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FRACTION SPACE REVISITED"

Boyko Bantchev

Rationals are known to form interesting and computationally rich structures, such
as Farey sequences and infinite trees. Little attention is being paid to more general,
systematic exposition of the basic properties of fractions as a set. Some concepts are
being introduced without motivation, some proofs are unnecessarily artificial, and
almost invariably both seem to be understood as related to specific structures rather
than to the set of fractions in general. Surprisingly, there are essential propositions
whose very statement seem to be missing in the number theory literature. This article
aims at improving on the said state of affairs by proposing a general and properly
ordered exposition of concepts and statements about them. In addition, historical
remarks are made on generating the set of all fractions — a much older discovery than
it is widely believed.

Introduction. The discovery of the Farey sequences in the beginning of the 19t"
century marked a shift of interest with regard to rational numbers from purely numeric
properties to ones concerning the structure of the set of rationals. It became apparent
that not only could we add, multiply, compare, etc. fractions, but we can relate them to
each other, including generate them from one another, based on new concepts — ones of
adjacency and computation of mediants. Later investigations lead to the emergence of a
construct now known as the Stern-Brocot (SB) tree, which is more general by including
all simple fractions at once, and enables deeper exploration of the structure of Q than it
is possible with Farey sequences. Later still, even more structural relations of generative
nature have been found in Q.

Remarkably, the Farey sequences and the SB tree, although of different origins, ex-
ploit the same relational and computational basis — adjacency and mediants. Also, and
somewhat surprisingly, the several other trees that have been discovered — independently
and in different contexts — to contain the positive rationals, all appear to be indistin-
guishable as sets of rows. The author sees this as an evidence that a more general and
comprehensive theory of the structure of the set of rationals is awaiting its development.

As a small step in this direction, the author finds it necessary to emancipate the
treatment of some fundamental concepts from the consideration of Farey sequences, SB
tree or any similar structure. Indeed, introduction of adjacency and mediants, along with
the related properties, is at present tied to the said structures [10, 9], leaving the false
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impression that it belongs there. In fact, it need not be so. Treating the basic concepts
and their properties independently uncovers their true, fundamental meaning and fosters
a more complete account of them.

The remainder of the text contains two parts. The first is a brief exposition of
terms and properties of simple fractions. Introducing normalized error and distance
first, mediants come as a solution to a naturally arising problem, and adjacency is the
minimality of distance. Computation of mediants of adjacent fractions is then shown to
generate all positive rationals. The distances between a fraction and a pair of adjacent
fractions encode how the former is generated from the latter. As a way of contrast, the
reader is invited to compare this approach to a ‘Farey-based’ text, such as [10], Ch.III
or similar, or to [6], end of Ch.V, or to [9] 4.5, where both Farey sequences and the
Stern-Brocot tree are discussed.

Facts pertaining to Farey sequences, the SB tree or other specific structures either
receive a more general treatment here, or are not discussed but can easily be inferred
from the rest.

The second part contains remarks on the history and results of generating and enu-
merating fractions, especially in a tree form. Besides drawing the reader’s attention to
several important and useful enumerations, my goal is to stress that, contrary to popular
belief, that history is rooted in the antiquity.

The space of fractions. To save space, many proofs are omitted or only sketched
in the following, especially if they are straightforward enough to reconstruct on one’s
own.

Following [9], the co-primality of integers p and ¢ is denoted by p L q.

We consider fractions P /4 with p,¢>0 and p L q.

81. Fractions are commonly used to approximate numbers. A number z is approx-
imated by a fraction P/, with an absolute error |z —P/4|. Instead of the latter, a
normalized error, q|x —P /¢| = |qx — p|, may be preferred for the following reasons. The
best absolute error is within 1 /2¢; by multiplying with ¢, the impact of the denominator
is neutralized — as if integers are considered in place of fractions. Also, a larger ¢ is
more ‘resource consuming’ (greater number of fractions to consider, with larger numera-
tors and denominators), so it makes sense to ‘tax’ for that by assuming a proportionally
larger error.

§2. For similar reasons, for fractions P /4 <"/s, in place of the absolute difference
"fs =P [q = 9"7P5 /45 , by multiplying with ¢s, we introduce a normalized difference, or
a distance |P/q ,"/s| = qr—ps. The distance is >1, and when it is 1, we say that the
fractions are adjacent and write P /g L7/s.

