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ORDINARY DIFFERENTIAL EQUATIONS*
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In the paper is applied the Poincare method for solving almost regular nonlinear
boundary-value problems with general boundary conditions. We assume that the
differential system contains an additional function, which defines the perturbation as
singular. Under certain conditions we get the asymptotics of the solution.

1. Introduction. Consider the boundary-value problems

(1)
dx

dt
= A(t)x + ϕ(t) + εF (x, t, ε, f(t, ε)), t ∈ [a, b] ,

(2) l(x) = h,

where ε is a small positive parameter.
The coefficients of the problem (1), (2) satisfy the conditions:
(C1) A(t) is (n × n)-matrix with elements of continuous functions of t ∈ [a, b] and

ϕ(t) is a vector-function of the class C([a, b]);
(C2) The function F (x, t, ε, f(t, ε)) is a vector-function, having continuous partial

derivatives with respect to all arguments up to (n+ 2) in the domain G = Dx × [a, b] ×
[0, ε̄]×Df , where Dx ⊂ ℜn is in some neighborhood of the solution x(0)(t) of the generate
system (ε = 0)

dx(0)

dt
= A(t)x(0) + ϕ(t), l(x(0)) = h, t ∈ [a, b],

Df ⊂ ℜp is bounded and closed domain, 0 < ε̄ ≪ 1. The function f = f(t, ε) is smooth
in the domain G1 = [a, b] × (0, ε̄] and its values belongs to Df .

(C3) l is linear, bounded vector functional, l ∈ (x : C[a, b] → ℜn,ℜn).
We assume that the function f(t, ε) of (1) contains singular elements (for example

f = f(exp(−t/ε), sin(t/ε))). It shows that we look at almost regular boundary value
problems and almost nonlinear boundary problem. Almost regular Cauchy problems are
considered in [2].

The existence and uniqueness of the solution of the problem (1) (2) were proved in
the work [4] in a form of uniformly convergent power series with respect to ε. It was
introduced an additional parameter in [4], thus generalizing the method of Poincare on
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the class of boundary-value problems containing singular functions. The results of [4]
have been applied in [1] for systems of type (1) with integral boundary conditions. In
this work, under certain conditions, we get the asymptotics of the solution, obtained in
[4]. The construction of the asymptotic expansion of solution of the problem (1), (2) is
based on the pseudoinverse matrices and orthogonal projections. Algorithm to finding it
by using pseudoinverse matrices can be seen for example in [5], [6], [3].

If x = (x1, . . . , xn), then as standard norm of the vector x we understand
‖x‖ = max

i=1,n
‖xi‖, but as standard norm of the matrix A = (ai j) we understand

‖A‖ = max
i=1,n

n
∑

j=1

|ai j |. As norm of the linear operator l we understand ‖l(ψ)‖ ≤ b̄‖ψ‖,

b̄ > 0.

2. Auxiliary results. Instead of boundary value problems (1) (2), we consider the
problem with two parameters [2] ε ∈ [0, ε̄] and µ ∈ (0, ε̄]

(3)

dz

dt
= A(t)z + ϕ(t) + εF (z, t, ε, f(t, µ)), t ∈ [a, b],

l(z) = h,

Problem (3) is regularly perturbed with respect to the small parameter ε and the solution
can be constructed in the form of a power series:

(4) z(t, ε, µ) =

∞
∑

k=0

z(k)(t, µ) εk.

Then, the solution of (1), (2) has the form

(5) x(t, ε) =

∞
∑

k=0

z(k)(t, ε)εk.

By the condition (C2) the function F is analytic in G and it is possible to be presented
in the form

(6) F (z, t, ε, f(t, µ)) =
∞
∑

k=0

Bk(t, µ)z k+1εk,

where Bk(t, µ) is (n×n)-matrix with continuous elements in the domain G1. We put (4)
in (6) and obtain the series

F

(

∞
∑

k=0

zk(t, µ) εk, t, ε, f(t, µ)

)

=
∞
∑

k=0

Fk(t, µ, z(0)(t, µ), . . . , z(k)(t, µ))εk =
∞
∑

k=0

F k(t, µ)εk,

where

F k(t, µ) = B0(t, µ)z(k) + gk(t, µ, z(0), · · · , z(k−1)), k ≥ 0, g0 ≡ 0.

