEIeHUsI B 3aTBOPEH BHU/I.