It can immediately be observed that:

— the notion of adjacency agrees with, and generalizes the one of integers (successive

integers are adjacent fractions);

— for any two fractions P/ and "/s: qr—ps =1 & P/ <"/s NP [y LT/s;

—PlyLT)s = plgApLlrArLlsAqgls;

= NPlqs sl =15 e Ul = 1P/ U sl =15 /q 5 "/pl-

§3. Keeping in mind the second observation above, what if in gr—p s=1 any of p, g,
r, and s can be 0 and not only positive?
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Proposition. Ifp,q,7,s>0 and gr—ps=1, then exactly one of the following is true
(as can be proved by case analysis and use of 1=qr—ps = q(r—p) + p(g—s)):

0. p=s=0Aqg=r=1;

1. p=r=1A g=s+1;

2. q=s=1 A r=p+1;

3. either p<r A qg<s or p>r A q¢>s.

Thus we arrive at a useful generalization of adjacency: from now on, we consider
qr—ps=1 to be the definition of adjacency of P/; and "/s even when numerators or
denominators are 0. In fact, only two new fractions, 0 /1 and 1 /0, become legitimate
— according to the above, they are the only admissible representatives of 0 and oo,
respectively (no 0 /n or ™ /g for n>1 can be adjacent with any other fraction).

More generally, the sign of ¢ 7—p s defines whether P /; <"/ or vice versa, and g r—p s
is, as before, the distance |P /g ,"/s| between fractions — now including 0/ and 1/q.

The 0.—2. cases from the proposition can be rewritten:

0. P/g =1 N "/s =1/

L P/ =11 A T/s =1/, for n > 0;

2. Plg="1 NT/s =n+1l/1 for n > 0.

Adjacency of fractions where at least one of them is an integer can be summarized as
follows.

— An integer p is only adjacent with fractions of the kind p —1 /n from the left, and
with 1/y and fractions of the kind p+1/, from the right. In particular, p is
adjacent with p—1 and p+1, and 0 is adjacent with all fractions l/n, including
1/, and only them.

— 1/ is adjacent with all fractions " /1 (the integers) and only them.

§4. Let v € [P/q,"/s]. The larger the x, the larger the (normalized) error gz—p of
approximating = with P /;, and the smaller the error r—sx of approximating = with /5.
The former error starts from 0, while the latter ends at 0. The unique M € [P /4, "/s] for
which the errors are equal is the solution for x of the equation qx—p=r—sx — a fraction.
The same M is also the unique solution for a fraction f of the equation [P /g, f|=|f, "/s|.

Therefore, the following holds:

Proposition. For any fraction-bound interval [P /g ,"/s], the fraction M=PTT [, 4
is the unique one that is at equal distances from the two ends of the interval, and also
the unique number that is approximated with equal errors by them.

It is immediately seen that the distances satisfy |P/q, M|=|M,"/s|=|P/q,"/s| and
the error of approzimation is |P /g ,"/s|/(q+ s).

For any two fractions P /; and " /s, the fraction P*7 /s is called their mediant. Due
to the context in which the mediant emerged above, clearly P /g <PT7 [q 15 <T/s holds.

§5. Proposition. If P/, L"/s, then:
— p+r L q+s also holds, i. e. the mediant as computed is in lowest terms;
=Py LPTT Joss and P77 [g4s LP [y (and no other fraction is adjacent with both

Plg and "/s ).

§6. From §3 we know that for any pair of adjacent fractions ¥/, and "/s except
0/1 and 1/0, there holds either p <r and ¢<s or p>r and ¢>s. Accordingly, we can
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construct either "~P/s_q or P77/, ¢, and name it medidifference. Like the mediant,
the medidifference is adjacent to its formative fractions. If p <r and ¢<s, then "/s is
the mediant of P /; and "~P /s, (and similarly for the opposite inequalities).

Proposition. If p<r and q<s, then:

= Ple<Ts, Plg<PT)gts, PP Jqws <"/s, Plag<T"Pls—q, ")s <" Pls—q,
and
PIT fups <P [s_q are all equivalent;

- p/q L7/s, p/q ijLvn/q-/-ézy /s Lpﬂﬂ/{]—/—s, p/q J—rip/s—q; "/s J—rip/s—q ,
and
|PHT Jgts, TP [s—q| =2 are all equivalent.

