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1 Introduction

The purpose of the present paper is to contribute to the method of averaging theory for
the impulsive differential inclusions, when the trajectories jump at nonfixed moments.
We consider the both bounded (finite) and asymptotically small impulses. We refer the
reader to [2, 3, 5, 6, 7, 9, 10, 11], where the justification of averaging method is considered
for differential equations with asymptotically small impulses in fixed moments. The paper
[11] also deals with differential inclusions. There are various algorithms of an averaging
method which permit generalizations (see f.e. [8, 9]) and the classical statement of the
problem can be obtained by suitable substitutions. This is the reason why we prefer to
set the problem in a nonclassical way.

Let comp (E) [conv (E)] be the metric space of nonempty compact [and convex] sub-
sets of E ⊂ R

n. The metric in these spaces is the common Hausdorff distance:

h(A, B) = inf{d ≥ 0 | Sd(A) ⊃ B Sd(B) ⊃ A},

where A, B ∈ comp (Rn), Sd(A) = {x ∈ R
n | min

y∈A
|x − y| ≤ d} is the closed d-

neighborhood of the set A.

*This work is partially supported by Grant No MM 807/98 of the Bulgarian Ministry of Education
and Science.
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Consider, in the domain Q = D× [0, L] ⊂ R
n×R, the following differential inclusions

with impulsive effects:

ẋ ∈ F 1(t, x, ε), x(0) = x0, t 6= ετ1
i (x), t 6= σ1

i (x),(1)

∆x|t=ετ1
i
(x) ∈ εI1

i (x),(2)

∆x|t=σ1
i
(x) ∈ K1

i (x).(3)

To the inclusion (1)–(3) we assign the following differential inclusion:

ẏ ∈ F 2(t, y, ε), y(0) = x0, t 6= ετ2
i (y), t 6= σ2

i (y),(4)

∆y|t=ετ2
i
(y) ∈ εI2

i (y),(5)

∆y|t=σ2
i
(y) ∈ K2

i (y),(6)

where F j(t, x, ε) are multi-functions, defined on (n+1)-dimensional euclidean space with

nonempty compact and convex values, i.e. F j : R × R
n × R → conv(Rn), I

j
i : R

n →

comp (Rn), K
j
i : R

n → comp (Rn), τ
j
i : R

n → R, σ
j
i : R

n → R, i = 1, 2, . . . , k, j =
1, 2 t ∈ I = [0, L], x ∈ D ⊂ R

n, ∆x, respectively ∆y, is the jump of the solution
x(t), respectively y(t), of the differential inclusion and ε ∈ (0, ε1) is a small parameter,
ε1 is fixed.

We suppose, that

lim
ε→0

h

(

1

∆t

(

∫ t+∆t

t

F 1(t, x, ε) dt + ε
∑

t<ετ1
i
(x)<t+∆t

I1
i (x)

)

,

(7)

1

∆t

(

∫ t+∆t

t

F 2(t, x, ε) dt + ε
∑

t<ετ2
i
(x)<t+∆t

I2
i (x)

)

)

= 0.

The equality (7) is said to be the condition of an integral continuity. It should be
considered as a generalization of the Bogoljubov’s averaging method (see Remark 2.1).

Following the Bogoljubov’s theorem, the classical form of the above differential in-
clusions have to be:

ẋ ∈ εX(t, x), x(0) = x0, t 6= τ1
i , t ∈ [0, Lε−1],

∆x|t=τ1
i
(x) ∈ εI1

i (x)

with its corresponding averaged impulsive differential inclusion:

ẏ ∈ εY (t, y), y(0) = x0, t 6= τ2
i , t ∈ [0, Lε−1],(8)

∆y|t=τ2
i
(y) ∈ εI2

i (y),(9)

The condition (7) of the integral continuity, which is a modification of the respective
main value Bogoljubov’s condition (see f.e. Plotnikov [9]), has the following form:

lim
T→∞

h

(

1

T

(

∫ T

0

X(t, x) dt +
∑

0≤τ1
i

<T

I1
i (x)

)

,
1

T

(

∫ T

0

Y (t, x) dt +
∑

0≤τ2
i
<T

I2
i (x)

)

)

= 0.(10)
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By the simple substitution s = εt one comes to (1)–(2) and (4)–(5) with the condition

(7), where F 1(s, x, ε) = X(
s

ε
, x) and F 2(s, x, ε) = Y (

s

ε
, x).

