EXACT SOLUTIONS OF NONLOCAL BOUNDARY VALUE PROBLEMS FOR ONE- AND TWO-DIMENSIONAL HEAT EQUATION*

Ivan Dimovski, Yulian Tsankov

Abstract

It is proposed an operational method for obtaining of explicit solutions of spacenonlocal BVPs for the two-dimensional heat equation. It is based on a direct threedimensional operational calculus built on a three-dimensional convolution, combining the classical Duhamel convolution with two non-classical convolutions for the operators $\partial_{x x}$ and $\partial_{y y}$. The corresponding operational calculus uses multiplier fractions instead of convolution fractions. Extensions of the Duhamel principle to the space variables are given.

1. Introduction. In M. Gutterman's paper [1] an operational calculus approach to Cauchy problems for PDEs with constant coefficients is proposed. This approach is not applicable to mixed initial-boundary value problems. According to Gutterman, such problems need new ideas and approaches. Here we use an operational calculus approach, developed in [8] to cope with BVPs for the two-dimensional heat equation

$$
\begin{align*}
& u_{t}=u_{x x}+u_{y y}+F(x, y, t), \quad 0<t, \quad 0<x<a, \quad 0<y<b, \tag{1}\\
& u(x, y, 0)=f(x, y), \tag{2}\\
& u(0, y, t)=0, \quad \Phi_{\xi}\{u(\xi, y, t)\}=0, \quad 0 \leq t, \quad 0 \leq y \leq b \tag{3}\\
& u(x, 0, t)=0, \quad \Psi_{\eta}\{u(x, \eta, t)\}=0, \quad 0 \leq t, \quad 0 \leq x \leq a,
\end{align*}
$$

where Φ and Ψ are non-zero linear functionals on $C^{1}[0, a]$ and $C^{1}[0, b]$, correspondingly, $F(x, y, t)$ and $f(x, y)$ are given functions. We suppose that each of the supports supp Φ and $\operatorname{supp} \Psi$ of the functionals Φ and Ψ contains at least one point, different from 0 i.e. the problem is nonlocal both with respect to x and y. In the next considerations we suppose also that Φ and Ψ satisfy the normalizing restrictions $\Phi_{\xi}\{\xi\}=1$ and $\Psi_{\eta}\{\eta\}=1$. These restrictions are made for the sake of simplification and they can be ousted by some unessential technical involvements.

[^0]2. Weak solutions of BVP (1)-(3). It is natural to look for a classical solution of the BVP (1)-(3), but, in general, the sufficient conditions for the existence of such solutions may happen to be too restrictive. That's why we introduce the notion of a weak solution of (1)-(3). In order to give an exact meaning of this notion, we introduce some notations. In the domain $D=[0, a] \times[0, b] \times[0, \infty)$ we consider the integral operators
\[

$$
\begin{equation*}
l_{t}\{u(x, y, t)\}=\int_{0}^{t} u(x, y, \tau) d \tau \tag{4}
\end{equation*}
$$

\]

and the right inverse operators L_{x} and L_{y} of $\frac{\partial^{2}}{\partial x^{2}}$ and $\frac{\partial^{2}}{\partial y^{2}}$ given by

$$
\begin{equation*}
L_{x}\{u(x, y, t)\}=\int_{0}^{x}(x-\xi) u(\xi, y, t) d \xi-x \Phi_{\xi}\left\{\int_{0}^{\xi}(\xi-\eta) u(\eta, y, t) d \eta\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{y}\{u(x, y, t)\}=\int_{0}^{y}(y-\eta) u(x, \eta, t) d \eta-y \Psi_{\eta}\left\{\int_{0}^{\eta}(\eta-\varsigma) u(x, \varsigma, t) d \varsigma\right\} \tag{6}
\end{equation*}
$$

correspondingly. These operators are considered on $C(D)$. They satisfy the boundary value conditions $\Phi_{x}\left\{L_{x} u\right\}=0$ and $\Psi_{y}\left\{L_{y} u\right\}=0$.

Definition 1. A function $u(x, y, t) \in C^{1}(D)$ is said to be a weak solution of problem (1)-(3), if and only if it satisfies the integral relation

$$
\begin{equation*}
L_{x} L_{y} u-l_{t} L_{y} u-l_{t} L_{x} u=L_{x} L_{y} f(x, y)+l_{t} L_{x} L_{y} F(x, y, t) \tag{7}
\end{equation*}
$$

Formally, (7) is obtained from equation (1) by application of the product operator $l_{t} L_{x} L_{y}$, followed by using BVCs (2)-(3). It is easy to show that each classical solution of (1)-(3) is a weak solution too. If it happens that $u \in C^{2}(D)$, then the converse is true. Nevertheless, we can prove that each weak solution satisfies the BVCs (2)-(3).