Let U(t, s) be the Cauchy matrix for the system ż = A(t)z. Then, the solution of the
Cauchy problem ż = A(t)z, z(a) = ξ has the form z(t) = U(t, a)ξ.

We assume that for (n× n)-matrix D = l(U(·, a)) the following condition is satisfied:

(C4) rank D = r < n.
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Donate by D+ the unique pseudoinverse (n × n)-matrix of the matrix D, with PD

and PD∗ the orthoprojectors PD : ℜn → kerD, PD∗ : ℜn → kerD∗, D∗ = DT . From
the conditions (C4) it follows that rankPD = rankPD∗ = n− r = p. Then, the matrices
D and D∗ contain p linearly independent columns and p linearly independent rows,
respectively. Let PDp

be (n× p) matrix, consisting of p linearly independent columns on
the matrix PD and PD∗

p
– (p×n)-matrix, consisting of p linearly independent lines of the

matrix PD∗ . The solution of the algebraic system Dy = q under the condition (C4) has
the form y = PDp

η +D+q, η ∈ Rp if and only if PD∗

p
q = 0.

We introduce the notations:
Φp(t) = U(t, a)PDp

− (n× p)-matrix;

Q(µ) = PD∗

p
l

(

∫ (·)

a

U(·, s)B0(s, µ)Φp(s)ds

)

− (p× p)-matrix

Theorem 1 [4]. Let the conditions (C1)–(C4), PD∗

p
h̄ = 0 , h̄ = h−l

(

∫ (·)

a
U(·, s)ϕ(s) ds

)

and det Q(µ) 6= 0 ∀µ ∈ (0, ε∗] be satisfied. Then, in the domain G1 there exist uniquely

determined continuously differentiable functions z(k)(t, µ), k ≥ 0 with respect to t ∈ [a, b]
and continuous for µ ∈ (0, ε∗], which satisfy the boundary problems

ż(0) = A(t)z(0) + ϕ(t), l(z(0)) = h,

ż(k) = A(t)z(k) + Fk−1(t, µ, z
(0), . . . , z(k−1)), k ≥ 1,

Theorem 2 [4]. There exists ε∗ > 0, so that the series (4) is uniformly convergent

in G2 = {(t, ε, µ)|a ≤ t ≤ b, 0 ≤ ε ≤ ε∗, 0 < µ ≤ ε∗} and its sum is a solution of the

problem (3).

Moreover, by Theorem 2 it is proved that the functions z(k)(t, µ) satisfy the inequal-
ities ‖z(k)(t, µ)‖ ≤ C, k ≥ 0 in the set [a, b] × (0, ε∗].

3. Main results. We introduce the partial sums of series (4), (5) and the function
Hn:

(7)

Xn(t, ε) =

n
∑

k=0

z(k)(t, ε) ε k, Zn(t, ε, µ) =

n
∑

k=0

z(k)(t, µ) ε k,

Hn(u, t, ε, µ) = εF (u+ Zn, t, ε, f) −

n
∑

k=1

Fk−1(t, µ, z
(0), . . . z(k−1)) εk.

Lemma 3. There exists a constant ε1, 0 < ε1 ≤ ε̄, so that in the domain G3 =
{(t, ε, µ)|a ≤ t ≤ b, 0 ≤ ε ≤ ε1, 0 < µ ≤ ε1} the function Hn(0, t, ε, µ) satisfies the

inequality

‖Hn(0, t, ε, µ)‖ ≤ Cεn+1, C > 0.