Remark 1.1 If there exist the limits:

X(x) = lim
T→∞

1

T

∫ T

0

X(s, x) ds,

I(x) = lim
T→∞

1

T

∑

0≤τ1
i

<T

I1
i (x),

then one changes the system (8)–(9) to the following differential inclusion without im-
pulses:

ẏ ∈ ε[X(y) + I(y)], y(0) = x0.

Remark 1.2 (The periodical case.) If the multi-function X(t, x) has a time-period t =
2π, i.e. X(t, x) = X(t + 2π, x), x ∈ D, and there exists a number p for which τ1

i+p =

τ1
i + 2π, I1

i+p = I1
i , x ∈ D, then we can set

X(x) =
1

2π

∫ 2π

0

X(t, x) dt,

I(x) =
1

2π

∑

0≤τ1
i

<2π

I1
i (x).

In this case, the averaging system (8)–(9) can be written, for example, in the following
forms:

ẏ ∈ εX(y), t 6= 2πi, ∆y|t=2πi ∈ εI(y),

or

ẏ = 0, t 6= 2πi, ∆y|t=2πi ∈ [X(y) + I(y)].

The last one is a discrete system.

2 Main Results

We need some technical results. One proves the following technical lemma:

Lemma 2.1 Let {δ−i }∞i=1 and {δ+
i }∞i=0 be two scalar sequences for which

δ+
i+1 ≤ a1δ

−
i+1 + a2,

δ−i+1 ≤ a3δ
+
i + a4,

where aj ≥ 0, j = 1, . . . , 4 and i = 0, 1, 2, . . .. Then

δ−i+1 ≤ (a2a3 + a4)
(a1a3)

i − 1

a1a3 − 1
+ (a1a3)

iδ+
0 if a1a3 6= 1,

δ−i+1 ≤ (a2a3 + a4)i + δ+
0 , if a1a3 = 1.



194 V. A. Plotnikov, R. P. Ivanov, N. M. Kitanov

First we consider the differential inclusions (1) and (4) with the only asymptoti-
cally small impulsive effects (2) and respective effects (5). Denote |F | = h(0, F ) (F ∈
comp (Rn)) and TD(x) – the Bouligand contingent cone for x ∈ D (see f.e. Aubin and
Frankowska [1]), i.e.

TD(x) = {y ∈ R
n | lim

s→+0
s−1 inf

z∈D
|x + sy − z| = 0}.

and Jj(t, t + ∆), j = 1, 2, the number of impulses on the interval [t, t + ∆] (0 ≤ t, t +
∆ ≤ L) of the solutions of (1)–(2) and (4)–(5) respectively. Further, we suppose that
1

∆
Jj(t, t + ∆) ≤

A

ε
< ∞ , j = 1, 2,. The trivial case of such kind of restrictions is the

time-fixed moments of impulses.

Theorem 2.1 Let in the domain Q the following three conditions be fulfilled:

1) The multi-valued maps F j(t, x, ε) and the functions τ
j
i (x) are bounded (|F j(t, x, ε)|,

|Ij
i (x)|, |τ j

i (x)| ≤ M < ∞), Lipschitz continuous in x with a constant λ and, moreover,

F j(t, x, ε) ⊂ TD(x) are continuous in t, t ∈ [0, L], ε ∈ (0, ε1), x + I
j
i (x) ⊂ D, x ∈ D,

j = 1, 2.

2) The limit in the condition (7) of an integral continuity is uniform with respect to
(t, x) ∈ Q.

3) The numbers Jj(t, t + ∆), j = 1, 2, of the asymptotically small impulses on the

interval [t, t + ∆] ⊂ [0, L] satisfy the following inequalities:
1

∆
Jj(t, t + ∆) ≤

A

ε
< ∞

(t, t + ∆ ∈ [0, L], A is a constant), the surfaces t = ετ
j
i (x) do not intersect each other

and for every x ∈ D, z ∈ I
j
i , j = 1, 2, the following inequalities hold:

τ
j
i (x) ≥ τ

j
i (x + z).