Lemma 1. Let $u \in C^{1}(D)$ satisfy (7). Then, u satisfies BVCs (2)-(3).
Proof. Taking $t=0$ in (7), we find $L_{x} L_{y} u(x, y, 0)=L_{x} L_{y} f(x, y)$. Hence, $u(x, y, 0)=$ $f(x, y)$. For $x=0$ we find $-l_{t} L_{y} u(0, y, t)=0$ and, hence $u(0, y, t)=0$. Next, applying Φ to (7), we get $-l_{t} L_{y} \Phi_{\xi}\{u(\xi, y, t)\}=0$. If we apply $\frac{\partial}{\partial t}$ and $\frac{\partial^{2}}{\partial y^{2}}$, then we get $\Phi_{\xi}\{u(\xi, y, t)\}=0$. Analogously, we find that $u(x, 0, t)=0$ and $\Psi_{\eta}\{u(x, \eta, t)\}=0$.

Lemma 2. Assume that $u \in C^{1}(D)$ is a solution of (7) with continuous partial derivatives $u_{x x}, u_{y y}, u_{t}$. Then, u is a classical solution of (1)-(3).

Proof. Applying the operator $\frac{\partial}{\partial t} \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}$ to (7), we get $u_{t}=u_{x x}+u_{y y}+F(x, y, t)$. The fulfillment of the boundary value conditions follows from Lemma 1.

Our final aim is to reduce the solution of BVP (1)-(3) to the following two nonlocal one-dimensional BVPs:
(8) $v_{t}=v_{x x}, \quad 0<t, \quad 0<x<a$,

$$
v(x, 0)=f(x), \quad 0 \leq x \leq a, \quad v(0, t)=0, \quad \Phi_{\xi}\{v(\xi, t)\}=0, \quad 0 \leq t, \quad \text { and }
$$

$$
\begin{aligned}
& w_{t}=w_{y y}, \quad 0<t, \quad 0<y<b \\
& w(y, 0)=g(y), \quad 0 \leq y \leq b, \quad w(0, t)=0, \quad \Psi_{\eta}\{u(\eta, t)\}=0, \quad 0 \leq t .
\end{aligned}
$$

Next, with appropriate functions $f(x)$ and $g(y)$, we consider the one-dimensional problems (8) and (9) independently of problem (1)-(3).

Definition 2. The functions $v=v(x, t) \in C^{1}([0, a] \times[0, \infty))$ and $w=w(y, t) \in$ $C^{1}([0, b] \times[0, \infty))$ are said to be weak solutions of problems (8) and (9), if they satisfy the integral relations

$$
\begin{align*}
& L_{x} v-l_{t} v=L_{x} f(x) \quad \text { and } \tag{10}\\
& L_{y} w-l_{t} w=L_{y} g(y), \tag{11}
\end{align*}
$$

correspondingly.
Lemma 3. If $v(x, t) \in C^{1}([0, a] \times[0, \infty))$ satisfies (10), then $v(x, t)$ satisfies the initial and boundary value conditions $v(x, 0)=f(x), v(0, t)=0, \Phi_{\xi}\{v(\xi, t)\}=0$.

The proof is similar to that of Lemma 1 , but it is a simpler one. We skip it.
Such is the relation between problem (9) and equation (11), as well.
Lemma 4. If $v(x, t)$ with $v_{x x}(x, t), v_{t}(x, t) \in C([0, a] \times[0, \infty))$ satisfies (10), then $v(x, t)$ is a classical solution of (8).

A similar statement holds for (11) too. The proof is similar to that of Lemma 2.
Lemma 5. Let $v(x, t) \in C^{1}([0, a] \times[0, \infty))$ and $w(y, t) \in C^{1}([0, b] \times[0, \infty))$ be weak solutions of problems (8) and (9), correspondingly. Then, $u(x, y, t)=v(x, t) w(y, t) \in$ $C(D)$ is a weak solution of the $B V P$

$$
\begin{align*}
& u_{t}=u_{x x}+u_{y y} \tag{12}\\
& u(x, y, 0)=f(x) g(y) \tag{13}\\
& u(0, y, t)=0, \quad \Phi_{\xi}\{u(\xi, y, t)\}=0 \tag{14}\\
& u(x, 0, t)=0, \quad \Psi_{\eta}\{u(x, \eta, t)\}=0
\end{align*}
$$

in the sense of Definition 1.
Remark. If v and w are classical solutions, then we may assert that $u=v w$ is a classical solution of (12)-(14) too.

