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Petra Staynova

The quasi-Lindelöf property was first introduced by Arhangelski in [1], as a strength-
ening of the weakly Lindelöf property. However, unlike Lindelöf and weakly Lindelöf
spaces, very little is known about how quasi-Lindelöf spaces behave under the main
topological operations, and how the property relates to separation axioms. In the
present paper, we look at several properties of quasi-Lindelöf spaces. We consider
several examples: a weakly Lindelöf space which is not quasi-Lindelöf, a product of
Lindelöf spaces which is not even quasi-Lindelöf, and a quasi-Lindelöf space which is
not ccc. At the end, we pose some open questions.

Note 0.1. All spaces are assumed Hausdorff.

1. Introduction. It is well known that any product of compact spaces is compact,
and that the product of even two Lindelöf spaces need not be Lindelöf [3]. Various
generalisations of Lindelöf spaces have been considered throughout years and attempts
to compare their behaviour under basic topological operations with the behaviour of
Lindelöf spaces have been made. One such generalisation – the notion of a weakly
Lindelöf space - was introduced by Z. Frolik [4].

Definition 1.1.A topological space X is called weakly Lindelöf if for any open cover
U of X, one can find a countable subfamily U ′ ⊆ U such that X =

⋃

U ′.

Unfortunately, unlike compactness and Lindelöfness, that property is not inherited
by closed subspaces. Thus A. Arhangelski [1] considered a stronger property:

Definition 1.2.A topological space X is called quasi-Lindelöf if for any closed subset
C ⊆ X and any family U of open in X sets which cover C, a countable subfamily U ′ ⊆ U
can be found such that C ⊂

⋃

U ′.

In fact, Arhangelski defined a more general invariant – the quasi-Lindelöf number
qL(X) of a given topological space X :

Definition 1.3. qL(X) = ω. min{τ : ∀ closed C ⊂ X, ∀U ⊂ τX with C ⊆
⋃

U , ∃ a

countable U ′ ⊆ U such that C ⊂
⋃

U ′}.

He used this to generalise a theorem of Bell, Ginsburgh and Woods [2] for obtaining
an upper bound of the cardinality of a topological space.

It follows directly from the definition that any Lindelöf space is quasi-Lindelöf and any
quasi-Lindelöf space is weakly Lindelöf. The uncountable discrete subspace has neither
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of the above properties. We use the following proposition to give a non-trivial example
of a quasi-Lindelöf space which is not Lindelöf.

Proposition 1.4. Every separable topological space X is quasi-Lindelöf.

Proof. Indeed, let C ⊂ X be closed and let U be a family of open subsets with C ⊂
⋃

U . Take a countable dense subset A ⊂ X and let A1 = A ∩ (
⋃

U) = {a1, . . . , an, . . .}.
For every n choose Un ∈ U such that an ∈ Un. Consider V =

⋃

U \ A1 and note that
V is open and V ∩ A = ∅. Hence, V must be the empty set. Therefore,

⋃

U ⊂ A1.

Furthermore, A1 ⊂
⋃

n∈N
Un ⊂

⋃

U . So, we get
⋃

U = A1 and, moreover, C ⊂
⋃

U =
⋃

n∈N
Un. Therefore, C is weakly Lindelöf, as required. �

Using this proposition, we can give the following two examples of quasi-Lindelöf spaces
which are not Lindelöf:

Example 1.5.The Sorgenfrey plane S×S is not Lindelöf, but is separable and hence
quasi-Lindelöf.

Example 1.6.The Niemytzki plane L is separable, hence, quasi-Lindelöf, but not
Lindelöf.

The quasi-Lindelöf and weakly Lindelöf properties coincide in the case of normal
spaces (see [8] for the proof). We use ideas from Mysior ([6]) and modify a construction
from [9] in order to obtain the following example:

Example 1.7. There exists a weakly Lindelöf space X which is not quasi-Lindelöf
(and not even Lindelöf).