Then for every ξ > 0 there exists ε(ξ) ∈ (0, ε1) for which:

1) If y(t) = y(t; ε) is a solution of (4)–(5) with ε ∈ (0, ε(ξ)), then there exists a
solution x(t) = x(t; ε) of (1)–(2) such that

|x(t) − y(t)| ≤ ξ, x(0) = y(0)(11)

2) If x(t) = x(t; ε) (ε ∈ (0, ε(ξ))) is a solution of (1)–(2), then there exists a solution
y(t) = y(t; ε) of (4)–(5) such that the inequality (11) holds.

Proof. Let y(t) be any solution of (4)–(5). Note that under the condition 1) of the
theorem there exist solutions of (1)–(2) and (4)–(5) which are extendable on [0, L] and
all solutions belong to the domain D.

We claim that the ”beating phenomena” is avoided by choosing ε1 > 0 sufficiently
small. Suppose that the claim is not valid for the solution yj(t) of (1)–(2) or respectively

of (4)–(5). Let t0 = ετ
j
i (yj(t0)) and let the solution yj(t) with initial condition yj(t0)+z ∈

yj(t0) + εI
j
i (yj(t0)) intersect the same surface at the moment t∗, i.e. t∗ = ετ

j
i (yj(t∗)),

where yj(t) is continuous on the interval (t0, t
∗). Integrating we obtain

yj(t∗) = yj(t0) + εI
j
i (yj(t0)) +

∫ t∗

t0

u(τ) dτ, u(t) ∈ F j(t, yj(t), ε),
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where, without any loss of the generality, we replace z with εI
j
i (yj(t0)). Applying the

Lipschitz condition we have

|ετ j
i (yj(t∗)) − ετ

j
i

(

yj(t0) + εI
j
i (yj(t0))

)

| ≤ ελ

∫ t∗

t0

u(τ) dτ ≤ ελM(t∗ − t0).

Choosing 0 < ε < ε1 <
1

λM
one becomes to a contradiction with the condition 3) of the

theorem:

t∗ − t0 = ετ
j
i (yj(t∗)) − ετ

j
i (yj(t0)) =

ετ
j
i (yj(t∗)) − ετ

j
i (yj(t0) + εI

j
i (yj(t0))) + ετ

j
i (yj(t0) + εI

j
i (yj(t0))) − ετ

j
i (yj(t0)) ≤

≤ ελM(t∗ − t0) + ετ
j
i (yj(t0) + εI

j
i (yj(t0))) − ετ

j
i (yj(t0)).

Thus,

(1 − ελM)(t∗ − t0) ≤ ετ
j
i (yj(t0) + εI

j
i (yj(t0))) − ετ

j
i (yj(t0))

which contradicts the condition 3) of the theorem.

Moreover, if we suppose that the solution yj(t) intersects another surface t = ετ
j
k(x)

at the moment t∗ ∈ (t0, t
∗) then we have:

t0 = ετ
j
i (yj(t0)) > ετ

j
i (yj(t)), t0 < t ≤ t∗;

t∗ = ετ
j
k(yj(t∗)) > ετ

j
k(yj(t)), t∗ < t ≤ t∗;

t∗ = ετ
j
i (yj(t∗)).

For every arbitrarily chosen continuous function z(t) such that z(t∗) = yj(t∗) and z(t∗) =

yj(t∗) there exists t ∈ (t∗, t
∗] for which τ

j
i (z(t)) = τ

j
k (z(t)). The last one equality

contradicts the condition that surfaces t = ετ
j
i (x) and t = ετ

j
k(x) does not intersect each

other. One concludes that every solution intersects every surface no more than one time.

We intend to prove the theorem by the following way:

Discretizing the interval [0, L] we find a function y1(t) which is sufficiently close to
y(t) and for which we can directly apply the condition (7) of an integral continuity.
According to (7), we find a function x1(t) which is close to y1(t) and to the graph of the
solutions set of (1)–(2). Applying the Filippov’s theorem (see f.e. Aubin and Frankowska
[1]) and choosing suitable impulses, we find the needed solution x(t) of (1)–(2).

The proof of the second conclusion of the theorem will be miss because of changing
y(t) to x(t) one can do it.

