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EMBEDDINGS OF a-MODULATION SPACES

Joachim Toft, Patrik Wahlberg

ABSTRACT. We show upper and lower embeddings of a;-modulation spaces
in as-modulation spaces for 0 < oy < ag < 1, and prove partial results on
the sharpness of the embeddings.

Dedicated to Professor Petar Popivanov on the occasion of his 65th birthday

1. Introduction. Let 1 < p,q < co and define the indices

01(p,q) = max (0,¢~ " —min(p~",p'" ")),
02(]77 Q) = min (07 q_l - max(p_lvp/_l)) .
Our main result is the following. For 0 < ay < ap <1, p,q € [1,00] and s € R,

we have the embeddings for a-modulation spaces

, d s d y d
(1) M§2({S+d(a2—a1)91(p7Q) (R ) < Mgl?S(R ) < M§2({S+d(oc2—a1)92(p7Q)(R )

(See Theorem 1.) The embeddings (1) contain known results for embeddings of
modulation spaces in Besov spaces [16] and sharpen Grébner’s embeddings [8].

We also show the sharpness of the embeddings (1) in the following sense. (See
Corollary 1.) If p > min(2, ¢q) then

(2) MEL C M, = t<s+d(as = a)0a(p,q).

2010 Mathematics Subject Classification: 42B35, 46E35.
Key words: a-modulation spaces, embeddings, sharpness.



26 J. Toft, P. Wahlberg

If p <max(2,q) then
(3) MPe C pPa = t>s+d(ag—a1)0i(p,q).

ag,t = 1,8

For p < min(2,q) we are unable to show the implication (2). Nevertheless, we
conjecture that the implication (2) holds also for p < min(2,¢q). By duality, this
is equivalent to (3) for p > max(2, q).

Remark. ! After finalizing the proof of (1), we noticed the preprint [10] by
Han and Wang. Their results [10, Theorems 5.1 and 5.2] generalize our Theorem
1, and show that the embeddings (1) hold for all p,q € (0,00], 0 < a3 <y <1
and s € R. This paper provides an alternative proof to Han and Wang’s proof
in the case p,q € [1,00], and establishes the partial sharpness of the embeddings
(sharpness results are not treated in [10]).

2. Preliminaries. Nj denotes the nonnegative integers. Inclusions A C B
and equalities A = B of topological spaces A, B, are understood as embeddings,
that is an inclusion is continuous. We use the standard notations .7 (R?), .7/(R?),
C>(R%) for function and distribution spaces (see e.g. [11]). The Fourier transform
of f € .#(R%) is defined by

~

FIO = F©) = m™* | fle)e " d.

A Fourier multiplier operator is defined by ¢(D)f = % _1(90f), provided ¢ and
[ are objects such that the expression makes sense. For s € R the Sobolev space
Hy(R?) is defined as the subspace of f € .#/(R?) such that f € L% _(RY) and

i = ([ @ 17@ra) <o

where (€) = (14 J¢[2)1/2.

We denote by |A| the cardinality of a finite set A, and by p(A) the Lebesgue
measure of a measurable set A C R%. A closed ball in R? of center a € R? and
radius r > 0 is denoted B(a,r) = {x € R?: |z —a|] < r}. A closed cube in R of
center ¢ and side length 2r is denoted Q(c,r) = {x € R? : maxi<j<q |[t; —cj| <1}
The conjugate exponent to p € [1,00] is denoted p’ and defined by 1/p+1/p’ = 1.
The notation X <Y means that X < CY for some constant C' > 0, and X; SY;
for i € I and j € J means that the constant is uniformly bounded over the index
sets I and J. If X <Y and Y < X then we write X < Y. Coordinate reflection
is denoted f(z) = f(—z).

