MATEMATUKA W MATEMATUHYECKO OBPA3OBAHWE, 2012
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012
Proceedings of the Forty First Spring Conference
of the Union of Bulgarian Mathematicians
Borovetz, April 9-12, 2012

NUMERICAL ISSUES IN USING MATLAB"®

Mihail Konstantinov, Vesela Pasheva, Petko Petkov

In this tutorial paper we consider some numerical problems arising in using the com-
puter system for doing mathematics MATLAB: evaluation of trigonometric functions,
computing matrix powers, spectral analysis of integer matrices and computing roots
of algebraic polynomials. Some of the reasons for these numerical difficulties may be
explained by the properties of the underlying binary floating-point arithmetic.

Introduction. MATLAB! is a powerful interactive computer system for doing math-
ematics. Its numerical part is based on a number of reliable matrix algorithms. However,
working in purely numerical mode (using standard floating-point machine arithmetic)
MATLAB may produce results which differ unexpectedly strong from the true answers.
Such cases must be understood and detected in order to avoid the introduction of large
errors in the solution without a warning for the user. We consider several such cases and
explain the corresponding numerical behavior of the computer system.

Some of the problems arising in the standard use of finite machine arithmetic may
be avoided applying interval methods, algorithms and computer codes. Such codes are
freely available in the MATLAB toolbox INTLAB based on reliable and self-validating
algorithms [3].

For simplicity we have considered only computations in real arithmetic. Also, we have
used two versions of MATLAB: 6.5.0 (R13), 2002 and 7.11.0 (R2010b), 2010. The two
versions produce slightly different results for some problems.

The results presented reflect the experience of the authors in teaching the basic math-
ematical courses in the University of Architecture, Civil Engineering and Geodesy, the
Technical University of Sofia and the European Polytechnical University.

Floating-point computations. Here we recall the basic facts about binary floating-
point computations, see e.g. [2]. They are characterized by a finite set of machine numbers
M C R together with the rules for performing operations in M, including rules for
rounding. The set M contains 0 and is symmetric relative to R.

A number z € R is rounded to the nearest machine number z* € M (denoted also as
fi(z)) and z* = z if and only if z € M. If x is in the middle between two consecutive
machine numbers then it is rounded to the machine number with zero least significant
digit.

*2000 Mathematics Subject Classification: Primary 97N20.
Key words: numerical computations, numerical problems, computer systems.
IMATLAB® is a trademark of MathWorks, Inc.

239

The binary floating point double-precision arithmetic in MATLAB obeys the IEEE
standard [1]. Tt is characterized by three important positive numbers, namely ry.x =
21024 ~ 17977 x 10308 ry = 271922 ~ 2.2251 x 107398, uypg = 27°% ~ 1.1102 x 10716,
They may be received in MATLAB by the commands realmax, realmin and eps/2.
The number u,,q is said to be the rounding unit. In the single precision version of the
arithmetic the rounding unit is 2724 ~ 5.9605 x 1078,

A number z € R is in the standard range if either = 0, or |x| € [Lmin, 'max]. In this
case z is rounded to the nearest machine number z* € M (with the rule to break ties
described above) so that 0* = 0 and |z* — z|/|2| < Urnd, ¢ # 0. Thus numbers from the
standard range are rounded with small relative error of order 10716, i.e. with 15-16 true
decimal digits.

Let ¢ be an arithmetic operation and let the non-zero quantities z, ¥y and z ¢y be in
the standard range. Let (z ¢ y)* € M be the result of the machine computation of x ¢ y.
Then we have (z o y)* = (z o y)(1 + «), where |a] is a small multiple of u;,g.

What happens with numbers = € R that are outside the standard range is explained
in [2].

Evaluation of trigonometric functions. The approximate value pi for 7 in MAT-
LAB is important in evaluating trigonometric functions.

The command >> pi displays the 15-digit answer pi = 3.14159265358979 in long
format. To find exactly pi one may use the symbolic command >> sym(pi,’e’) with
error estimate which gives pi - 198*eps/359. This means that pi = 7 — s, where
s =99x2751/359 ~ 1.2246 x 10~ 16. Thus the relative error s/7 in pi is about 0.3511 Uypq.