Proof. By Definition 2, we have:

$$
\begin{equation*}
L_{x} v=l_{t} v+L_{x} f(x), \quad L_{y} w=l_{t} w+L_{y} g(y) . \tag{15}
\end{equation*}
$$

According to Definition 1 we are to prove that:

$$
L_{x} L_{y} v w-l_{t} L_{y} v w-l_{t} L_{x} v w=L_{x} L_{y} f(x) g(y)
$$

Using (15), we find

$$
\begin{aligned}
& L_{x} L_{y} v w-l_{t} L_{y} v w-l_{t} L_{x} w v=L_{x} v L_{y} w-l_{t}\left(v L_{y} w\right)-l_{t}\left(w L_{x} v\right)= \\
= & \left(l_{t} v+L_{x} f(x)\right)\left(l_{t} w+L_{y} g(y)\right)-l_{t}\left(v\left(l_{t} w+L_{y} g(y)\right)\right)-l_{t}\left(w\left(l_{t} v+L_{x} f(x)\right)\right)= \\
= & \left(l_{t} v\right)\left(l_{t} w\right)-l_{t}\left(v\left(l_{t} w\right)\right)-l_{t}\left(w\left(l_{t} v\right)\right)+\left(L_{x} f(x)\right)\left(L_{y} g(y)\right) .
\end{aligned}
$$

In order to prove the assertion of the lemma, it remains to show that $\left(l_{t} v\right)\left(l_{t} w\right)-$
$l_{t}\left(v\left(l_{t} w\right)\right)-l_{t}\left(w\left(l_{t} v\right)\right)=0$. Indeed,

$$
\begin{aligned}
&\left(l_{t} v\right)\left(l_{t} w\right)-l_{t}\left(v\left(l_{t} w\right)\right)-l_{t}\left(w\left(l_{t} v\right)\right)=\left(\int_{0}^{t} v(x, \tau) d \tau\right)\left(\int_{0}^{t} w(y, \tau) d \tau\right)- \\
&-\int_{0}^{t} v(x, \tau)\left(\int_{0}^{\tau} w(y, \theta) d \theta\right) d \tau-\int_{0}^{t} w(y, \tau)\left(\int_{0}^{\tau} v(x, \theta) d \theta\right) d \tau=0
\end{aligned}
$$

Thus we proved the relation (7) for $u=v w$ and $f(x, y)=f(x) g(y)$. Hence, $u=v w$ is a weak solution of (12)-(14).
3. Convolutions. Here we briefly remind the convolutions, introduced in [8].
3.1. One-dimensional convolutions.

1) $f, g \in C[0, \infty):\left(f^{t} * g\right)(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau \quad$ (Duhamel convolution).
2) $f, g \in C_{x}=C[0, a]:(f \stackrel{x}{*} g)(x)=-\frac{1}{2} \tilde{\Phi}_{\xi}\{h(x, \xi)\}, \quad$ (Dimovski [2])
with $\tilde{\Phi}=\Phi_{\xi} \circ l_{\xi}$ and

$$
h(x, \eta)=\int_{x}^{\eta} f(\eta+x-\varsigma) g(\varsigma) d \varsigma-\int_{-x}^{\eta} f(|\eta-x-\varsigma|) g(|\varsigma|) \operatorname{sgn}(\varsigma(\eta-x-\varsigma)) d \varsigma .
$$

3) $f, g \in C_{y}=C[0, b]:(f \stackrel{y}{*} g)(y)=-\frac{1}{2} \tilde{\Psi}_{\eta}\{h(y, \eta)\}$, with $\tilde{\Psi}=\Psi_{\eta} \circ l_{\eta}$ (Dimovski [2]).
3.2. Two-dimensional convolutions. Define
4) $f, g \in C([0, a] \times[0, \infty)): f(x, t) \stackrel{(x, t)}{*} g(x, t)=\int_{0}^{t} f(x, t-\tau) * g(x, \tau) d \tau, \quad$ (see [4]).
5) $f, g \in C([0, b] \times[0, \infty)): f(y, t) \stackrel{(y, t)}{*} g(y, t)=\int_{0}^{t} f(y, t-\tau) \stackrel{y}{*} g(y, \tau) d \tau$, (see [?]).

Theorem 1. If $f, g \in C([0, a] \times[0, b])$, then

$$
\begin{align*}
f(x, y) \stackrel{(x, y)}{*} g(x, y)= & -\frac{1}{2} \tilde{\Phi}_{\xi}\left\{\int_{x}^{\xi} f(\xi+x-\sigma, y) \stackrel{y}{*} g(\sigma, y) d \sigma-\right. \tag{16}\\
& \left.-\int_{-x}^{\xi} f(|\xi-x-\sigma|, y) \stackrel{y}{*} g(|\sigma|, y) \operatorname{sgn}(\xi-x-\sigma) \sigma d \sigma\right\}
\end{align*}
$$

is a bilinear, commutative and associative operation in $C([0, a] \times[0, b])$, such that

$$
L_{x} L_{y} u(x, y, t)=\{x, y\} \stackrel{(x, y)}{*} u(x, y, t) .
$$

For a proof see [5].
Theorem 2. Let $u, v \in C(D)$. Then, the operation

$$
\begin{equation*}
u(x, y, t) \stackrel{v}{*}(x, y, t)=\int_{0}^{t} u(x, y, t-\tau) \stackrel{(x, y)}{*} v(x, y, \tau) d \tau \tag{17}
\end{equation*}
$$

where by $\stackrel{x, y}{*}$ is denoted the operation (16), is a bilinear, commutative and associative operation in $C(D)$, such that

$$
\begin{equation*}
l_{t} L_{x} L_{y} u(x, y, t)=\{x y\} * u(x, y, t) . \tag{18}
\end{equation*}
$$

For a proof see [8].
4. Ring of the multiplier fractions of $(\boldsymbol{C}(\boldsymbol{D}), *)$. We consider the convolution algebra $(C, *)$, where $C=C(D)$. Our direct operational calculus approach which we apply to the two-dimensional heat equation is outlined in [9]. Here we remind only some notations.