87. The statement of §5 suggests that each interval whose bounds are adjacent frac-
tions can be indefinitely subdivided by means of constructing mediants: the interval is
first split into two, then into four, etc., each time obtaining new adjacent pairs whose
corresponding intervals can be further subdivided. Each new mediant is different from
all others, as it belongs strictly within an interval which, by the moment the mediant is
computed, does not contain other fractions.

88. Just as mediant computation applies for subdividing an interval, the reverse
process takes place by computing medidifferences. Based on the results from §6, an
interval bounded by adjacent fractions can be extended to the left or right, then the same
can be done with the extended interval, etc. — as many times as needed, or until [0 /1 , 1 /g]
is reached. Thus e.g. from [4/3,7/5] we obtain [4/3,3 /], [Y1/1.3/2], [1/1,2A],
LA/l and [0/, 1 /).

In essence, Euclid’s algorithm for finding GCD is being simultaneously run on two
pairs of natural numbers. Each pair is co-prime (see §2), and the simultaneity is possible
due to §6.

§9. Proposition. For each fraction ®/y € [P/q,"/s] there holds da=np+mr,
db=ng+ms, where d=1|P /¢ ,"/s|, m=|P /g, % /p|, and n=1[%/p ,"/s|. (Can be verified
by immediate checking.)

The above means, in particular, that @/, ="P+mr /ng+ms and that when P/, L7/s ,
the right-hand side is in lowest terms.

Proposition. If P/, L"/s and m and n are as above, then m L n.

Indeed, as P/; and "/s are adjacent, then so are P/, and 9/s. Applying Euclid’s
algorithm simultaneously to the pairs p,q and r, s as in §8, then multiplying the results
by m and n, respectively, and adding them up, we would be thus applying the same
algorithm to the pair a,b. At some point, p, ¢ would reduce to 0,1 and 7, s to 1,0. The
respective values to which a and b reduce would then be m and n. As a L b, there must
also be m L n.

The integers m and n, besides being distances, can also be regarded as coordinates of
@ /p with respect to [P /g, "/s].

The following statements can be proved by immediate verification.

Proposition. The mediant of two fractions fi and fo within [P /q ,"/s] has a ‘coor-
dinate fraction” ™ /, which is itself the mediant of the coordinate fractions of f1 and fa
(in lowest terms).
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Proposition. If ¢/, :”1p+m17’/n1q+m15 and €/q :n2p+m27“/n2q+m25 , then
19765 Clal=1P /g "[s 1™ g s 2 sy |-
If P/q L7/, then the above simplifies to [% /5, ¢/q |=|""" /n; , "2 [n, |, i. e. the distance
between fractions equals the one between their coordinates.

§10. Proposition The process of mediant subdivision of an interval [P /q,"/s],
bounded by adjacent fractions, generates all the fractions within the interval.

For any fraction f € [P/y,"/s], take m and n as in §9. If m<n, then f=((n —
m)p+m(p+r))/((n — m)g+m(s+q)). Thus f, with coordinates m,n, is obtainable by
subdividing [P /4 ,"/s | exactly when it, with coordinates m,n—m in the narrower in-
terval [P /g, PT" /445 ], is obtainable by subdividing that interval (its bounds also being
adjacent). Similarly when m >n.

Repeating the same reduction, we are once more applying Euclid’s algorithm, here
to the pair m,n, while transforming the way f is being represented. Eventually, one of
the two coordinates is zeroed, while in the currently reached interval f becomes trivially
representable, as it coincides with one of its ends.

It follows that, starting from [0 /1,1 /), all nonnegative rationals can be obtained by
subdividing with mediants. Every integer /1 > 0 is generated as the mediant of an
integer (the preceding one) and 1/ : from 0/ and 1/y we get 1 /1, from /1 and !/y
— 2/1, and so on.

The process of fraction generation through mediant computation repeats itself in
many respects and forms, such as the following:

- For any integer n, fraction generation within [n, n+1] repeats that within [0, 1].

- Due to the symmetry between numerators and denominators of mediants, fraction
generation within [1 /1,1 /) and that within (Y /1, 1 /1] reciprocally mirror each other.

- For any interval [P/, ,"/s] with P /4 L"/s, in view of P /; and "/s having coordinate
fractions 0 /1 and 1 /o with respect to the interval, the third proposition of §9 establishes
a duality between the fractions within that interval and those within [0 /1,1 /) = [0, o0).
In other words, there is a natural 1-1 correspondence between the fractions within any
specific adjacent-bound interval and the set of all nonnegative fractions.