Construction. Let A = {(aα,−1) : α < ω1} be an ω1-long sequence in the set
{(x,−1) : x ≥ 0} ⊆ R

2. Let Y = {(aα, n) : α < ω1, n ∈ ω}. Let a = (−1,−1). Finally,
let X = Y ∪ A ∪ {a}.

We topologize X as follows:

– all points in Y are isolated;

– for α < ω1 the basic neighborhoods of (aα,−1) will be of the form

Un(aα,−1) = {(aα,−1)} ∪ {(aα, m) : m ≥ n} for n ∈ ω

– the basic neighborhoods of a = (−1,−1) are of the form

Uα(a) = {a} ∪ {(aβ, n) : β > α, n ∈ ω} for α < ω1.

Let us point out that A is closed and discrete in this topology. Indeed, for any point
x ∈ X there is a basic neighborhood U(x) such that A∩U(x) contains at most one point
and also that X \A = {a}∪ Y is open (because Uα(a) ⊂ Y ∪ {a}. Hence, X contains an
uncountable closed discrete subset and, therefore, it cannot be Lindelöf.

Note that for any open U ∋ a the set X \ U is at most countable. Indeed, for any
α < ω1, Uα(a) = Uα(a) ∪ {(aβ,−1) : β > α}. Hence, X \ Uα(a) is at most countable.

It is easily seen that X is Hausdorff. Without much effort, it can also be proved that
X is Urysohn.

Let us now prove that X is weakly Lindelöf. Let U be an open cover of X . Then, there
exists a U(a) ∈ U such that a ∈ U(a). We can find a basic neighborhood Uβ(a) ⊂ U(a).

Then, Uβ(a) ⊂ U(a) and hence X \U(a) will also be at most countable. Hence X \U(a)
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can be covered by (at most) countably many elements of U , say U∗. Set U ′ = U∗∪{U(a)}.
Then, X ⊆

⋃

U∈U ′ U ⊆
⋃

U∈U ′ U . Therefore, X is weakly Lindelöf.
Now, let us prove that X is not quasi-Lindelöf. Consider the 1-neighborhood of a:

U1(a) = {a} ∪ {(aβ, n) : β > 1, n ∈ ω}. We have that C = X \ U1(a) is closed. We show
the uncountable family of basic open sets U = {U0(aα,−1) : α < ω1} forms an open cover
of C which has no countable subcover with dense union. Note that the sets U0(aα,−1)
are closed and open. Indeed, X \U0(aα,−1) =

⋃

{U0(aβ ,−1) : β 6= α}∪Uα+1(a). Hence,
if we remove even one of the U0(aα,−1), the point (aα,−1) would remain uncovered.
Therefore, X is not quasi-Lindelöf.

Lindelöfness is equivalent to requiring that every cover of basic open sets has a count-
able subcover. We have a similar result here:

Proposition 1.8.Let X be a topological space. Then the following assertions are
equivalent:

1. X is quasi-Lindelöf.

2. Let B be a fixed base for X. Then, for any closed subset C ⊂ X and any cover U
of C with U ⊂ B there is a countable subfamily U ′ of U such that C ⊂

⋃

U ′.

Proof. The direct statement is trivial.
For the converse, let C ⊂ X be closed and let U be a family of open subsets of X

covering C, i.e. C ⊂
⋃

U . Let B be any base for the topology of X . For every U ∈ U
there is a family VU ⊂ B such that U =

⋃

VU . Then, C ⊂
⋃

U =
⋃

U∈U
(
⋃

VU ). Since X

is base quasi-Lindelöf, there exists a countable

V ′ = {Vn : n ∈ N} ⊂
⋃

U∈U

(

⋃

Vn

)

=
⋃

U

such that C ⊂
⋃

V ′. As above, choose a countable U ′ ⊆ U such that
⋃

V ′ ⊂
⋃

U ′. Then,

C ⊂
⋃

U ′ and hence X is quasi-Lindelöf. �

Note that this is independent of the choice of basis, since if B1 and B2 are two bases,
then the respective (2)-conditions are both equivalent to (1), and, hence, also equivalent
to each other.