Note added in proof. In an updated version of their manuscript [10], Han and Wang
establish the sharpness of the embeddings in all cases.
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2.1. Besov spaces. Define
(4) Dj={¢eR": P2 <|g| <2}, j>1

Let {p;}52, C O (RY) be a sequence with the following properties [2].

supp po C B(0,1),

suppyp; € Dj, j=>1,

(5) N
D wi@)=1 veeR”
j=0

Then we have for j > 0

(6) 271 <2Y = 9i(6) + i) =1

The functions ¢; for j > 1 are constructed as dilations ¢;(£) = ¢(2177¢) for a
function ¢ € C2°(R?) supported in Dy (cf. [2]). Let p,q € [1,00] and let s € R.
The Besov space BYY(R?) is defined as the space of all f € .#/(R?) such that

1
o /q

(7) Ifllgze = [ D (@l (D) flle)" ] < oo

J=0

when ¢ < oo and with the standard modification when g = oo [2]. We abbreviate
BY? = BY and BY? = B

2.2. a-modulation spaces. We need the following definitions introduced

by Feichtinger and Grébner [4-6,8] (cf. [3,7]).

Definition 1. A countable set Q of subsets QQ C R? is called an admissible
covering provided
U e=r%

QeQ
(8) HQ'€Q:QNQ #0} <ny YQeQ,

for some finite integer nyg.

For each Q € Q, let

9) rg =sup{r € R: B(c,r) C Q for some c € R},
(10) Rg =inf{ReR:Q C B(c, R) for some ¢ € R4}
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Definition 2. Let o € [0,1]. An admissible covering {Q}geo is called an
a-covering provided there exists a constant K > 1 such that

(11) Q) = (@), reQ, QeQ,
(12) Ro/ro <K, Qe€Q.

Definition 3. Let a € [0,1] and let {Q}geco be an a-covering of R:. Then
{q}toeco is called a bounded admissible partition of unity corresponding to Q
(Q-BAPU) provided

suppyg € Q, Q€ Q,

D W) =1 VEeR
QeQ

(13) sup | F gl 1 < oo,
QeQ

We will call a Q-BAPU an a-BAPU when Q is an a-covering.

Definition 4. Let o € [0,1], p,q € [1,00], s € R, let {Q}gco be an a-
covering of R® and let {o}toeco be a Q-BAPU. The weighted a-modulation space
MELRY) is defined as all f € .7'(RY) such that

1/q

(14) 1 llagzs = | Y (€@)®llvo(D)fII, < 0
QeQ

where {g € Q for all Q € Q, when q < co. If ¢ = oo the global 17 norm in (14)
is replaced by [°°.

The a-modulation spaces contain as extreme cases the frequency-weighted
modulation spaces (cf. [4,9]) M = Mg! (o = 0) and the Besov spaces By'! =
MY (o =1) (cf. [8]). The number « thus parametrizes a scale of spaces that in
some sense is intermediate between the modulation spaces and the Besov spaces.
We abbreviate MEL = MY, MPP = MY and M{"? = MP4 (the unweighted or
classical modulation spaces). For t > s we have the embedding Mi’f C MEE
a€(0,1], p,qg € [1,00].

For « in the interval 0 < a < 1, that is, excluding the Besov spaces, we will
use the following a-covering and an associated Q-BAPU (cf. [3]). Set

(15) By = B(k[k|?,r[k|?), keZ\O0,
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where 3 = a/(1 — a). Note that By = B(&, r|&|®) where & = k|k|®. For r > 0
sufficiently large, @ = { By },cza\ is an a-covering of R< according to [3, Theorem

2.6]. Moreover, a Q-BAPU {9y },cza\o such that supp ¢y C By, for all k € 7\ 0
can be constructed (see [3, Proposition A.1]).

