
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2012

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012

Proceedings of the Forty First Spring Conference

of the Union of Bulgarian Mathematicians

Borovetz, April 9–12, 2012

AUTOMATED SOFTWARE REENGINEERING MODEL

AND FRAMEWORK*

Todor Cholakov, Dimiter Birov

This article represents a complete model for automated reengineering of legacy soft-
ware systems. It describes in details the processes of software translation and refac-
toring and the degree of automation that these processes may achieve. In regards
to the software translation process it introduces a reengineering pattern concerning
pointers and address arithmetic. It also defines a complete workflow for the reengi-
neering process and the possibilities for further development of tools concepts and
algorithms.

1. Introduction. In this article we present a complete environment for automated
software reengineering.

Software reengineering is the process of renewing an existing piece of software by
migrating it to a new hardware or software platform, applying newer technologies or
applying large transformations to the design and implementation to the software. The
purpose of the software reengineering process is to renew a legacy system, improve its
quality or features, migrate it to more modern hardware or software technologies and to
improve its maintainability. There are several steps in this process and we are going to
present a model for an environment and solution that would ease and automate each of
them. These steps are source code translation, restructuring, refactoring and changes in
documentation. After completing them, we will have a new working software system.

2. Source code translation. Legacy systems are often written in languages that
are rarely used at present. Supporting such a system costs a lot because the number of
IT professionals that have the knowledge to maintain it is small and decreasing. And
more – the older languages may lack some features (such as objects or garbage collection)
which otherwise would greatly improve the maintainability of the system. The decision
in these situations is to translate the system to a newer programming language.

Usually it is not possible to automate the transformation process completely, because
there may be concepts in the source language that are not present in the target one (for
example pointers and address arithmetic in C++ is not present in Java). However, it
is possible to automate most of the process and leave the developer to cope with the
details.

*ACM Classification: D.2.7.
Key words: restructuring, reverse engineering, and reengineering.
The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund

within project DO 02-102/23.04.2009.

225

The structure of such a tool greatly resembles the structure of a compiler. The first
step is to parse the source code and produce an abstract presentation of the code – a
parse tree. This can be easily performed by using some common tools [1]. If the source
and target languages are quite similar, the tool may stop to this step and then use the
parse tree and transformation rules to produce a source code in the target language. This
technique is applicable for highly similar languages like C and Pascal or when the target
language extends the original one (for example Pascal code may be easily transferred
to C++ code, because C++ has all the features of Pascal and has some additional
extensions).

For those languages that the source cannot be transformed in this way, the tool must
go one level deeper and produce a code in an intermediate low level language. The
purpose of this step is to eliminate some of the more complex concepts like objects,
classes and polymorphism. At this point the code works with simple data structures and
method calls. Then, the intermediate code may be translated back to the target language
by using simple rules for grouping the intermediate instructions into target language ones.
This method can handle all language constructs except address arithmetic.

Translating address arithmetic is not possible in general, because a pointer can point
to any place in memory. However, in some cases it is possible to translate address
arithmetic operations if we make sure that the pointer always references some kind of
array. In this case the address arithmetic is translated to array indexing.

A more complex case is when the pointer references an internal structure of an object
or record. Sometimes it is possible to translate the result into object and a reference
to one of its fields. If that is not the case, a serialization mechanism may be needed to
transfer the original object into a byte array corresponding to the original structure of
the object. Then, the address arithmetic operations may be completed and if there is a
change to the object’s data, the data in the array must be extracted back to the original
object. For example consider the following code snippet:

Original code Target language code

class DataObject{

int a;

byte b;

double c;
long d;

}
.....

DataObject original;
void* pointer = &original;

pointer = pointer + 5;

*pointer = 176;
........

class DataObject{

int a;

byte b;

double c;
long d;

}

.....

DataObject original;
byte[] originalPnt = serialize(original);

int pointer = 0;

pointer = pointer + 5;
originalPnt[pointer] = 176;

extract(originalPnt,original);

Fig. 1. Pattern for source code transformation when having address arithmetic

226

The serialize and extract functions may become quite complex and must implement
all the knowledge about how the fields are presented and located in the original language.
As a whole this method is quite inefficient, but may appear to be the only possible in
some cases.

As the resulting code is often inefficient all possible optimizations must be applied on
the intermediate code before translating back to the target language.

Additional requirement for the translation tool is to preserve all comments in the
original code to their appropriate places in the target code, as well as to support linking
the target language statements to the original ones. This would allow for the developer
to track what happened through the code and optimize or tune up additionally some
parts of the code, having greater meta knowledge about the system.

3. Restructuring. After the software is translated to the new platform, it may have
a room for restructuring.

Restructuring is the process of reallocating software pieces into files and folders in a
way that is more suitable for the new programming language or platform that is used. For
example in C and C++ there is no concept like packages in Java and all the sources may
be in a single folder. Restructuring also may divide a file into smaller files or even unite
files if needed. Some of these activities may also be performed during the refactoring
step and the used technology is the same as the one used in refactoring. The main
difference to refactoring is the purpose. While the purpose of the refactoring process is
to improve the existing design of the code, the purpose of the restructuring is to create
as good initial design as possible according to the new platform. For example, software
written in procedural language may end as a single Java class after translation. From this
starting point the software may be restructured into several classes. A good algorithm
for doing this is to explore the interconnections between the different methods and the
data they use [2].