The multipliers of the form $\{u(x, y, t)\} *$ are denoted by $\{u\}$ or u and the result of the application of the operator $u *$ to a function $F \in C(D)$ is denoted simply by $\{u\} F$ or $u F$.

Definition 3. Let f be a function of the variable x only in $C[0, a]$ and g be a function of the variable y only in $C[0, a]$, but both considered as functions of $C(D)$. The operators $[f]_{y, t}$ and $[g]_{x, t}$ defined by $[f]_{y, t} u=f^{*} * u$ and $[g]_{x, t} u=g \stackrel{y}{*} u$ are said to be partially numerical operators with respect to x, t and y, t correspondingly.

The set of all the multipliers of the convolution algebra $(C, *)$ is a commutative ring \mathfrak{M}. The multiplicative set \mathfrak{N} of the non-zero non-divisors of 0 in \mathfrak{M} is non-empty, since at least the operators $\{x\}^{x}$ and $\{y\}^{y}$ are non-divisors of 0 .

Next we introduce the ring $\mathfrak{M}=\mathfrak{N}^{-1} \mathfrak{M}$ of the multiplier fractions of the form $\frac{A}{B}$ where $A \in \mathfrak{M}$ and $B \in \mathfrak{N}$. The standard algebraic procedure of constructing this ring, named "localization", is described, e.g. in Lang [6]. Basic for our construction are the algebraic inverses $S_{x}=\frac{1}{L_{x}}$ and $S_{y}=\frac{1}{L_{y}}$ of the multipliers L_{x} and L_{y} in \mathfrak{M}, correspondingly. If $u \in C^{2}(D)$, then, in general, $S_{x} u$ and $S_{y} u$ are different from $u_{x x}$ and $u_{y y}$, but they are connected with them.

Lemma 6. Let $u_{x x}, u_{y y}, u_{t}$ be continuous on D. Then,

$$
\begin{aligned}
u_{x x} & =S_{x} u+S_{x}\left\{\left(x \Phi_{\xi}\{1\}-1\right) u(0, y, t)\right\}-\left[\Phi_{\xi}\{u(\xi, y, t)\}\right]_{x}, \\
u_{y y} & =S_{y} u+S_{y}\left\{\left(y \Psi_{\eta}\{1\}-1\right) u(x, 0, t)\right\}-\left[\Psi_{\eta}\{u(x, \eta, t)\}\right]_{y}, \\
u_{t} & =s u-[u(x, y, 0)]_{t},
\end{aligned}
$$

(See [4] and [9]).
5. Formal (generalized) solution of (1)-(3). Let us consider problem (1)-(3). The equation (1) $u_{t}=u_{x x}+u_{y y}+F(x, y, t)$ together with the initial and boundary conditions (2) and (3) can be reduced to a single algebraic equation for u in \mathfrak{M}. Indeed, by Lemma 6 , using (2) and (3), we get:

$$
u_{x x}=S_{x} u, \quad u_{y y}=S_{y} u, \quad u_{t}=s u-\left[f(x, y]_{t} .\right.
$$

Then, (1)-(3) takes the following algebraic form in \mathfrak{M} :

$$
\begin{equation*}
\left(s-S_{x}-S_{y}\right) u=[f(x, y)]_{t}+F(x, y, t) \tag{19}
\end{equation*}
$$

We may solve (19) in \mathfrak{M}, provided $s-S_{x}-S_{y}$ is a non-divisor of zero in \mathfrak{M}. Next, a sufficient condition for this is given by:

Theorem 3. If $a \in \operatorname{supp} \Phi$ and $b \in \operatorname{supp} \Psi$, then the element $s-S_{x}-S_{y}$ is a nondivisor of zero in \mathfrak{M}.

Remark. Theorem 3 is a special case of Theorem 13 in [9].
Corollary. If $a \in \operatorname{supp} \Phi$ and $b \in \operatorname{supp} \Psi$, then the boundary value problem (1)-(3) has unique solution.

Indeed, the homogeneous BVP (1)-(3) reduces to the algebraic equation ($s-S_{x}-$ $\left.S_{y}\right) u=0$ in \mathfrak{M} and, hence, $u \equiv 0$, since $s-S_{x}-S_{y}$ is a non-divisor of zero in \mathfrak{M}.