Let [tk, tk+1], where tk = k
L

m
, k = 0, 1, 2, . . . , m, t0 = 0, tm = L be the partition

of the interval [0, L]. As long as y(t) is a solution of (4)–(5) there is a measurable
selection v(t) ∈ F 2(t, y(t), ε) (see f.e. Blagodatskikh and Filippov [4]) and impulsive
vectors pi ∈ I2

i (y(ετ2
i )) for which

y(t) = y(tk) +

∫ t

tk

v(τ) dτ + ε
∑

tk≤ετ2
i
(y)<t

pi, y(0) = x0, t ∈ [tk, tk+1].
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For every k = 1, 2, . . . , m we define

y1(t) = y1(tk) +

∫ t

tk

v(τ) dτ + ε
∑

tk≤ετ2
i
(y)<t

pi, y1(0) = x0, t ∈ [tk, tk+1],

where v(τ) ∈ F 2(τ, y1(tk), ε), pi ∈ I2
i (y1(tk)) for ετ2

i (y) ∈ [tk, tk+1) and additionally they
satisfy
∣

∣

∣

∣

∣

∫ tk+1

tk

v(τ) dτ −

∫ tk+1

tk

v(τ) dτ

∣

∣

∣

∣

∣

= min
z(τ)∈F 2(τ,y1(tk),ε)

∣

∣

∣

∣

∣

∫ tk+1

tk

z(τ) dτ −

∫ tk+1

tk

v(τ) dτ

∣

∣

∣

∣

∣

,

|pi − pi| = min
r∈I2

i
(y1(tk))

|r − pi|.

Let us denote δk = |y(tk)− y1(tk)| and remember that
1

∆
J2(t, t + ∆) ≤

A

ε
< ∞ one can

write

|y(t) − y1(tk)| ≤ |y(t) − y(tk)| + |y(tk) − y1(tk)| ≤

δk + (t − tk)M + εM
A

ε
(t − tk) ≤ δk + M(1 + A)(t − tk).(12)

For |y(tk+1) − y1(tk+1)| we have

δk+1 = |y(tk+1) − y1(tk+1)| ≤ δk +

∣

∣

∣

∣

∣

∫ tk+1

tk

v(τ) dτ −

∫ tk+1

tk

v(τ) dτ

∣

∣

∣

∣

∣

+

ε|
∑

tk≤ετ2
i
(y)<tk+1

(pi − pi)| ≤

δk +

∫ tk+1

tk

h
(

F 2(τ, y(τ), ε), F 2(τ, y1(tk), ε)
)

dτ+

ε
∑

tk≤ετ2
i
(y)<tk+1

h
(

I2
i (y1(tk)), I2

i (y(ετ2
i ))
)

≤

δk +

∫ tk+1

tk

λ|y(t) − y1(tk)| + ε
∑

tk≤ετ2
i
(y)<tk+1

λ|y(ετ2
i ) − y1(tk)| ≤

≤ δk +λ[δk(tk+1− tk)+M(1+A)
(tk+1 − tk)2

2
]+Aλ[δk +M(1+A)(tk+1− tk)](tk+1− tk).

Setting a = λ(1 + A), b = λM(
1 + A

2
) + AλM(1 + A), ∆t =

L

m
we have

δk+1 ≤ (1 + a∆t)δk + b∆t2.

Thus, we have the following sequence of estimates:

δ0 = |y1(0) − y(0)| = 0
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δ1 ≤ b∆t2

δ2 ≤ (1 + a∆t)b∆t2 + b∆t2

δ3 ≤ (1 + a∆t)2b∆t2 + (1 + a∆t)b∆t2 + b∆t2

δk+1 ≤ (1 + a∆t)kb∆t2 + (1 + a∆t)k−1b∆t2 + · · · + (1 + a∆t)b∆t2 + b∆t2.

One obtains:

δk+1 ≤
(1 + a∆t)k+1 − 1

a∆t
b∆t2 ≤

b

a

L

m
[(1 + a

L

m
)m − 1] ≤

b

a

L

m
(eaL − 1).

