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A NOTE ON QUASI-LINDELOF SPACES"

Petra Staynova

The quasi-Lindel6f property was first introduced by Arhangelski in [1], as a strength-
ening of the weakly Lindel6f property. However, unlike Lindel6f and weakly Lindelof
spaces, very little is known about how quasi-Lindel6f spaces behave under the main
topological operations, and how the property relates to separation axioms. In the
present paper, we look at several properties of quasi-Lindelof spaces. We consider
several examples: a weakly Lindelof space which is not quasi-Lindelof, a product of
Lindelof spaces which is not even quasi-Lindeldf, and a quasi-Lindelof space which is
not ccc. At the end, we pose some open questions.

Note 0.1. All spaces are assumed Hausdorff.

1. Introduction. It is well known that any product of compact spaces is compact,
and that the product of even two Lindelof spaces need not be Lindelof [3]. Various
generalisations of Lindel6f spaces have been considered throughout years and attempts
to compare their behaviour under basic topological operations with the behaviour of
Lindel6f spaces have been made. Omne such generalisation — the notion of a weakly
Lindelof space - was introduced by Z. Frolik [4].

Definition 1.1. A topological space X is called weakly Lindelof if for any open cover
U of X, one can find a countable subfamily U' CU such that X = JU'.

Unfortunately, unlike compactness and Lindel6fness, that property is not inherited
by closed subspaces. Thus A. Arhangelski [1] considered a stronger property:

Definition 1.2. A topological space X is called quasi-Lindelof if for any closed subset
C C X and any family U of open in X sets which cover C, a countable subfamily U C U
can be found such that C C | JU'.

In fact, Arhangelski defined a more general invariant — the quasi-Lindeléf number
qL(X) of a given topological space X:

Definition 1.3. ¢L(X) = w.min{r : V closed C C X,VU C 7x with C C U, a
countable U’ C U such that C C JU'}.

He used this to generalise a theorem of Bell, Ginsburgh and Woods [2] for obtaining
an upper bound of the cardinality of a topological space.

It follows directly from the definition that any Lindelof space is quasi-Lindel6f and any
quasi-Lindelof space is weakly Lindel6f. The uncountable discrete subspace has neither
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of the above properties. We use the following proposition to give a non-trivial example
of a quasi-Lindelof space which is not Lindel6f.

Proposition 1.4. Every separable topological space X is quasi-Lindeldf.

Proof. Indeed, let C C X be closed and let U be a family of open subsets with C' C
JU. Take a countable dense subset A C X and let A; = An(UU) = {a1,...,an,...}.
For every n choose U,, € U such that a,, € U,. Consider V = JU \ ‘A7 and note that
V is open and V N A = (). Hence, V must be the empty set. Therefore, JU C Aj.
Furthermore, Ay C J,,cy Un C UU. So, we get W = A, and, moreover, C C W =
Unen Un- Therefore, C' is weakly Lindeldf, as required. [

Using this proposition, we can give the following two examples of quasi-Lindelof spaces
which are not Lindelof:

Example 1.5. The Sorgenfrey plane S x S is not Lindelof, but is separable and hence
quasi-Lindelof.

Example 1.6. The Niemytzki plane L is separable, hence, quasi-Lindelof, but not
Lindelof.

The quasi-Lindel6f and weakly Lindelof properties coincide in the case of normal
spaces (see [8] for the proof). We use ideas from Mysior ([6]) and modify a construction
from [9] in order to obtain the following example:

Example 1.7. There exists a weakly Lindel6f space X which is not quasi-Lindel6f
(and not even Lindelof).

Construction. Let A = {(aq,—1) : @ < w1} be an w;-long sequence in the set
{(z,~1): 2 >0} CR% Let Y = {(an,n) : @ < wi,n € w}. Let a = (—1,—1). Finally,
let X =Y UAU{a}.

We topologize X as follows:

— all points in Y are isolated;

— for @ < wy the basic neighborhoods of (aq, —1) will be of the form
Un(aa,—1) = {(aa,—1)} U{(aa,m) :m >n} forn € w

— the basic neighborhoods of a = (=1, —1) are of the form
Ua(a) ={a}U{(ag,n): 8> a,n € w} for a < w;.

Let us point out that A is closed and discrete in this topology. Indeed, for any point
x € X there is a basic neighborhood U(x) such that ANU(x) contains at most one point
and also that X \ A = {a} UY is open (because U, (a) C Y U{a}. Hence, X contains an
uncountable closed discrete subset and, therefore, it cannot be Lindelof.

Note that for any open U > a the set X \ U is at most countable. Indeed, for any
a < wi, Uy(a) =Uy(a) U{(ag,—1) : B > a}. Hence, X \ Uy(a) is at most countable.

It is easily seen that X is Hausdorff. Without much effort, it can also be proved that
X is Urysohn.

Let us now prove that X is weakly Lindelof. Let I/ be an open cover of X. Then, there
exists a U(a) € U such that a € U(a). We can find a basic neighborhood Ug(a) C U(a).
Then, Ug(a) C U(a) and hence X \ U(a) will also be at most countable. Hence X \ U(a)
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can be covered by (at most) countably many elements of U, say U*. Set U’ = U*U{U(a)}.
Then, X C Uy UC Uvew U. Therefore, X is weakly Lindelof.

Now, let us prove that X is not quasi-Lindelof. Consider the 1-neighborhood of a:
Ui(a) ={a} U{(ag,n): 8> 1,n € w}. We have that C = X \ U1(a) is closed. We show
the uncountable family of basic open sets U = {Up(aq, —1) : @ < wy } forms an open cover
of C' which has no countable subcover with dense union. Note that the sets Up(aq, —1)
are closed and open. Indeed, X \ Up(aq,—1) = [J{Uo(ag,—1) : B # a}UUq+1(a). Hence,
if we remove even one of the Up(aq, —1), the point (aq, —1) would remain uncovered.
Therefore, X is not quasi-Lindelof.