From now on, we suppose that $a \in \operatorname{supp} \Phi$ and $b \in \operatorname{supp} \Psi$.
The formal solution of (19) is

$$
\begin{equation*}
u=\frac{1}{s-S_{x}-S_{y}}\left([f(x, y)]_{t}+F(x, y, t)\right) \tag{20}
\end{equation*}
$$

Similarly, considering the algebras $(C[0, a] \times[0, \infty), \stackrel{x, t}{*})$ and $(C[0, b] \times[0, \infty), \stackrel{y, t}{*})$ and their rings of multiplier fractions $\mathfrak{M}_{x, t}$ and $\mathfrak{M}_{y, t}$, the problem (8) and (9) have the formal solutions $v=\frac{1}{s-S_{x}}[f(x)]_{t}, w=\frac{1}{s-S_{y}}[g(y)]_{t}$ in $\mathfrak{M}_{x, t}$ and $\mathfrak{M}_{y, t}$ since $s-S_{x}$ and $s-S_{y}$ are non-divisors of zero (see [3]).
6. Interpretation of the formal (generalized) solution of (1)-(3) as a function.
6.1. Our next task is to interpret (20) as a function of $C([0, a] \times[0, b] \times[0, \infty))$. To this end, we consider (1)-(3) for $F(x, y, t) \equiv 0$ and $f(x, y)=x y$. We denote its weak solution, if it exists, by $U=U(x, y, t)$. We have the following algebraic representation of this solution:

$$
U=\frac{1}{s-S_{x}-S_{y}}[x y]_{x, y}=\frac{1}{s-S_{x}-S_{y}}\left(, L_{x} L_{y}\right)=\frac{1}{S_{x} S_{y}\left(s-S_{x}-S_{y}\right)}
$$

Analogically, we denote the weak solutions of the problems (8) and (9) for $f(x)=x$ and $g(y)=y$ by $V=V(x, t)$ and $W=W(y, t)$, correspondingly. Then, the algebraic representations of these solutions are

$$
V=\frac{1}{S_{x}\left(s-S_{x}\right)} \quad \text { and } \quad W=\frac{1}{S_{y}\left(s-S_{y}\right)}
$$

Theorem 4. Assume that $V=\frac{1}{S_{x}\left(s-S_{x}\right)}$ and $W=\frac{1}{S_{y}\left(s-S_{y}\right)}$ are weak solutions of (8) and (9) for $f(x)=x$ and $g(y)=y$, correspondingly. Then, $U=\frac{1}{S_{x} S_{y}\left(s-S_{x}-S_{y}\right)}=$ $\{V W\}$, where $W V=V(x, t) W(y, t)$ is the ordinary product of V and W, is a weak solution of $(1)-(3)$ for $F(x, y, t) \equiv 0$ and $f(x, y)=x y$.

The proof follows immediately from Lemma 5.
The generalized solution of problem (1)-(3) for arbitrary $f(x, y)$, and $F(x, y, t)$ can be represented in the form:

$$
u=S_{x} S_{y}\left(\frac{1}{S_{x} S_{y}\left(s-S_{x}-S_{y}\right)}[f(x, y)]_{t}+\frac{1}{S_{x} S_{y}\left(s-S_{x}-S_{y}\right)} F(x, y, t)\right)
$$

As a function it has the form

$$
\begin{equation*}
u=\frac{\partial^{4}}{\partial x^{2} \partial y^{2}}\left[U^{x, y} \underset{*}{*}(x, y)+U^{F}(x, y, t)\right] \tag{21}
\end{equation*}
$$

provided the denoted derivatives exist.

Let us consider the problem (1)-(3) for $F(x, y, t) \equiv 0$. Then,

$$
\begin{aligned}
u & =\frac{\partial^{4}}{\partial x^{2} \partial y^{2}}(U(x, y, t) \stackrel{x, y}{*} f(x, y))=\frac{\partial^{4}}{\partial x^{2} \partial y^{2}}((V(x, t) W(y, t)) \stackrel{x, y}{*} f(x, y))= \\
& =\frac{\partial^{2}}{\partial x^{2}}\left(V(x, t) \stackrel{x}{*} \frac{\partial^{2}}{\partial y^{2}}(W(y, t) \stackrel{y}{*} f(x, y))\right)=V(x, t) \stackrel{x}{*}(W(y, t) \stackrel{y}{*} f(x, y)) .
\end{aligned}
$$

where the operations $\stackrel{x}{\tilde{*}}$ in $C[0, a]$ and $\stackrel{y}{\mathscr{*}}$ in $C[0, b]$, correspondingly, are defined as

$$
f(x) \stackrel{x}{\underset{*}{*}} g(x)=\frac{\partial^{2}}{\partial x^{2}}(f(x) \stackrel{x}{*} g(x)) \quad \text { and } \quad f(y) \stackrel{y}{\stackrel{y}{*}} g(y)=\frac{\partial^{2}}{\partial y^{2}}(f(y) \stackrel{y}{*} g(y)) .
$$