We will use Borup and Nielsen’s Banach frame construction for M&¥(R?),
based on multivariate brushlet systems (cf. [3]). Let

Qr = Q(k|k|”,r|k|?), kez\o,

where again 8 = «/(1 — ). If r > 0 is sufficiently large then Q = {Qy }reza\o is
an a-covering of R%. One can construct a sequence of functions

(wn e )nend, wezano S 7 (RY)

such that (wnvk)neNg is an orthonormal system, with supp @, C Qy, for each

kezd \ 0. Each function w,, j is constructed as a tensor product

d
(16) W,k = ®wnj7lk,j
7j=1

where Q) = H?:Jk,j, whose components are, simplifying notation to n = nj,
I=1,,

u()

L e <g(u([)(l’ +en,r) + () (z — en,z)), TeR,

Wy 1(x) =

where e, 1 = m(n+1/2)/u(I), ar denotes the left end point of I, i.e. I = [ar,by],
and g € FCX(R) with suppg C [0,1]. For more details about the sequence of
functions (wn’k)neN& peza\o We refer to [3].

Borup and Nielsen [3] show that the sequence (wy ) is a (quasi-)Banach
frame for MEZ(R?) for 0 < p,q < oo and s € R. We restrict our interest to the
exponents p,q € [1,00]. Let p,q € [1,00], s € R, let f € MEER?), and define the
coefficient sequence

(17) enk = (frwnk)r, neENE keZ\0

where wy, ;, is defined by (16). The coeflicient operator is defined by (D f),r =
Cpy N E N¢, k € Z4\ 0. The Banach frame property means in this case that

(18) 1flazzg = llellme
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where the sequence space mg’fé = mﬂ’%(Ng x 7.4 \ 0) is defined by the norm
a/p\ V4

19 e =| 3 Z(!k\ﬁ(”ad(%%))rcm)p

ke€zd\0 \neNg

when p, ¢ < co and suitably modified otherwise. Moreover, there exists a recon-
struction operator R defined by

Rc= E Cn,k ﬁjn,kv
k€Z\0, neNd

where (W k)pezi\oneng 15 & dual frame defined by @y, = ¥5(D)wnk, 1 € NG,
k € Z%\ 0. The operator R is bounded as

(20) |Re|lpma S llellpmpa, c € mbe

as)? Q,s?
and RD = idyp.q. These results are proved in [3, Theorem 4.3].
Let .#5(R?) be the completion of .7 (R?) in the norm || - | p2:0(ray- In the
next result we collect some important properties of the a-modulation spaces. The
result is a generalization of the corresponding result for modulation spaces.

Proposition 1. Let a € [0,1], s € R and p,q € [1,00]. The following holds.

(i) The space MEL(R?) is a Banach space which is independent of the sequence
{€o}aeco as long as £ € Q for all Q € Q, and also independent of the a-
covering {Q}geco and of the Q-BAPU {1g }geco. Varying these parameters
gives rise to equivalent norms.

(ii) The L?-product (-,-) on .7 (R x.7(RY) extends to a continuous sesquilinear
form on MEL(RY) x Mg:fls(Rd). Furthermore,

If1l' = sup |(f, 9)]

with supremum taken over all g € (RY) such that gl <1, i a

norm equivalent to ”fHM};’fg- If p,q < oo, then the dual space of ME'Y can
be identified with Mg:f; through the form (-,-).
(iii) Assume that 0 <0 <1, p,q,p1,p2,q1,q2 € [1,0], s,51,52 € R satisfy
2:1_0+£7 3:1_0+£7 s:(1—9)81+982.
p P p2 q q1 q2
Then complex interpolation gives

((//Pl,th %pQ:QQ)[G] = 4P

a,s1 ,S2 ,s
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(iv) It holds :///o’fjsq - ngg with equality if p < 0o and ¢ < co.

Proof. (i) See [5, Theorems 2.2, 2.3 and 3.7] and [6, Theorem 4.1].
(ii) The fact that the dual space of MY, for 1 < p,q < oo, can be identified

with ngf; is a consequence of [5, Theorem 2.8]. Let 1 < p,q < oco. From [5,
Theorem 2.3] it follows

d
(£ DS W aezgllgllyerar s g € 7 (RY).