Therefore

δk+1 ≤
ML(0, 5 + A)

m
(eλ(1+A)L − 1)(13)

Then from (12), (13) one obtains:

|y(t) − y1(t)| ≤ |y(t) − y1(tk)| + |y1(tk) − y1(t)|

≤ ML(1+A)
m

(eλ(1+A)L + 1), t ∈ [0, L].
(14)

On every interval [tk, tk+1] we are going to define a function

x1(t) = x1(tk) +

∫ t

tk

u(τ) dτ + ε
∑

tk≤ετ1
i
(y)<t

qi, x1(0) = x0

which is sufficiently close to y1(t). Under the condition (7) of an integral continuity, for
every η > 0 there are ε(η) > 0, u(τ) ∈ F 1(t, y1(tk), ε) and qi ∈ I1

i (y1(tk) such that
∣

∣

∣

∣

∣

[

∫ t

tk

u(τ) dτ + ε
∑

tk≤ετ1
i
(y)<t

qi

]

−
[

∫ t

tk

v(τ) dτ + ε
∑

ti≤ετ2
i
(y)<t

pi

]

∣

∣

∣

∣

∣

< η∆t, 0 < ε < ε(η).

Let us fix m and choose η = ∆t =
L

m
. For t ∈ [tk, tk+1], k = 1, 2, . . . , (m − 1), one

obtains

|x1(t) − y1(t)| ≤ |x1(tk) − y1(tk)| + η∆t = δk + η∆t = δk + ∆t2.

Remember δ0 = |x1(0) − y1(0)| = 0, we have

|x1(t) − y1(t)| ≤
L2

m
, t ∈ [0, L].(15)

We claim that there exists a solution

x(t) = x(tk) +

∫ t

tk

u(τ) dτ + ε
∑

tk≤ετ1
i
(x)<t

qi, x(0) = x0, t ∈ [tk, tk+1),

of (1)–(2) which is sufficiently close to x1(t).
Let us denote ρ(x, F ) = min

y∈F
|x − y| the distance between the point x and the set

F . Remember that ẋ1(t) ∈ F 1(t, y1(tk), ε), by the Lipschitz condition and (15), we can
write:

ρ
(

ẋ1(t), F 1(t, x1(t), ε))
)

≤
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h(F 1(t, y1(tk), ε), F 1(t, x1(t), ε)) ≤ λ|y1(tk) − x1(t)| ≤

λ(
L2

m
+ M(1 + A)∆t) =

λL(L + (1 + A)M)

m
= γ.

On every interval without impulses we can apply the Filippov’s theorem (see Aubin and
Frankowska [1]) to obtain the solution x(t) on these intervals. Let [s1, s2) be any of
these intervals. If δ = |x(s1) − x1(s1)| and η(t) = eλ(t−tk)(δ + γ(t− tk)) then, under the
Filippov’s theorem, the following inequalities

|x(t) − x1(t)| ≤ η(t), |ẋ(t) − ẋ1(t)| ≤ λη(t) + γ, t ∈ [s1, s2),

are valid.

We are going to estimate the differences between x1(t) and x(t) at the impulsive
time-points. Let s−i and s+

i (s−i ≤ s+
i ) be the moments when x1(t) and the solution

x(t) reaches the surfaces t = ετ1
i (x).

For any solution x(t) of (1)–(2) we denote δ−i = |x1(s−i )−x(s−i )| and δ+
i = |x1(s+

i )−
x(s+

i + 0)| (δ+
0 = 0). Without any loss of the generality we suppose that τ1

i (x0) 6= 0,
s−i is the moment when x1(t) reaches the surface t = ετ1

i (x) and s+
i is the moment when

x(t) reaches the same surface.

One can write the following estimations:

|x1(s−i ) − x(s+
i )| ≤ |x1(s−i ) − x(s−i )| + |x(s−i ) − x(s+

i )| ≤ δ−i + M(s+
i − s−i ),

s+
i − s−i = |ετ1

i (x1(s−i )) − ετ1
i (x(s+

i ))| ≤

ελ(δ−i + M(s+
i − s−i )),

i.e.

(s+
i − s−i ) ≤

ελδ−i
1 − ελM

.