If $f(x, y)=f_{1}(x) f_{2}(y)$, then

$$
u=\left(V(x, t) \stackrel{x}{\stackrel{x}{*}} f_{1}(x)\right)\left(W(y, t) \stackrel{y}{\stackrel{y}{*}} f_{2}(y)\right) .
$$

This is the desired explicit solution of (1)-(3) for $f(x, y)=f_{1}(x) f_{2}(y)$.
6.2. Let us consider BVP (1)-(3) with $F(x, y, t) \equiv 0$ and

$$
f(x, y)=L_{x}\{x\} L_{y}\{y\}=\frac{1}{S_{x}^{2} S_{y}^{2}}=\left(\frac{x^{3}}{6}-\frac{x}{6} \Phi_{\xi}\left\{\xi^{3}\right\}\right)\left(\frac{y^{3}}{6}-\frac{y}{6} \Psi_{\eta}\left\{\eta^{3}\right\}\right) .
$$

We denote the solution of this problem by $\Omega=\Omega(x, y, t)$. Then, we have the following algebraic representation of (20):

$$
\Omega=\frac{1}{s-S_{x}-S_{y}}\left(L_{x}\{x\} L_{y}\{y\}\right)=\frac{1}{S_{x}^{2} S_{y}^{2}\left(s-S_{x}-S_{y}\right)} .
$$

Analogically, we denote the weak solutions of problems (8) and (9) for $f(x)=L_{x}\{x\}=$ $\frac{1}{S_{x}^{2}}=\frac{x^{3}}{6}-\frac{x}{6} \Phi_{\xi}\left\{\xi^{3}\right\}$ and $g(y)=L_{y}\{y\}=\frac{1}{S_{y}^{2}}=\frac{y^{3}}{6}-\frac{y}{6} \Psi_{\eta}\left\{\eta^{3}\right\}$ by $H=H(x, t)$ and $K=K(y, t)$, correspondingly. Then, the algebraic representations of these solutions are

$$
H=\frac{1}{S_{x}^{2}\left(s-S_{x}\right)} \quad \text { and } \quad K=\frac{1}{S_{y}^{2}\left(s-S_{y}\right)}
$$

Theorem 5. Assume that $H=\frac{1}{S_{x}^{2}\left(s-S_{x}\right)}$ and $K=\frac{1}{S_{y}^{2}\left(s-S_{y}\right)}$ are weak solutions of (8) and (9) for $f(x)=\frac{x^{3}}{6}-\frac{x}{6} \Phi_{\xi}\left\{\xi^{3}\right\}$ and $g(y)=\frac{y^{3}}{6}-\frac{y}{6} \Psi_{\eta}\left\{\eta^{3}\right\}$, correspondingly. Then, $\Omega=\frac{1}{S_{x}^{2} S_{y}^{2}\left(s-S_{x}-S_{y}\right)}=\{H K\}$, where $H K=H(x, t) K(y, t)$ is the ordinary product of H and H, is a weak solution of (1)-(3) for $F(x, y, t) \equiv 0$ and $f(x, y)=$ $\left(\frac{x^{3}}{6}-\frac{x}{6} \Phi_{\xi}\left\{\xi^{3}\right\}\right)\left(\frac{y^{3}}{6}-\frac{y}{6} \Psi_{\eta}\left\{\eta^{3}\right\}\right)$.

The proof follows immediately from Lemma 5.
The solution of problem (1)-(3) for arbitrary $f(x, y)$ and $F(x, y, t)$ can by represented in the form:

$$
u=S_{x}^{2} S_{y}^{2}\left(\frac{1}{S_{x}^{2} S_{y}^{2}\left(s-S_{x}-S_{y}\right)}[f(x, y)]_{t}+\frac{1}{S_{x}^{2} S_{y}^{2}\left(s-S_{x}-S_{y}\right)} F(x, y, t)\right)
$$

which can be interpreted as

$$
\begin{equation*}
u=\frac{\partial^{8}}{\partial x^{4} \partial y^{4}}\left[\Omega_{*}^{x, y} f(x, y)+\Omega_{*}^{t} F(x, y, t)\right] . \tag{22}
\end{equation*}
$$

Assuming some smoothness conditions for the given functions, we may assert that (22) is either weak, or classical solution of (1)-(3).