811. Adjacent fractions can be found as closely as needed:

Proposition. For each fraction P /4 € (0/1 .1/0) and each e >0, there exist a4 and
€/, suchthat [y <Plg <CJa,Plg =) <&, “Ja—P[lg<e, “/p LP /g, and P [q LC/q .

812. Proposition. The coordinate representation of fractions with respect to an
interval with adjacent ends [P /g , /5] entails that the denominators and the numerators
of such fractions are no smaller than q+s and p+r, respectively. In fact, they are strictly
greater everywhere except at the mediant.

A reverse statement also holds.

Proposition. If every fraction within (P/q,"/s) (assuming /s <1/9) has a de-
nominator >max(q, s) (or, equivalently, has a numerator >max(p,r)), then P /g L7/s
holds.

(Take ¢/p =Y/1 and /3 =1/y and narrow [%/ , €/q] by mediant subdividing un-
til either (a) */p =P /4 and "/s =¢/q — so indeed P /4 L"/s — or (b) one of %/, and
€/a is strictly in, and the other strictly out of (P/4,"/s). In case of (b), let e.g.
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@y <Py <€/qg<T"/s. Then, due to */p L/q, q>d holds, which is a contradiction
with € /g being within (P /4 ,"/s). Thus (b) is not possible.)

The above two propositions can be united in the following (again, assuming /s < 1 /0)

Proposition. P/, 17/s & V%, €[P/y,"/s]: b>max(q,s).

813. Proposition. FEvery positive fraction is the mediant of exactly one pair of
nonnegative adjacent fractions. (From §10 we know that at least one pair exists; assuming
that there are more than one can be shown to produce a contradiction.)

Regarding the fractions whose mediant is a given fraction as its parents, the propo-
sition says that every positive fraction has unique parents, which can be distinguished
as a left and right one. From §6 it follows that one of these parents is itself a parent of
the other, thus being a parent and a grandparent of the given fraction. A fraction can
be regarded as ‘left’ or ‘right’ depending on which of its parents is also its grandparent.

The uniqueness of parents has many consequences. For example, any two adjacent
fractions belong to a closed interval [n,n+1], where n >0 is an integer, including when
one or both fractions are precisely n or/and n+1. (The opposite would mean that an
integer exists between the fractions, and can therefore be obtained through subdividing
the respective interval; this contradicts to an integer being a mediant of another integer
and 1 /0-) Also, the parents of a fraction that is not an integer belong to the same interval
between two successive integers as the fraction itself. (The parents belong to one such
interval, and that is necessarily the same that the mediant belongs to.)

The above proposition establishes a fundamental fact of fractions. Yet, to the best of
the author’s knowledge, it — along with a number of others listed here — is left out from
the literature on elementary number theory. The closest similar theorems concern the
uniqueness with respect to appearance in Farey sequences or something else, but these
are weaker propositions. The omission can be attributed to the generally insufficient
thoroughness that the subject has been treated with thus far.

Trees and enumerations: historical remarks. Farey sequences were the first
and for some time the only observed manifestation of the structure inherent to the set of
fractions. Their significance lessened with the discovery of several binary trees, each of
which contains the whole set of positive fractions. Such a tree is attractive by providing
a single, uniform structure in which all fractions are represented and none is repeated.
Consequently, the entire set of fractions can be enumerated, mapped to other sets, etc.
The figure shows the first several rows of some trees: each fraction is considered the
parent (in the tree) of the two immediately below it.

The first all-fractions tree that became known is the Stern-Brocot tree, named af-
ter the mathematician M. Stern and the watchmaker A.Brocot. M. Stern investigated
‘diatomic sequences’ of integers, previously (1850) defined in a more general setting by
G. Eisenstein [18]. Those sequences were further studied by others; an account of the
obtained results can be found in [8]. Neither Stern nor the others considered fractions,
however.