For the reverse inequality we first let 0 < o < 1. By (18)
1fllazzg < lellme

where the sequence c is defined by (17). The mb%-norm of ¢ is the mixed P
norm of we, where the weight w depends on p, «, s as

An application of [1, Lemma 3.1] yields
llellmzg = [lwellera = sup |[(we, d) 2|

with supremum taken over all sequences (d,, x) of finite support and ||d||,,/ o < 1.
Let (dy 1) be a sequence of finite support such that ||d||,, <1 and

lwellra < 2[(we, d)p2],

and set

9=, D Wk dnk Wk

k€ZI\0 neNg

Then g € .7(R?) since the sum is finite, and (f,g) = (we,d)2. The following
inequality follows from the proofs of [3, Lemma 3.2 and Lemma 4.2]. If p,q €
[1,00] and s € R, then

Z Z dn,k W,k S Hd”m”/’f/ .

k€ZI\0 neNg Mgtf;
This gives
Hg”M"l’/f; S HWdegl’f/S = ”d”zp’,q’ <1

Hence we have proved that || f|[y¢ < || f|| when 0 < o < 1.

a,s N
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It remains to prove the corresponding inequality when o = 1, in which case
ME§ = B Let {p;}52, C C>(R?) be a sequence that satisfies (5) and ¢; (&) =
©(2'779¢) for j > 1 where ¢ € C°(R?) and supp ¢ C D;. The BY?-norm defined
by (7) is the mixed Lebesgue norm LP4(R% x Ny), where R? is equipped with the
Lebesgue measure and Ny with the counting measure, of the function F(z,j) =
2750;(D) f(z). According to [1, Lemma 3.1] we have

1/l 5z = sup ZW ©i(D)f, )12

7=0

where the supremum is taken over all sequences (g;)¢° of simple functions of
compact support g; such that g; =0 for j > N for some N > 0, and

1/¢

© !
Slgl?, ] <1
=0

if ¢ < oo, and supg<;cco lgjll» < 1if ¢ = co. Therefore there exists N > 0
and (g;)) € L¥ (R?) such that

1fllBpa < 222]8 ©i(D)f,95)r2 = 2(/, ZQJSSOJ 9i)r2

Jj=0 7=0

and
1/¢

N
(21) Sgl?, | <
§=0
(modified as above if ¢/ = o0). Set
g—z2j @i ( gjejﬂ(]Rd)

We have sup;> -7 tojll; < 1. By means of (6) and Young’s inequality, we
obtain for k£ > 1

min(N,k+1)

ok (D)gll e = > 20p(D)p;(D)g;
j=k—1 v

<25 gl + 2% gl + 259 gl
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and
min(N,1)
leo(D)gll . = 27%p0(D)g;(D)g;
§=0
S llgoll e + 22 llgall o
which gives, by means of (21), Hg||Bp/$,q/ < 1. It follows that ||f||M§7,1q < IIfll-

(iii) This follows from [5, Corollary 2.4] (cf. [8, Bemerkung F.2]).
(iv) See [5, Theorem 2.2]. O

Lr

3. Embeddings of a-modulation spaces. We need the following el-
ementary lemma (cf. [10, Prop. 2.5] and [8]), a proof of which is provided as a
service to the reader.

Lemma 1. If a € [0,1] and s € R then M2 (R?) = H,(R?).
Proof. For the Besov space case (o = 1) the result B2(R?) = H,(RY) is
well known (see e.g. [2, Theorem 6.4.4]). Let 0 < a < 1. We use the a-covering

(15) { B }rezaro for r > 0 sufficiently large, and an associated BAPU {4 }eza\0
such that 0 < ¢, < 1 for all k € Z¢\ 0. Parseval’s formula and (11) yield

1z ey = D (&)™ [ dw(€)IF(€)de

kezd\0 Bk
S > [ n@@PIFORE = 171w,
kezd\0 " =k

ie. Hg C Mg - For the opposite inclusion, we note that
(22) Y wk©?=C, teR
keZ\0

holds for some C' > 0. In fact, if this would not the case, then for any € > 0 there
exists £ € R? such that

> w(? <=

keZ\0

Let ¢ < ng 2 where ng is the upper bound (8) corresponding to the covering
{Bk}reza\o, and let § € R denote the corresponding vector. Then ¢ (£) < v/
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for all k € Z?\ 0. Since & € B; for some j € Z4\ 0 we obtain from (8)