Consider now the evaluation of trigonometric functions. The command >> s1 =
sin(pi) gives s1 = 1.224646799147353e-016, or sl ~ s, and illustrates the fact that
sin(pi) = s + O(s?).

A problem with the approximation of 7 is that trigonometric functions with arguments
N7 for large N of order 10'® or more may be computed with very large errors. For
example, the commands

>> a = sin(10"15%pi), b = cos((10715+0.5) *pi)

give a = -0.2362 and b = 0.3044 while the exact answer is a = b = 0.

We recall that the command vpa(S,N) produces the value of a symbolic quantity S
in the form of a string with N decimal digits. Attempts to improve the accuracy using
a 100-digit approximation vpa(pi,100) for 7 are not very successful since

>> sin(vpa(pi,100)*10~16)

gives ans = -.28841971693993751058209749445923e-016
Some of these problems may be avoided defining a symbolic value for 7 from >> PI
= sym(’pi’). With this value the command

>> sin(10~16%PI)

already gives the correct answer 0.

Thus approach may not be suitable for use in complex computational algorithms.
That is one may define inline trigonometric functions instead of the standard trigonomet-
ric functions, e.g. >> Sin = inline(’sin(rem(x,2+*pi))’), where rem(x,y) computes
the remainder of the quotient x/y. Now we have the correct result
240

>> Sin(10716*pi) = 0
instead of the wrong answer
>> sin(10716*pi) = -0.3752

Matrix powers. The computation of matrix powers is one of the dangerous opera-
tion in floating point arithmetic. Consider the 6 x 6 matrix

—0.8790 1.8440 —9.1200 —3.6960 24.5380 —54.7360
1.7420 —3.6300 17.9860 7.2780 —48.4100 107.9380
—1.6570 3.4480 —17.0880 —6.9120 46.0000 —102.5510
—0.4800 0.9640 —4.8390 —1.9430 13.0410 —29.0110
0.2510 —0.5000 2.5160 1.0080 —6.7840 15.0820
0.4940 —-1.0160 5.0560 2.0400 —-13.6160 30.3330

The exact 6-th power of this matrix is (to four digits)

—0.0010 0.0020 —0.0102 —0.0041 0.0275 —0.0612
0.0020 —0.0041 0.0204 0.0082 —0.0551 0.1224
—0.0019 0.0039 —-0.0195 —0.0078 0.0526 —0.1170
—0.0006 0.0012 —0.0062 —0.0025 0.0167 —0.0372
0.0003 —0.0007 0.0033 0.0013 —0.0089 0.0198
0.0006 —0.0012 0.0060 0.0024 —0.0162 0.0360
Computing A% in MATLAB with single precision gives
0.0005 —0.0010 0.0050 0.0020 —0.0135 0.0298
—0.0012 0.0024 -0.0118 —0.0047 0.0317 —-0.0706
0.0042 —0.0086 0.0427 0.0172 —-0.1149 0.2560
0.0004 —0.0007 0.0036 0.0014 —0.0097 0.0217
—0.0005 0.0011 —-0.0054 —0.0022 0.0145 —0.0322
—0.0002 0.0004 —-0.0019 -0.0008 0.0051 —0.0112

Even the signs of the elements of the computed matrix power are wrong! The reason for
this catastrophe are the large errors during the cancelations in computing the elements
of A%. This matrix has very small elements in comparison to the elements of the original
matrix and the only way to compute these small elements is through cancelation.

In Figure 1 we show the relative errors in the computed result. For all matrix elements
the relative errors are larger than 1 which explains the wrong signs of all computed
elements.

Eigenstructure of small integer matrices. Computing numerically the eigen-
structure and the inverse of even small integer matrices may be a severe problem. Con-
sider the matrix

A=

A8 =107" x

fi(A%) = 1077 x

—-90001 769000 —690000

A= —810000 6909999 —6200000

—891000 7601000 —6820001
-1 1 0
which has a triple eigenvalue A = —1 and Jordan form J = 0 —1 1
0 0 -1

The command eig(A) performed in MATLAB, ver 6.5 and ver 7.11, gives the com-
pletely wrong answer

241

w

I
13

=
v

[N

A% @D)-AGDIAG]
N

0.5

Columns

Rows

Fig. 1. Relative errors in the elements of computed matrix power

-1.59942995872280 + 1.044058803139561
-1.59942995872280 - 1.044058803139561
0.19885991695974

Here the average relative error
>> norm(eig(A)+ones(3,1))/sqrt(3) = 1.20222227841444

is more than 120 percent! Moreover, even the conclusion about the stability of the matrix
A is wrong because one of the eigenvalues has been computed as a positive quantity
(0.19886 instead of -1)! An additional problem in this numerical computation is that
there has been no warning for the wrong performance of the command eig.