Contrastingly, A.Brocot used a process which was effectively mediant insertion, to
approximate any given fraction with fractions of lesser denominators [3]. This inspired
several French mathematicians from the end of the 19*" century to study sequences of
fractions, similar to Farey’s, but somewhat more general.
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Of course, none of Stern, Brocot, or the other authors mentioned trees explicitly, trees
being a concept introduced in mathematics only several decades ago now, and closely
related to computing and algorithmics. Nevertheless, Stern’s sequences clearly exhibit
hierarchical structure. The SB tree itself seems to have been introduced by [9]. On the
figure, each fraction is a mediant of the fractions above it that are its closest to the left
and to the right; e.g., 4 /7 is the mediant of 1 /o and 3 /5. (It is assumed that 9/; and
1 /o are above all other fractions, in a leftmost and rightmost positions, respectively.)

A similar tree became known as the Calkin-Wilf (CW) tree, after the authors of [4].
In it, a fraction P /4 has a left child ? /,14 and a right child ptq /q - Calkin and Wilf also
pointed out that the tree, i.e. all positive rationals, can be enumerated by the function
f@) =1, f2n) = f(n), f2n+1) = f(n)+ f(n+ 1) in the sense that the ratios
f(n)/f(n+ 1) for consecutive n are in reduced form and run through all tree nodes row
by row, each row in a left to right order.

Interestingly, the same function was studied earlier in [7], but in a different context and
without its enumeration property. More importantly, the function has been in use since
even earlier (see e.g. [12] and [16]), as a generator of M. Stern’s sequence of integers!
In this respect, [1] points out that in Stern’s work the CW tree is even more readily
recognized than what is now called the SB tree, and consequently, the former tree should
more appropriately be named after Eisenstein and Stern.

The recurrence in the definition of the above function means that enumerating the
rationals using it requires an amount of memory that increases with the argument.
However, a formula was discovered that directly, in constant space, generates all frac-
tions in the same order as f: if x is any fraction, its successor in the sequence is
2 = (lz)] +1—{z})~! = (2|z] +1 — 2)~1. (According to [15], the author of this
result is M. Newman.)

Yet another fraction tree is defined in [17] and independently in [21]. (Neither actually
speaks of trees, but the hierarchy is apparent from the defining formula.) A fraction P/,
in this tree has a left child 9/, and a right child 9/p44 . It can be called Shen-Andreev,
or SA tree.

The three mentioned trees are constructed according to very different principles, so
they may seem to have very little in common. In one respect, though, they are remarkably
similar: they are ‘row-wise equivalent’; i.e. they only differ in how the fractions are
permuted within rows. In particular, each fraction is on the same row with its reciprocal
— this is obvious for the SB tree due to its symmetric structure, and therefore is true for
all the three. Thus, on every row, there are as many rationals <1 as there are >1.

One may observe that for enumeration purposes it may suffice to consider only ra-
tionals less than 1. Indeed, pairing each such number with its reciprocal readily turns
any enumeration of these numbers into an enumeration of all rationals. If from any of
the above three trees all fractions >1 and 1/; itself are removed (and the remaining
positions are considered adjacent), we obtain a binary tree rooted at 1 /2 and containing
all positive fractions <1 and only them. From the SB tree we would thus obtain its left
sub-tree, and from the SA tree — one usually called ‘the Kepler tree’, where it can be
seen that P/, has a left child P /,44 and a right child 9/p14 . The result from similarly
reducing the CW tree does not seem to have appeared in the literature.

Kepler’s name was given to the tree because the latter appears in book I1I, chapter II
of his magnum opus [11], in relation with computing the harmonic divisions of a string.
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Kepler actually constructed a finite, small portion of the complete tree, and did not
comment on whether that tree would be exhaustive and nonrepetitive of the fractions
<1. He nevertheless gave the construction rule and was clear about evolving 1 /2 into a
binary hierarchy.
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Discovering organizational patterns in the set of the rational numbers, and the related
enumeration(s), seem too important to be neglected. Yet, historically, neglecting has been
the rule rather than an exception. That the discovery of such simple objects as mediants
and Farey sequences took so very long is already strange enough. And would they ever
be widely known if it were not for the influence of Hardy & Wright’s classic [10], written
well more than a century later?

Also, even today the enumerability of Q is almost ubiquitously demonstrated by
referring to the Cantors’s method, although Stern’s work predates Cantor’s (1895). But
Cantor’s proof [5], p. 107 constructs a one-to-one correspondence between N and N x N,
from which there only follows the existence — and not an actual construction — of a similar
correspondence between N and QQ, while the latter is explicitly established by each of the
SB etc. trees.