ST ou@ = S ) <nopvE<1

k’EZd\O kJZ BkﬁBj;ﬁ@

which is a contradiction. Thus (22) holds for some C' > 0.
By means of (22) and again (11) we obtain

e <07 [ 30 vl IFORa

keZ\0

S DT @)™ | ek©?F(©)de

keZA\0 Br
= ||f||?\4g’3(Rd)7

ie. M2, C H, and the proof is complete. [

Embeddings for a-modulation spaces have been proved by Grobner [8], Han
and Wang [10], and, for the modulation space case o = 0, by Okoudjou [13] and
the first named author of this article [15,16].

The result [16, Theorem 2.10] imply the embeddings, for p,q € [1,00] and
s €R,

b d d d
(23) Bffdel(p,q)(R ) € Mpq(R ) € Bgfdez(p q) (RY).

Here the indices #; and 65 are defined by

91 (p7 q) = max (07 qil - min(p717p/71)) )
(24)

02(p,q) = min (0,¢~" — max(p~',p'™ ")) = =610, ).
The unweighted versions (i.e. s = 0) of these embeddings were proved in [15,
Theorem 3.1]. They imply the embeddings, for p,q € [1, 0],

(25) By o R C MPURY) C BRI (RY),

and they have been proven to be sharp. The sharpness was obtained indepen-
dently by Huang and Wang [17, Theorem 1.1], and by Sugimoto and Tomita [14,
Theorem 1.2], and means the following. If p, ¢ € [1,00] and BYY(R%) C MP4(R?)
then s > df1(p,q). If p,q € [1,00] and MP4(RY) C BZY(R?) then s < dba(p, q).
(By duality, the two assertions are equivalent.) This gives the sharpness also
for the weighted case (23), since (D)* is a homeomorphism BY? — BPY%, for any
t,s € R (cf. [2]) as well as Mg = Mg] , for any t,s € R (cf. [16, Cor. 2. 3]) The
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sharpness of (23) reads:
BPIRY C MPIRY) = t>s+dbi(p.q), p.q€ (1,00,
MPARY) C BPURY) = t<s+dba(p,q), p.q€ [l o).

Note that the embeddings (23) and (25) are restricted to upper and lower em-
beddings of 0-modulation spaces in 1-modulation spaces, and give no information
on upper and lower embeddings of M&, in M. g’ft for general ay, ag € [0, 1].

Grobner’s embeddings [8, Theorems F.6, F.7 and pp. 66-68] reads

s d s d s d
(26) Mgzq,Ser(az*al)Vl(P,tI)(R ) © Mgl({S(R ) © Mggﬁd(arm)l@(p,q) (RY),

for 0 < a1 <ag <1, p,qg € [1,00] and s € R, where the indices v; and vy are
defined by

1

Vl(p7 = 91(1)7 q) -+ max (07 q* _ max(pf%p/fl)) 7

q)
(27)
va(p,q) = 02(p, q) + min (0,¢~" —min(p~,p' 1)) = —1 (¥, ).
Since v1(p,q) > 01(p,q) and va(p,q) < O2(p,q), the embeddings (23) improve
Grobner’s embeddings (26) when «; = 0 and ay = 1.
We are now in a position to present our main embedding theorem, which is
both a sharpening of (26) and a generalization of (23) to general a-modulation
spaces. In the proof of the theorem we need the following lemma.

Lemma 2. Suppose 0 < a1 < ap <1, {Q;}jcs is an ai-covering, {P;}icr is
an ow-covering, and let n; € Q; for all j € J, and & € P; for alli € I. If

Q={jeJ;Qnpk#0}, i€l
Aj={iel; QNP #0}, jeJ,

then
(28) 1] S (&) Moz, iel,
(29) Al S T, jed,

and (&) =< (n;) for j € Q; for alli € I, and fori € Aj for all j € J.