Lindel6fness is equivalent to requiring that every cover of basic open sets has a count-
able subcover. We have a similar result here:

Proposition 1.8. Let X be a topological space. Then the following assertions are
equivalent:

1. X s quasi-Lindelof.

2. Let B be a fized base for X. Then, for any closed subset C C X and any cover U
of C with U C B there is a countable subfamily U' of U such that C C JU'.

Proof. The direct statement is trivial.

For the converse, let C' C X be closed and let U be a family of open subsets of X
covering C, i.e. C C [JU. Let B be any base for the topology of X. For every U € U
there is a family Vi C B such that U = |JVy. Then, C € UU = Uy, (U V). Since X
is base quasi-Lindelof, there exists a countable

V= {Vauinentc J (Uw)=Uu
Ueu
such that C' C |JV’. As above, choose a countable U’ C U such that |JV' C |[JU’. Then,
C C U’ and hence X is quasi-Lindel6f. O

Note that this is independent of the choice of basis, since if B; and By are two bases,
then the respective (2)-conditions are both equivalent to (1), and, hence, also equivalent
to each other.

The following Theorem is proved in [8]:

Theorem 1.9. If X satisfies the countable chain condition (i.e. is ccc), then X is
quasi-Lindelof.

This shows that the ccc property implies the quasi-Lindel6f property, which in turn
implies that the space is weakly-Lindelof.

The converse, however, does not hold, as the following example shows.

Example 1.10 [7]. The lexicographic square is quasi-Lindelof (in fact, it is compact),
but not ccc.

As we pointed out in the beginning, products of compact spaces is compact, and a
product of two Lindel6f spaces might not be Lindel6f. Such products might not even be
weakly Lindelof, as the following example from [5] shows:

Example 1.11.There is a topological space X that is not weakly Lindel6f (and,
hence, not quasi-Lindel6f), but which is a product of two Lindelof spaces.
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Hence, neither the weakly Lindel6f nor the quasi-Lindelof property is productive, i.e.
both spaces have the same behaviour with respect to products as the Lindel6f property.
For weakly Lindelof spaces, we have the following result:

Proposition 1.12. If X is weakly Lindeldf and Y is compact, then X XY is weakly
Lindeldf.

A proof can be found in [8]. It is natural to ask whether this can be extended to
quasi-Lindelof spaces, namely:

Open question. Is the product of a quasi-Lindel6f space X and a compact space Y
quasi-Lindelof?

This question is interesting even in the particular case:

Open question. Is the product of the unit interval [0, 1] with a quasi-Lindelof space,
quasi-Lindelof?

The following proposition is a very special case of the first question:

Proposition 1.13.If A = {0,1,2,...,n} is a finite discrete set and Y is a quasi-
Lindelof space, then the product A XY is quasi-Lindeldf.

This can be proved by induction. The key step is to prove this for a two-point discrete
set:

Lemma 1.14. If X is quasi-Lindeldf and Y = {0,1}, then X XY is quasi-Lindeldf.

Proof. Let C C X x Y be closed and U be an open cover of C. Consider Cy =
{z € X:(2,0) € C} and Cy = {z € X: (z,1) € C}. Then, both Cy and C; are
closed in X since C is closed. Moreover, C' C (Cy x {0}) U (Cy x {1}). Set Uy = {U €
U: UN(Cyx{0}) # 0}. Clearly, Uy is an open cover of Cy x {0}. Since Cj is closed and X
is quasi-Lindelof, we find a countable subfamily, say U’, of Uy such that Cy x {0} C JU’
(here the identification of Cy and Cy x {0} is obvious). Likewise, we deal with C; and
find a countable subfamily, say U*, of U such that C, C [JU*. Then, U=U UU* is as

it is required, i.e. C c Y. O
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EOHA BEJIE2KKA BbPXY KBASU-JIMHAEJIBO®OBUTE
ITPOCTPAHCTBA

ITerpa I'. CraitHoBa

Ksazu-nuniesibooBuTe MpoCTPaHCTBA €A BBBEIEHU OT APXAHIEJICKA KATO YCUJIBA-
He Ha cJaabo-smHaeabodoBuTe. B Tasm crarus ce pas3ryiexkaT HSIKOJIKO CBOMCTBaA Ha
KBa3U-JINHIeTh0OBUTE MTPOCTPAHCTBA U Ce MPABSIT CPABHEHUSI ChC CbOTBETHU pe-
3yJITaTH 38 JIMHJIEIbOMOBUTE U CJAADO0-JTUHIEIbO(pOBUTE TTpocTpaHcTBa. Jlagenn ca
HSIKOJIKO ITPHMepAa, BKJIIOYUTE]HO Ha CJIa00-JIMHIEI50(DOBO IPOCTPAHCTBO, KOETO He
€ KBa3u-JMHIEIb0(OBO; Ha IPOCTPAHCTBO, KOETO € TOIOJOIMYHO IIPOW3BE/IEHUE Ha
JIBe JIMHIEIBO(OBY, HO HE € JOPU KBa3Wu-JIUHIEIb0(OBO, U Ha MPOCTPAHCTBO, KOETO
e KBa3u-JImH1es 160080, HO He CycsmmuoBo. Hakpasi ca mocTaBeHH HSIKOJIKO OTBOPEHH
BBIIPOCH.
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