An even more striking evidence of the undeserved lack of interest the mathematicians
have had regarding the structure of rationals is the fact that a construct equivalent to
the CW tree has been in existence since at least as early as the 3'4 century BCE. It has
been before the eyes of the mathematical world and yet apparently remained unnoticed!

Nicomachus of Gerasa [13] and Theon of Smyrna [19], both works written in 1-2
century CE, describe a process for generating all proportions starting from equality.
Theon says that it has been known to Eratosthenes of Cyrene, so its author must have
lived perhaps in the 4" century BCE. The computation starts from 1 1 1 and, in
general, from x y z it obtains x x+y z+2y+z and x+2y+2z y+z z, each of which
it then transforms in the same way, etc.

As [22] observes, each triple thus obtained is of the form a? ab b*, from where it is
obvious that it represents the same ratio a?:ab = ab:b? = a:b redundantly, and there-
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fore one can replace triples with pairs, so that the above process amounts to transforming
each pair a b, starting from 1 1, into a a+b and a+b b, resulting in a binary hierarchy
of ratios a:b. Of course the latter is nothing else but the CW tree (although the author
of [22], being more a philosopher than a mathematician, does not mention this). It is
clear now that the generation of the rational numbers through a simple process, and the
CW tree in particular, are not only not new but a valuable achievement of the ancient
Greek mathematics.

Both Nicomachus’s and Theon’s works are well-known. Specifically, the former has
been translated to Latin by Boethius and published as [2] (6*" century CE), serving as
the standard work on arithmetic throughout the middle ages, and remaining influential
up to the end of the 18" century. Although briefly, the proportion generation process
is also described in another widely known and respected work — Pappus of Alexandria’s
(4*® century CE) [14] — book III, prop. XVII & XVIII. In view of all this, it is amazing for
how long the construction of the tree of rationals has escaped the attention of number
theorists.

Historians of mathematics have also been silent on the subject. Of Heath, Struik,
Neugebauer, Dickson, van der Waerden, and several others, there is only one to mention
it at all, and the only comment he has is: ‘None of this is very profound, but it is rather
nice’ [20]. He, too, seems to have not fully understood the meaning behind the text that
he discussed.
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HOB IIOIVIE/l BbPXY ITIPOCTPAHCTBOTO HA JPOBUTE

Boiiko Ba. Banues

3Hae ce, Je panpoOHAJIHUTE UHCJIa 06pa3yBaT MHTEPECHU M OOraTH HAa M3YNCIUTEIHU
Bb3MOXKHOCTH CTPYKTYpH Karo penuru na Papeil (Pebpn) n Geskpaiinu JbpBera.
Masiko BHMMaHUE ce 0OpbIa Ha I0-00IMO, CHCTEMATHYHO HW3JjIaraHe Ha OCHOBHUTE
CBOIiCTBa Ha JpoOWTE KATO MHOXKECTBO. [loHsTHs1 6GuBaT BbBEKIaHU 6€3 0OOCHOBA-
BaHe, HIKOHU J[OKA3aTeJICTBA Ca HEHYXKHO M3KYCTBEHW, & IIOYTU BUHATU U €JHUTE, U
JIpyruTe KaTro ye OMBAT OTHECEHU K'bM €JIHa WJIU JPyra ocobeHa CTPYKTYpPa, BMECTO
K'bM MHOXKECTBOTO Ha Jipobute n3001mo. M3Henaasaio e, 4e HIKOU CbIHOCTHU TBbP-
JIEHUsI U3TJIEXK 1A JIOPU He ca (GOPMYJIUPAHU B JUTEPATYPATA 110 T€OPUs HA TUCJIATA.
Tazu crarust uMa 3a 1es Ja 1oJ00pu ChCTOSHUETO Ha HellaTa B TOBa OTHOIIEHUE,
KaTo Ipejjara o0II0, MOAXO/ IS0 IOAPEICHO U3JIOXKEHNE Ha IOHSITHAS U CBbP3aHU C
TAX TBbpAeHus. KaTo JoIrbjHeHre ca NPeJCTaBeHu OeJIeXKKU BbPXY MOPaXKIAHETO
HA MHOYKECTBOTO OT BCUYKH JPOOM — OTKPUTHE 3HAYUTEJIHO I[10-CTAPO, OTKOJIKOTO €
IIPUETO J1a Ce CMSITA.