In order to reveal further the structure of the solution, we may introduce the auxiliary operations

$$
f(x) \stackrel{x}{\circ} g(x)=\frac{\partial^{2}}{\partial x^{2}}(f(x) \stackrel{x}{\tilde{*}} g(x)) \quad \text { and } \quad f(y) \stackrel{y}{\circ} g(y)=\frac{\partial^{2}}{\partial y^{2}}(f(y) \stackrel{y}{\stackrel{y}{*}} g(y)) .
$$

Let us consider problem (1)-(3) for $F(x, y, t) \equiv 0$. We get

$$
u=\frac{\partial^{2}}{\partial x^{2}}\left(V(x, t) \stackrel{x}{\stackrel{\sim}{*}} \frac{\partial^{2}}{\partial y^{2}}(W(y, t) \stackrel{y}{\tilde{*}} f(x, y))\right)=V(x, t) \stackrel{x}{\circ}(W(y, t) \stackrel{y}{\circ} f(x, y)) .
$$

If $f(x, y)=f_{1}(x) f_{2}(y)$, then

$$
u=\left(V(x, t) \stackrel{x}{\circ} f_{1}(x)\right)\left(W(y, t) \stackrel{y}{\circ} f_{2}(y)\right) .
$$

7. Example. In the next problem, the functionals Φ and Ψ are of Samarski-Ionkin type (see [7]). Here we are looking for a classical solution of the BVP considered.

Problem. Solve the boundary value problem:

$$
\begin{align*}
& u_{t}=u_{x x}+u_{y y}, \quad 0<x<a, \quad 0<y<b, \quad t>0, \quad u(x, y, 0)=f(x, y) \\
& u(0, y, t)=0, \quad u(x, 0, t)=0, \quad \int_{0}^{a} u(\xi, y, t) d \xi=0, \quad \int_{0}^{b} u(x, \eta, t) d \eta=0 \tag{23}
\end{align*}
$$

Solution. We consider the following two one-dimensional BVPs:
(24) $v_{t}=v_{x x}, \quad 0<x<a, \quad t>0, \quad v(x, 0)=f(x), \quad v(0, t)=0, \quad \int_{0}^{a} v(\xi, t) d \xi=0$,
and
(25) $w_{t}=w_{y y}, \quad 0<y<b, \quad t>0, \quad w(y, 0)=g(y), \quad w(0, t)=0, \quad \int_{0}^{b} w(\eta, t) d \eta=0$,
(here $\Phi\{f\}=\frac{2}{a^{2}} \int_{0}^{a} f(\xi) d \xi$ and $\Psi\{g\}=\frac{2}{b^{2}} \int_{0}^{b} g(\eta) d \eta$).
Let $f, g \in C[0, a]$. Then, in the case of $\Phi_{\xi}\{f(\xi)\}=\frac{2}{a^{2}} \int_{0}^{a} f(\xi) d \xi$ and $\Psi\{g\}=$ $\frac{2}{b^{2}} \int_{0}^{b} g(\eta) d \eta$ the convolutions $\stackrel{x}{*}$ and $\stackrel{y}{*}$ are two times differentiable.

Lemma 7. Let $f, g \in C[0, a]$ and $\int_{0}^{a} f(\xi) d \xi=\int_{0}^{a} g(\xi) d \xi=0$. Then, we have

$$
\begin{aligned}
(f \stackrel{x}{*} g)(x)= & \frac{\partial^{2}}{\partial x^{2}}((f \stackrel{x}{*} g)(x))=-\frac{1}{a^{2}}\left(\int_{x}^{a} f(a+x-\varsigma) g(\varsigma) d \varsigma-\right. \\
& \left.-\int_{-x}^{a} f(|a-x-\varsigma|) g(|\varsigma|) \operatorname{sgn}(\varsigma(a-x-\varsigma)) d \varsigma-2 \int_{0}^{x} f(x-\varsigma) g(\varsigma) d \varsigma\right) .
\end{aligned}
$$

Proof. By direct check.

Lemma 8. Let $f, g \in C^{1}[0, a]$ and $f(0)=g(0)=\int_{0}^{a} f(\xi) d \xi=\int_{0}^{a} g(\xi) d \xi=0$, then

$$
\begin{gathered}
f \stackrel{x}{\circ} g=\frac{\partial^{4}}{\partial x^{4}}((f \stackrel{x}{*} g)(x))=\frac{\partial^{2}}{\partial x^{2}}((f \stackrel{x}{\tilde{*}} g)(x))= \\
=-\frac{1}{a^{2}}\left(\int_{x}^{a} f^{\prime}(a+x-\varsigma) g^{\prime}(\varsigma) d \varsigma-\int_{-x}^{a} f^{\prime}(|a-x-\varsigma|) g^{\prime}(|\varsigma|) d \varsigma+2 \int_{0}^{x} f^{\prime}(x-\varsigma) g^{\prime}(\varsigma) d \varsigma\right)
\end{gathered}
$$

Proof. By direct check.
If $f(x, y)=f_{1}(x) f_{2}(y)$, then the solution of (23) is:

$$
\begin{equation*}
u=\left(V(x, t) \stackrel{x}{\tilde{*}} f_{1}(x)\right)\left(W(y, t) \stackrel{y}{\tilde{*}} f_{2}(y)\right) . \tag{26}
\end{equation*}
$$