But things are even worse. An experienced user will check the computed result
using the eigenvalue condition numbers of the matrix A which are the reciprocals of the
cosines of the angles between the left and right eigenvectors of A (in our case there is
one eigenvector and two principal vectors). These quantities are obtained from

>> condeig(A)

ans =
1.0e+008 *
4.61280842056556
4.61280848930177
4.57446786644502

Since the quantity eps*norm(condeig(A)) is 1.769 x 10~7 we may expect up to 6-7 true
digits in the computed eigenvalues (although we have none).

Even if the experienced user decides that the matrix A has a triple eigenvalue, he
may still try to estimate the absolute error in the computed result from

242

>> (eps*norm(A))~(1/3) = 0.00145570517581

In this case the user may expect about 3 true digits (although there are none).
The attempt to compute the characteristic polynomial A* +3A% + 3\ + 1 of A is also
not successful. We have (in format short)

>> poly(4)
ans =
1.0000 3.0000 3.0121 -0.7255

There is a 3-percent error in the coefficient before A\ and a 173-percent error in the free
term which should be equal to —det(A) = 1. The reason is that the coefficients of
poly(A) are obtained as symmetric functions of the wrongly computed eigenvalues. It
is interesting that we may compute det(A) correctly from >> det(A) = -1.

The above considerations clearly show that the numerical spectral analysis of even
low order integer matrices may be contaminated with very large errors.

At the same time the command jordan (in symbolic mode) gives the correct Jordan
form J of A together with the transformation matrix V' such that AV = JV:

>> [V,J] = jordan(A)

vV =
1.0e+008 *
1.00000000000000 -0.00001111111111 -0.00000007654321
9.00000000000000 0 0
9.90000000000000 0 0.00000001000000
J =
-1 1 0
0 -1 1
0 0 -1

The attempt to compute numerically A~! by the command inv(4) is also not suc-
cessful. We have

inv(A)*A Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.286207e-017.
ans =
1.00000000000000 0 0
-0.12500000000000 1.00000000000000 0
0 1.00000000000000 0

Thus the matrix A~! is computed by inv(A) with large errors and it even does not
commute with A,

>> Axinv(A)-inv(A)*A

ans =
0.00012207031250 0 -0.12500000000000
0.12597656250000 0 0
0.00097656250000 -1.00000000000000 0

243

However, the computations with inv in this case release a warning for very small values
of the reciprocal RCOND of the condition number ||A|| ||[A~!|| of A. With RCOND of order
1077 we may expect no true significant digit in the computed solution.

The correct inverse B = A~! may be computed using the exact Jordan form. Since
A=VJV~! wehave A= = VJ 1V~ and

>> B = V/J/V

B =
1.0e+009 x*
0.00008999900000 0.10923100000000 -0.09931000000000
0.00081000000000 0.98308999900000 -0.89380000000000
0.00089100000000 1.08139900000000 -0.98318000100000

or
89999 109231000 —99310000
A1 =] 810000 983089999 —893800000
891000 1081399000 —983180001

Finally the inverse of A is computed exactly. But in matrix operations with general
matrices we cannot rely on the use of the symbolic function jordan.

Solving algebraic equations with the program ’roots’. In MATLAB the poly-
nomial p(A) = A" + c; A" ! + ... + ¢, is represented with the (n + 1)-vector ¢ = [1,c],

¢ = [e1,c2,...,¢,). All zeros of the polynomial p may be found by the symbolic func-
tion solve or by the numerical function roots. Both functions produce the n—vector
[A1,A2,. .., An]T of the roots. The use of roots, however, may lead to large errors when

n > 2 and the polynomial has multiple zeros. The problem is that such large errors are
not accompanied by warning messages.