For example, if there are several methods that call each other using the same set of
parameters, then this may indicate that they should be extracted as a separate class,
and the data itself to be made as fields in the class. Data pieces that often go together
may indicate that they must belong as fields of a single more complex structure.

As a result of restructuring the code, we get a more readable code corresponding
better to the technologies of the target language.

4. Refactoring. The next step in the reengineering process is the refactoring. The
refactoring is the process of improving the readability, maintainability or performance of
the code, without changing its behavior.

There are three aspects when talking about refactoring:

• how to define the term “behavior of a code”;

• how to recognize the need for refactoring for specific piece of code;

• how to perform the refactoring itself.

The most common response of the first question is to consider the piece of code as a
black box [3]. We consider that a transformation preserves the behavior, if for each set
of input data the original and the transformed software give the same results. Though
this definition is very simple, it is quite difficult to prove for more transformations if
they preserve code behavior or not. For example, when the same expression is calculated
twice, we may consider assigning it to a variable. But what happens if one of the used

227

functions has a side effect? Although the expression itself has the same value, at a later
place the behavior of our software may change. Such situations are difficult to recognize,
so even the simplest refactorings do not completely guarantee preserving the source code
behavior.

Other aspects of the software behavior that are not covered by the previous definition
are the speed and security of the system.

The need for refactoring of the system may be determined in two ways.
The first one is by applying some software quality metrics. These metrics may perform

a static analysis of the code and discover parts of the code which need improvement of
some kind. Another type of metrics are the dynamic ones. These analyze the code
behavior while the system is running. Usually these metrics discover performance issues.

The second way for determining refactoring needs is the bad smells. Martin Fowler [4]
defines more than twenty symptoms that some piece of code needs refactoring. Although
most of these symptoms are not formally defined, they may be implemented with different
degree of complexity as metrics.

The last question about refactorings is how to perform the refactoring itself.
Each refactoring may be considered as consisting of three parts – precondition, algo-

rithm for applying the refactoring and post-condition.
The precondition defines under which circumstances the refactoring may be applied.

For example, in order to apply the ”extract method” refactoring the precondition may be
that there is no more than one local variable that is changed in the block to be extracted
and used outside that block. Also a method having the same signature as the extracted
one must not exist.

The algorithm defines the refactoring as a sequence of simple code transformations.
The post-conditions check the validity of the refactoring. Usually post-conditions are

not defined. They are needed only for refactorings where it is easier to perform the
refactoring and check if it is valid, than to check the precondition.

There are several degrees of automation of the refactoring process [3].
The highest degree is the fully automated refactoring systems. These systems discover

the needs for refactoring of the software and apply the needed refactorings automatically.
They implement a set of metrics and algorithms for recognizing bad code pieces and after
such a piece is discovered, the system applies the refactoring automatically.

The main disadvantage of such systems is that they must be very conservative when
determining whether to refactor a piece of code or not in order to preserve the existing
behavior of the code. Such systems usually perform a very small subset of refactorings.

The main advantage of these tools is that they may save a lot of time which would
be otherwise needed to discover and apply the refactorings especially in large software
systems.

Example for such system is the GURU tool for refactoring programs written in Self [5].
The second degree of automation concerning refactorings is the interactive systems.

These systems analyze the source code and give suggestions about the refactorings that
may be performed. Then the developer chooses some of the refactorings and the system
applies them on the code. These systems may suggest a much wider set of refactorings
and even suggest refactorings that may change the original behavior of the code. They are
able to save a lot of time for recognizing refactoring needs and performing the refactorings
but still need a human interaction to decide which of the suggestions are to be applied.

228

The simplest degree of automated refactoring systems is the semi-automated systems.
These systems do not implement algorithms for discovering refactoring needs. The devel-
oper is responsible for discovering the piece of code that needs refactoring and the suitable
refactoring and then the system performs the refactoring automatically. These systems
usually are implemented as modules of development environments such as Eclipse [6] and
IntelliJ Idea. They are very suitable for day-to-day refactorings but cannot be used for
refactoring a large software system.

5. Data reengineering. Changing the language of the software and refactoring it
may improve its maintainability, but often there is also need to change the presentation of
the data used. This task has its own challenges and usually may not be fully automated.
However, there are tools that can ease the process.

The most difficult case concerning data migration is when the data of the legacy
system is stored in a set of files that have specific format or structure. Usually it requires
a lot of effort to migrate this kind of data to relational or object oriented databases.
Tools like Xenomorph Timescape [8] ease the process by taking the migration effort out
of the source code, thus allowing the developer to migrate the existing data to a new
format or persistent database but leaving to the end user the ability to provide data in
the old format.

Usually there are common tools for migrating data between most widespread database
engines, so if the legacy data is stored in a database the task for migrating the data itself
is much simpler.