Lemma 3 can be proved inductively.
In (C2) the set Dx is a neighborhood of the generated solution z(0). Then, the sum

of the series (4) and its partial sums also belong to this neighborhood. Therefore, for
δ > 0 and ‖z(0)‖ < δ, we have ‖z‖ ≤ ρ < δ.

Lemma 4. There exist δ̄, 0 < δ̄ < δ and 0 < ε1 ≤ ε̄, so that for ‖ū‖ ≤ δ̄ and ‖¯̄u‖ ≤ δ̄,
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t ∈ [a, b], 0 ≤ ε ≤ ε1, 0 < µ ≤ ε1 the function Hn(u, t, ε, µ) satisfies the inequality

‖∆Hn‖ = ‖Hn(ū, t, ε, µ) −Hn(¯̄u, t, ε, µ)‖ ≤ Cε‖ū− ¯̄u‖.

In the proof of Lemma 4 is substantially used that the function F has continuous
partial derivatives with respect to x.

Let the following conditions be fulfilled:

(C5) PD∗

p
b(ε, µ) = 0, b(ε, µ) = −l

(

∫ (·)

a

U(·, s)Hn (u, s, ε, µ) ds

)

;

(C6) The function ξ = ξ(ε, µ) satisfies the inequality

‖ξ(ε, µ)‖ ≤ b̃εn+1, b̃ > 0, 0 < ε ≤ ε̄, 0 < µ ≤ ε̄.

Theorem 5. Let the conditions (C1)–(C6) be satisfied. Then, there exist positive

constants ε∗ and C∗ such that for t ∈ [a, b] and ε ∈ (0, ε∗], the unique solution x(t, ε) of

the problem (1), (2) satisfies the inequality

‖x(t, ε) −Xn(t, ε)‖ ≤ C∗εn+1.

Proof. We accomplish the change

(8) u(t, ε, µ) = z(t, ε, µ) − Zn(t, ε, µ).

It suffices to show that ‖u(t, ε, µ)‖ ≤ C∗εn+1.

We put (8) in (3) and obtain that the remainder term of the series (4) is a solution
of the following boundary-value problem

(9)

du

dt
= A(t)u +Hn(u, t, ε, µ),

l(u) = 0,

where Hn(u, t, ε, µ) is defined by (7).

The differential system (9) is equivalent to the equation

(10) u(t, ε, µ) = U(t, a)η +

∫ t

a

U(t, s)Hn(u, s, ε, µ)ds , η ∈ Rn

We put (10) into the boundary conditions from (9) and to determine the constant vector
η, we obtain the system

(11) Dη = b(ε, µ),

where b(ε, µ) = −l

(

∫ (·)

a

U(·, s)Hn(u, s, ε, µ)ds

)

.

According to (C4), the system (11) has the solution

(12) η = PDp
ξ(ε, µ) +D+b(ε, µ),

where ξ(ε, µ) is an arbitrary vector function at 0 < ε ≤ ε̄ and 0 < µ ≤ ε̄, if and only if
the condition (C5) is satisfied. We assume that the function ξ(ε, µ) satisfies the condition
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(C6). We put (12) in (10) and obtain the integral equation

(13) u(t, ε, µ) = U(t, a)PDp
ξ(ε, µ) + U(t, a)D+b(u, ε, µ)

+

∫ t

a

U(t, s)Hn(u(s, ε, µ), s, ε, µ) ds.

We point out that b(u, ε, µ) depends on u through Hn. We apply the method of
successive approximations to the integral equations (13)

(14)

u0(t, ε, µ, ξ) = 0,

uk(t, ε, µ, ξ) = U(t, a)ξ(ε, µ) + U(t, a)D+b(uk−1, ε, µ)

+

∫ t

a

U(t, s)Hn(uk−1(s, ε, µ), s, ε, µ)ds, k ≥ 1

One can find positive constants bi, i = 1, 2, 3, such that ‖Φp(t)‖ ≤ b1, ‖U(t, s)‖ ≤ b2,
‖D+‖ ≤ b3, at t ∈ [a, b], s ∈ [a, t].