For ¢, = n!/kl(n — k)! the polynomial p has a root A\ = —1 with multiplicity n. In
this case the relative error norm(roots(c) + ones(n,1))/sqrt(n) is of order epsl/”.
The reason is that roots(c) is the same as eig(compan(c)), where compan(c) is the

companion matrix C, = {] of the polynomial p. When p has a root \; of

—c
I,10
multiplicity n; the Jordan canonical form of C, has a Jordan n; xn; block with eigenvalue
A1. The eigenvalues of such blocks are very sensitive to perturbations: the perturbation
in the eigenvalue may be of order 6*/™ | where § is the perturbation in the matrix. At the
same time the matrix A may have diagonal Jordan form and, hence, be quite insensitive
to perturbations in its elements.
For example, the command

>> roots([1,4,6,4,1])

ans =

-1.00022566526762

-0.99999997084627 + 0.000225636106541i
-0.99999997084627 - 0.000225636106541
-0.99977439303985

shows that the root —1 with multiplicity 4 of the equation (A + 1)* = A* +4)3 + 6)2 +
44X + 1 = 0 is computed with only 4 true decimal digits as predicted by the eigenvalue
sensitivity analysis.

244

The program roots replaces the zero finding problem for a polynomial with the
eigenvalue problem for the companion matrix: roots(c) = eig(compan(c)). The latter
problem is potentially very sensitive and the solution may be contaminated with large
errors. On the other hand the program roots is fast and works well for non-defective
matrices of order up to several thousand.

Conclusions. In this tutorial paper we have discussed some important computational
problems (evaluation of basic trigonometric functions, computing matrix powers, spectral
analysis of low order integer matrices and solving low degree algebraic equations) which
may be solved with large errors in the standard numerical mode of MATLAB. Such
cases are very instructive when teaching the students how to solve practical problems
with the most popular computer systems for doing mathematics. The cases when these
systems function properly are typical but they are not so interesting. The interesting
cases are when they produce large errors without issuing warning messages! In addition,
meeting such situations the students become really interested in the particularities of the
machine arithmetic, in some specific computational problems and in the performance of
computational schemes which sometimes do not produce reliable results.

Acknowledgement. The authors would like to thank the anonymous referee for his
valuable suggestions.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic 754-2008, IEEE, New York, 2008, ISBN 978-
0-7381-5753-5.

[2] M. KONSTANTINOV, P. PETKOV. Loss of accuracy in numerical computations. In: Mathe-
matics and Education in mathematics, Proc. of the 40 Spring Conference of the Union of
Bulgarian mathematicians, 2011, 293-299.

[3] S. Rump. INTLAB — INTerval LABoratory. Developments in Reliable Computing (Ed.
T. Csendes). Kluwer Acad. Publ., Dordrecht, 1999, pp. 77-104.

Mihail Konstantinov Vesela Pasheva

Department of Mathematics Faculty of Applied Mathematics
University of Architecture, and Informatics

Civil Engineering and Geodesy Technical University of Sofia
1046 Sofia, Bulgaria 1756 Sofia, Bulgaria

e-mail: mmk_fteCuacg.bg e-mail: vvp@tu-sofia.bg

Petko Petkov

Department of Automatics
Technical University of Sofia
1756 Sofia, Bulgaria
e-mail: php@tu-sofia.bg

245

246

YUNCJIEHU ACIIEKTN ITPU N3IIOJISBBAHE HA MATLAB

Muxanna Koucrantuaos, Becesa IlameBa, Ilerko IleTkoB

Pasrsenanu ca msikou uucseHn mpobiieMu PH U3M0I3BAHETO HA KOMIIOTbPDHATA CHC-
Tema MATLAB B yuebnara jeffHOCT: IpecMsTaHe HA TPUTOHOMETPUYHH (DYHKIINAHU,
IOBJUTraHe Ha MaTPHlla Ha CTelleH, CIIEKTPaJIeH aHaJIUu3 Ha IeJI0YUC/ICHU MaTPULY OT
HUACBK peJi U IIpecMsITaHe Ha KOPEHWTe Ha ajreOpwdHu ypasHeHus. llpumuamuunre 3a
Bb3HUKHAJIUTE YUCJIEHH TPYJHOCTH MOTaT Ja ce ODSICHAT ¢ OCOOEHOCTUTE Ha M3IIOJI3-
BaHaTa JBOMYHATa apUTMETHKa C IJIaBalla TOYKA.