The part of the data migration process that cannot be automated is the data usage in
the source code itself. Even the simplest solutions (like implementing a data abstraction
layer that translates old data manipulation routines into calls to the new data layer)
require a lot of manual development

6. Documentation. End user documentation should not need to change in the
reengineering process. But that is not the case when talking about the technical docu-
mentation. Usually the technical documentation describes the parts of the system, the
technologies used, the data required and produced and the connections between the mod-
ules. In the reengineering process this documentation will have a lot of changes. Only
very small part of them may be automated (relocating module descriptions and connec-
tions between them may be automated when the restructuring and translation tools do
their work, if suitable connections between the code and the documentation are defined
beforehand).

7. The complete model. We defined the activities in the reengineering process
and now we are going to represent a complete model of a system for automated (at the
best possible degree) software reengineering. The concrete set of tools for such a system
will differ according the specific needs and constraints of the reengineering project, but
the general workflow and requirements remain the same:

• A tool for language translation. This tool takes the legacy system as an input and
produces as output a system having the same behavior, but written in the target
programming language. The structure of the system is changed as little as possible.
All comments in the code should go to the target system. Connections between the
code and technical documentation (if any) must also be preserved.

• Development environment for the target language. At the end of the translation

229

Fig. 2. Reengineering workflow

step the developer may need to additionally tune up the resulting code. Depending
on the efficiency of the translation tool this may take a lot of effort.

• A tool for automatic restructuring of the target system. This tool must analyze the
source code and redistribute it in modules or classes, making it more suitable for the
target technology used. The tool must also maintain the technical documentation
keeping it in sync with the changes in the source code.

• The developer may need to manually do some of the restructuring not performed by
the automated tool. A semi automated refactoring system for the target language
(integrated in the IDE if possible) is needed for the task.

• An automated refactoring system to perform as many refactorings for the code, as
possible.

• An interactive refactoring system, which is able to suggest a wide set of suitable
refactorings.

• A data migration tool to migrate the data to its new format or storage. The changes
in data formats must be reflected in documentation.

As a result of the above workflow a system working on a new software and data
platform is produced.

8. Further improvement. There is a lot of room for improvement and development
in the specified model in several directions:

• A more efficient algorithms and techniques for language translation are needed in
order to reduce the additional time needed to tune the resulting code.

• New algorithms and metrics for automated refactoring tools may increase their
applicability.

• Improvement of the algorithms for applying the refactorings themselves. This in-
cludes for example an algorithm for determining a suitable name for an extracted
method.

• A system for generally tracking changes in source code into documentation and its
connection to translating and restructuring tools is needed.

9. Conclusion. We defined the process of reengineering of legacy systems and
described in some details the processes of refactoring and source code translation. When
analyzing the whole workflow the overall conclusion is that a large part of the process
can be automated to some extent. The further goal is to improve the described tools
(and maybe introduce some new ones) in order to reduce the development time needed
for reengineering a legacy system.

230

REFERENCES

[1] A. Aho, M. Lam, R. Sthi, J. Ullman. Compilers: Principles, Techniques, and Tools.
Pearson Education, Inc, 2006

[2] I. Moore. Automatic inheritance hierarchy restructuring and method refactoring. In: Proc.

of the 11th Annual Conference on Object-oriented Programming Systems, Languages, and

Applications, 1996, 235–250
[3] T. Mens, T. Tourwe. A survey of software refactoring. IEEE Transactions on Software

Engineering, 30 (2004) No 2, 126–139.
[4] M. Fowler. Refactoring – Improving the Design of Existing Code. Booch Jacobson Rum-

baugh, 1999.
[5] I. Moore. Guru – A Tool for Automatic Restructuring of Self Inheritance Hierarchies.

PhD Thesis, University of Manchester, 1995.
[6] T. Widmer. Unleashing the power of refactoring. Eclipse Magazine, July 4, 2006.
[7] http://www.jetbrains.com/idea/webhelp/refactoring-source-code.html

[8] Timescape Data Unification – http://www.xenomorph.com/downloads/whitepapers/

timescape-data-unification/

Todor Cholakov
Dimiter Birov
Faculty of Mathematics and Informatics
St. Kliment Ohridski University of Sofia
5, James Bourchier Blvd.
1164 Sofia, Bulgaria
e-mail: todortk@abv.bg
e-mail: birov@fmi.uni-sofia.bg

МОДЕЛ И СРЕДА ЗА АВТОМАТИЗИРАНЕ НА ПРОЦЕСА НА
РЕИНЖЕНЕРИНГ

Тодор П. Чолаков, Димитър Й. Биров

Тази статия представя цялостен модел за автоматизиран реинженеринг на нас-

ледени системи. Тя описва в детайли процесите на превод на софтуера и на

рефакторинг и степента, до която могат да се автоматизират тези процеси. По

отношение на превода на код се представя модел за автоматизирано превежда-

не на код, съдържащ указатели и работа с адресна аритметика. Също така се

дефинира рамка за процеса на реинженеринг и се набелязват възможности за

по-нататъшно развитие на концепции, инструменти и алгоритми.

231