Proof. By the “disjointization lemma” [5, Lemma 2.9], for any admissible
covering {Q;}jes we can split the index set as J = (J;2; Ji, where ng is finite,
{Ji} are pairwise disjoint, and j, j € Ji, j # j/ imply Q;NQ; = 0 for 1 < k < ny.

Let i € I. By (11) we have u(Q;) < (&) for all j € ;. By (10) and (12)
we have P; C B(c;,2Rz) where RS < pu(P;), for some ¢; € R%. Let j € €; and
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z; € Q; N P;. Again (10), (11), (12) give Q; C B(bj,2R;) where R¢ < (x;)94 <
(zj)42 < p(P) < RY, for some b; € RL Tt follows that Q; C B(c;, CRy) for
some C' > 0. Combining these observations, we obtain for 1 < k < ng

N Tl = S (@) < p(Bles CRy) < (€)1,
jeQ,ﬂJk
whereupon (28) follows from the disjointization lemma. The proof of (29) is

similar. The final statement of the lemma is a direct consequence of (11). O

Theorem 1. Let p,g € [1,00], se R and 0 < a; < ay <1. Then

d d
(30) M§2q8+d(a2 a1)61(p, Q)(R ) € MEL(RY) < M§2({8+d(a2 a1)02(p,q) (RY),

and, for some constant C' > 0, it holds for f € /' (R%)

C7HIfllygma < Iz, < Clfllaze

ag,s+d(ag—ay)b2(p,q) 1,8 std(ag—a1)6(p.a)
Proof. By duality it suffices to prove the right hand side embedding. Let
s € R, let {y;} be an a;-BAPU such that ¢; > 0 for all j, let {¢);} be an as-
BAPU such that 1; > 0 for all ¢, let 7; € supp ¢, for all j, and let & & supp;
for all ¢. If

Qi ={j;suppp; Nsuppe; # 0}

(31) Aj ={i;suppy; Nsuppey; # 0}

then by Lemma 2
1] < (&)Hezm) for all i,
1Al S 1 for all 7,

and (&) = (n;) for j € Q; for all 4, and for < € A; for all j. This gives, using (22),
(D) a0 = g s (6o

S [ o

JE
<2/ (&) de (g~ o2 o)
IS
S (e)™e2mo) sup [, fll7a (g)?o e

JEQ;

= sup 05 (D) fll32(n;)%
J 1
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Taking the supremum over ¢ we obtain

<
I llagze oy S I llagzgs

which proves the embedding
(32) M>>(RY) € M>> (RY).

ay,s ag,s—d(ag—a1)/2

Next we observe that Young’s inequality and (13) for {1;} gives, for all ¢ and any
p € [1,00],

63) D)l = | > 7 (veid)| S X s (D)l

JEQ; P JEQ,;
This gives
1l = D 10Dl S Y ) s (D)l
i i JEQ,
=3 ) e (D)l =D ) o (D) fll o
i JEQ; 7 ’LEA
< f sy, -
which proves the embedding
(34) Moltl S(Rd) C MOIQ S(Rd)'

We also obtain from (33)
1711 g2 = sup(&:)* == [¢3(D) ||

ag,s—d(ag—aq)
—d
S sup 37607102 (1) g5 (D)l S 1 g
i Je

which proves the embedding

1 d 1 d
(35) Maloz(R ) - Ma;,z d(az— al)(R )

Again (33) gives

1AWl aggr = Z(&W\wz e S ) (D) fll o

i jEQ,

= > > ) les (D) fllpoe S 15l pgeens

j i€EA;
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which proves the embedding
(36) M I(Rd) C M2 1(Rd)

a1,s 2,8

Finally (33) gives
1/l azee

ag,s—d(ag—aq)

—sup<€)s W20 (D) f || pos
Ssup Y (€)M () [l (D) £l oo

v JEQ,;

SRRAIRYES

aq, s?

which proves the embedding
(37) Mgy (RY) © M3 o g(ayar) (R

1,8 ag,5—d

By Lemma 1 we have

(38) M3, (RY) = MZ, (RY).