The following Theorem is proved in [8]:

Theorem 1.9. If X satisfies the countable chain condition (i.e. is ccc), then X is
quasi-Lindelöf.

This shows that the ccc property implies the quasi-Lindelöf property, which in turn
implies that the space is weakly-Lindelöf.

The converse, however, does not hold, as the following example shows.

Example 1.10 [7]. The lexicographic square is quasi-Lindelöf (in fact, it is compact),
but not ccc.

As we pointed out in the beginning, products of compact spaces is compact, and a
product of two Lindelöf spaces might not be Lindelöf. Such products might not even be
weakly Lindelöf, as the following example from [5] shows:

Example 1.11.There is a topological space X that is not weakly Lindelöf (and,
hence, not quasi-Lindelöf), but which is a product of two Lindelöf spaces.

199



Hence, neither the weakly Lindelöf nor the quasi-Lindelöf property is productive, i.e.
both spaces have the same behaviour with respect to products as the Lindelöf property.
For weakly Lindelöf spaces, we have the following result:

Proposition 1.12. If X is weakly Lindelöf and Y is compact, then X × Y is weakly
Lindelöf.

A proof can be found in [8]. It is natural to ask whether this can be extended to
quasi-Lindelöf spaces, namely:

Open question. Is the product of a quasi-Lindelöf space X and a compact space Y

quasi-Lindelöf?

This question is interesting even in the particular case:

Open question. Is the product of the unit interval [0, 1] with a quasi-Lindelöf space,
quasi-Lindelöf?

The following proposition is a very special case of the first question:

Proposition 1.13. If A = {0, 1, 2, . . . , n} is a finite discrete set and Y is a quasi-
Lindelöf space, then the product A × Y is quasi-Lindelöf.

This can be proved by induction. The key step is to prove this for a two-point discrete
set:

Lemma 1.14. If X is quasi-Lindelöf and Y = {0, 1}, then X × Y is quasi-Lindelöf.

Proof. Let C ⊂ X × Y be closed and U be an open cover of C. Consider C0 =
{x ∈ X : (x, 0) ∈ C} and C1 = {x ∈ X : (x, 1) ∈ C}. Then, both C0 and C1 are
closed in X since C is closed. Moreover, C ⊂ (C0 × {0}) ∪ (C1 × {1}). Set U0 = {U ∈
U : U∩(C0×{0}) 6= ∅}. Clearly, U0 is an open cover of C0×{0}. Since C0 is closed and X

is quasi-Lindelöf, we find a countable subfamily, say U ′, of U0 such that C0 ×{0} ⊂
⋃

U ′

(here the identification of C0 and C0 × {0} is obvious). Likewise, we deal with C1 and
find a countable subfamily, say U∗, of U such that C1 ⊂

⋃

U∗. Then, Û = U ′ ∪ U∗ is as

it is required, i.e. C ⊂
⋃

Û . �
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ЕДНА БЕЛЕЖКА ВЪРХУ КВАЗИ-ЛИНДЕЛЬОФОВИТЕ

ПРОСТРАНСТВА

Петра Г. Стайнова

Квази-линдельофовите пространства са въведени от Архангелски като усилва-

не на слабо-линдельофовите. В тази статия се разглеждат няколко свойства на

квази-линдельофовите пространства и се правят сравнения със съответни ре-

зултати за линдельофовите и слабо-линдельофовите пространства. Дадени са

няколко примера, включително на слабо-линдельофово пространство, което не

е квази-линдельофово; на пространство, което е топологично произведение на

две линдельофови, но не е дори квази-линдельофово, и на пространство, което

е квази-линдельофово, но не Суслиново. Накрая са поставени няколко отворени

въпроси.
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