We take x(s+
1 + 0) such that:

δ+
i = |x1(s+

i ) − x(s+
i + 0)| = min

x∈x(s+

i
)+I1

i
(x(s+

i
))
|x1(s+

i ) − x| ≤

h
(

x1(s−1 ) + εIi
1(x

1(s−i )) +

∫ s
+

1

s
−

1

u(s) ds, x(s−i ) + εI1
i (x(s+

i )) +

∫ s
+

i

s
−

i

u(s) ds
)

≤

|x1(s−i ) − x(s−i )| +
∣

∣

∣

∫ s
+

1

s
−

1

(u(s) − u(s)) ds
∣

∣

∣
+ εh

(

I1
i (x1(s−i )), I1

i (x(s+
i ))
)

≤

δ−i + 2M(s+
i − s−i ) + ελ(δ−i + M(s+

i − s−i )) =

1 + ελ + ελM

1 − ελM
δ−i ,

i.e. for all sufficiently small ε > 0 we can write

δ+
i ≤

1 + ελ + ελM

1 − ελM
δ−i ≤ a1δ

−
i .
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By analogy, one obtains:

δ−i ≤ a3δ
+
i−1 + a4ε, i = 1, 2, . . . .

According to the Lemma 1 one obtains:

(17) δ−i+1 = K1ε + K2δ
+
0 ,

where, for all sufficiently small ε > 0, K1, K2 are constant, which depend on λ, M . Taking
suitable ε (δ+

0 = 0) from (14), (15), (16) and (17) one obtains validity (11). �

Remark 2.1 To obtain the classical Bogoljubov’s integral continuity condition we leave
ε to zero and T to infinity in the condition (10). In this sense Theorem 1 partially
generalizes the first Bogoljubov’s theorem for the method of averaging.

Remark 2.2 The inclusion F j(t, x, ε) ⊂ TD(x), t ∈ [0, L], ε ∈ (0, ε1), can be replaced
by the following condition: For every x0 ∈ D′ ⊂ D there exists a constant ρ > 0 for
which all solutions of (1)–(2) and (4)–(5) belong to the domain D on the interval [0, L]

with a ρ-neighborhood. In this case the condition x + I
j
i (x) ⊂ D, x ∈ D is superfluous.

Note that, in generally, the above conditions are not equivalent.

Corollary 2.1 Let the conditions of Theorem 1 be fulfilled. Consider the inclusion (4)–
(5) with y(0) = y0 and denote δ = |x0 − y0|. Then for any ξ > 0 and for every solution
y(t) of (4)–(5) there exist ε(ξ) > 0, δ(ξ) > 0, constant C and a solution x(t) of (1)–(2)
such that

|x(t) − y(t)| < Cδ + ξ, t ∈ [0, L], 0 < ε < ε(ξ), 0 < δ < δ(ξ).

In generally, the proof of the Corollary 1 repeats the proof of the Theorem 1 and we miss
it.

We are going to prove the theorem about the method of averaging for the impulsive
differential inclusion (1)–(3) and for the disturbed system (4)–(6). Denote [s−i , s+

i ] the
time-intervals between the respective intersections of x(t) and y(t) with the surfaces

t = σ
j
i (j = 1, 2).

Theorem 2.2 Let in the domain Q all conditions of Theorem 1 be fulfilled and addi-
tionally:

4) The maps K
j
i (x) and the functions σi

j(x) i = 1, 2, . . ., (j = 1, 2) satisfy the

Lipschitz condition with a constant µ, x + K
j
i (x) ⊂ D, x ∈ D.

5) The surfaces t = σi
j(x) do not intersect each other and σi

j(x) ≥ σi
j(x+z) for every

x ∈ D and z ∈ K
j
i , j = 1, 2.

6) The following inequalities hold:

h(K1
i (x), K2

i (x)) ≤ η, |σ1
i (x) − σ2

i (x)| ≤ η, |x0 − y0| ≤ δ.

If µM < 1 then for every ξ > 0 there exists η > 0 and δ+
0 > 0 such that for every solution

x(t) of (1)–(3) there exists solution y(t) of (4)–(6) for which the following estimate

|x(t) − y(t)| ≤ ξ(16)

is valid for all t ∈ [0, L] \
⋃

i

[s−i , s+
i ], where

∑

i

[s+
i − s−i ] ≤ ξ.
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The proof of the Theorem 2, in generally, repeats the proof of the Theorem 1 if the citing
of the Filippov’s theorem is replaced by the citing of the Theorem 1.

It is available to suppose that the surfaces t = σ2
i (y) should be intersect each other.

The proofs of the theorems in this case have to pass through the technical problems with
the numeration of the surfaces.
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