We are to use representation (22) from 6.2. of the solution of (20).
The solution of (24) for $f(x)=\frac{x^{3}}{6}-\frac{a^{2} x}{12}=L_{x}\{x\}$ is

$$
H(x, t)=-2 \sum_{n=1}^{\infty} e^{-\lambda_{n}^{2} t}\left(2\left(\frac{1}{\lambda_{n}^{3}}+\frac{1}{\lambda_{n}^{2}} \lambda_{n} t\right) \sin \lambda_{n} x-\frac{1}{\lambda_{n}^{2}} x \cos \lambda_{n} x\right), \text { where } \lambda_{n}=\frac{2 n \pi}{a} .
$$

Analogically, the solution of (25) for $g(y)=\frac{y^{3}}{6}-\frac{b^{2} y}{12}=L_{y}\{y\}$ is
$K(y, t)=-2 \sum_{m=1}^{\infty} e^{-\mu_{m}^{2} t}\left(2\left(\frac{1}{\mu_{m}^{3}}+\frac{1}{\mu_{m}^{2}} \lambda_{n} t\right) \sin \mu_{m} y-\frac{1}{\mu_{m}^{2}} x \cos \mu_{m} y\right)$, where $\mu_{m}=\frac{2 m \pi}{b}$. H and K are obtained following Ionkin's (see [7]) approach.

Theorem 6. Let $f \in C(D)$ be such that $f_{x}(x, y), f_{y}(x, y) \in C([0, a] \times[0, b])$ and $\int_{0}^{a} f(\xi, y) d \eta=\int_{0}^{b} f(x, \eta) d \eta=0$. Then,

$$
\begin{equation*}
u=H(x, t) \stackrel{x}{\circ}(K(y, t) \stackrel{y}{\circ} f(x, y)) \tag{27}
\end{equation*}
$$

is a weak solution of (23).
If suppose additionally $f(x, y) \in C^{2}(D)$, then (27) would be a classical solution of (23).

If $f(x, y)=f_{1}(x) f_{2}(y)$, then the solution of (23) is:

$$
u=\left(H(x, t) \stackrel{x}{\circ} f_{1}(x)\right)\left(K(y, t) \stackrel{y}{\circ} f_{2}(y)\right) .
$$

REFERENCES

[1] M. Gutterman. An operational method in partial differential equations. SIAM J. Appl. Math., 17, (1969), 468-493.
[2] I. H. Dimovski. Convolutional Calculus. Kluwer, Dordrecht, 1990.
[3] I. H. Dimovski, J. D. Paneva-Konovska. Duhamel representations for a class of nonlocal boundary value problems. Math. Balkanica, 18 (2004), 265-276.
[4] I. H. Dimovski, M. Spiridonova. Computational approach to nonlocal boundary value problems by multivariate operational calculus. Math. Sci. Res. J., 9 (2005), No 12, 315-329.
[5] I. H. Dimovski, Y. Ts. Tsankov. Nonlocal boundary value problems for two-dimensional potential equation on a rectangle. Math. and Education in Math., 39 (2010), 105-113.
[6] S. Lang. Algebra. Addison-Wesley, Reading, Mass., 1965.
[7] N. I. Ionkin. Solution of a boundary value problem for the heat equation with a nonclassical boundary condition. Differencialnie Uravenia. 13 (1977), No 2, 294-304 (in Russian).
[8] I. H. Dimovski, Y. Ts. Tsankov. Three-dimensional operational calculi for nonlocal evolution boundary value problems. Math. and Education in Math., 40 (2011), 169-175.
[9] I. H. Dimovski, Y. Ts. Tsankov. Three-dimensional operational calculi for nonlocal evolution boundary value problems. Institut of Mathematics and Informatics, BAS, Preprint $1 / 2011$.

Ivan Dimovski
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8,
1113, Sofia, Bulgaria
e-mail: dimovski@imi.bas.bg

Yulian Tsankov
Faculty of Mathematics and Informatics
"St. Kliment Ohridsky" University of Sofia
5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: ucankov@fmi.uni-sofia.bg

ТОЧНИ РЕШЕНИЯ НА НЕЛОКАЛНИ ГРАНИЧНИ ЗАДАЧИ ЗА ЕДНО- И ДВУМЕРНИ УРАВНЕНИЯ НА ТОПЛОПРОВОДНОСТА

Иван Хр. Димовски, Юлиан Ц. Цанков

Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите $\partial_{x x}$ и $\partial_{y y}$ в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 44A35, 35L20, 35J05, 35J25.
 Key words: convolution, convolution algebra, multiplier, multiplier fractions, heat equation, nonlocal BVP, Duhamel principle, weak solution.

 Partially supported by Project D ID 02/25/2009 "Integral Transform Methods, Special Functions and Applications", by NSF - Ministry of Education, Youth and Science, Bulgaria and by Grant N 174/2011 of NSF Bulgaria.