From the properties of the function Hn(u, t, ε, µ) (Lemma 3 and Lemma 4) we get

‖u1 − u0‖ = Φp(t)ξ(ε, µ) + U(t, a)D+b(u0, ε, µ) +

∫ t

a

U(t, s)Hn(u0(s, ε, µ), s, ε, µ)ds‖

≤ ‖Φp(t)‖ ‖ξ(ε, µ)‖ + ‖U(t, a)‖ ‖D+‖ ‖b(0, ε, µ)‖ +

∫ t

a

‖U(t, s)Hn(0, s, ε, µ)| ds

≤ b1b̃ε
n+1 + b2b3b̄b2‖Hn(0, s, ε, µ)‖(b− a) + b2Cε

n+1(b − a)

≤ b1b̃ε
n+1 + b22b3b̄(b− a)Cεn+1 + b2(b− a)Cεn+1 = (C1 + C2 + C3)ε

n+1 =
ν

2
,

where ν = 2(C1 + C2 + C3)ε
n+1, C1 = b1b̃, C2 = b22b3b̄C(b− a), C3 = b2C(b − a).

Using Lemma 4, we obtain

‖u2 − u1‖ ≤ C2ε‖u1 − u0‖ + C3ε‖u1 − u0‖ ≤ C̄ε‖u1 − u0‖ ≤ C̄ε
ν

2
≤

1

2
·
ν

2
,

if ε ≤ ε2 =
1

2C̄
. Inductive approach shows that

‖uk−uk−1‖ ≤
1

2k−1
·
ν

2
∀k ≥ 1, ∀t ∈ [a, b], ε ∈ (0, ε2], µ ∈ (0, ε2], ‖uk‖ ≤ δ, ‖uk−1‖ ≤ δ.

Then,

‖uk(t, ε, µ)‖ ≤ ‖uk − uk−1‖ + ‖uk−1 − uk−2‖ + · · · + ‖u2 − u1‖ + ‖u1 − u0‖

≤
1

2k−1

ν

2
+

1

2k−2

ν

2
+ · · · +

1

2

ν

2
+
ν

2
=
ν

2

(

1 +
1

2
+

1

22
+ · · · +

1

2k−1

)

≤ 2.
ν

2
= ν,

i.e. ‖uk(t, ε, µ)‖ ≤ ν = C∗εn+1 at t ∈ [a, b], ε ∈ (0, ε∗], µ ∈ (0, ε∗] and C∗ = 2(C1 +C2 +
C3).

The above shows that the sequence of successive approximations (14) converges uni-
formly to the solution u(t, ε, µ) for the problems (9), i.e. a solution of the problem (9)
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exists, it is uniquely determines and satisfies the inequality

(15) ‖u(t, ε, µ)‖ ≤ C∗εn+1, t ∈ [a, b], ε ∈ (0, ε∗], µ ∈ (0, ε∗],

where ε∗ ≤ min(ε̄, ε1, ε2).
From (8) and (15) it follows that

‖z(t, ε, µ)− Zn(t, ε, µ)‖ ≤ C∗εn+1,

which shows that

‖x(t, ε) −Xn(t, ε)‖ ≤ C∗εn+1.

The theorem is proved. �
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АСИМПТОТИЧНО РЕШЕНИЕ НА ПОЧТИ РЕГУЛЯРНИ И СЛАБО

СМУТЕНИ СИСТЕМИ ЗА ОБИКНОВЕНИ ДИФЕРЕНЦИАЛНИ

УРАВНЕНИЯ

Л. И. Каранджулов, Н. Д. Сиракова

В работата се прилага методът на Поанкаре за решаване на почти регулярни

нелинейни гранични задачи при общи гранични условия. Предполага се, че ди-

ференциалната система съдържа сингулярна функция по отношение на малкия

параметър. При определени условия се доказва асимптотичност на решението на

поставената задача.
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