The result now follws from interpolation between (32), (34), (35), (36), (37) and
(38), and duality. O

4. Sharpness of the embeddings. The notion of a-covering is connected
with the metric calculus presented in [12, Section 18.4]. Let 0 < o < 1, and let ¢
be the Riemannian metric

_ e
gn(é-) - <n>2a'

If 0 < r < 1 then it follows by straight-forward considerations that
gE—m <t = C7g(0) < ge(¢) < Cgy(Q), ¢ ERY

for some constant C' which depends on r only. Hence g is a slowly varying metric
in the sense of [12, Def. 18.4.1], and (18.4.2) in [12] is satisfied with ¢ = 72. The
results in [12] gives the following proposition.

Proposition 2. Let 0 < a <1 and 0 <r < 1. The following holds.
(i) For some sequence {&}icr € R?, the balls B; = B(&;,7(€,)%/2) constitute
an a-covering.
(ii) There are functions v; € CX(RY), i € I, such that suppv; C B;, 0 <
Yy <1, Y i = 1, and for every multiindex (3, there is a finite constant
Cp > 0 such that
(39) sup ()09 1< ) < Cp.

el
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(111) [f Q = {Bi}iel then {wi}iel 1S a Q-BAPU
Proof. (i) and (ii) follow immediately from [12, Lemma 18.4.4] with ¢ <

1/8. Therefore, in order to prove (iii) it suffices to show

sup || F ;|| < oo,
el
which is a special case of the following Lemma 3. O

Lemma 3. Let 0 < o < 1 and suppose {1;}icr € C(RY) is a family of
functions such that supp; C B(&, (&)%), i € I, for some sequence {& }icr C RY

and some r > 0, and for any multiindex 3 there is Cg > 0 such that
(40) sup (&) 0% ) < Cp.

il
Then for p € [1,00] there is a constant C, > 0 such that

sup(&;) 7| F il e < C).
el
Proof. Set

©i(&) = vi((&)* ¢+ &), el

Then supp ; C B(0,r) for all i € I, and (40) gives [|0%p;||L= < Cj for all i € I.
If p < oo and n > d/(2p) is an integer then integration by parts gives, for some
constants cg,
P

dx

NP = (97) ¢ /2 )2 . 2\2n e —iag
17l = @02 [ @) [ e

R4

p

= (2m) /2 / (@) N e / 07 pi(&)e " 4dg| da
Rd Rd

18]<2n

p

s [ @[ X 1%l | dest

18]<2n

for all i € I. If p = oo the observations above give ||.Zg;||~ < (2m)"Y?||@ill 1 <
1 for all 4 € I. The result now follows from ||.Zv;||r» = (€)% | Fil|r. O
Given an a-covering and an a-BAPU according to Proposition 2, the next
lemma says that we may adjoin a sequence of balls to the covering, and mod-
ify the BAPU accordingly, without destroying the a-covering and the a-BAPU
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properties. A function indexed by the new index set equals one on a ball of radius
proportional to (£;)® where ; is the center of the support of the function. This
will be useful in the proofs of the forthcoming sharpness results Propositions 3
and 4.

Lemma 4. Let 0 < a <1, 0 < r <1, and let {B;}icr and {t;}ier be as in
Proposition 2. Let J be a countable index set such that INJ = 0, and let {B;}jes
be balls such that B; = B(&;,7(&;)%/2) where & € R for j € J, and B;N By, = 0,
when j, k € J and j # k.

Then there are functions p; € C°(RY), i € T UJ, such that the following is
true:

(i) 0<¢; <1, suppp; C B; wheni € IUJ;
(ii) ¢; =1 on B(&,7(&)*/4) forj e J;

(iii) {¢i}tierus is an a-BAPU, and for each multiindex (3 there exists Cz > 0
such that

(41) sup ((€)™0% i1 ) < C.
ieluJ
Proof. Let ¢ € CX(R?Y),0< ¢ <1, suppy C B(0,7/2) and ¢(&) = 1 for
¢ € B(0,r/4). We set

©i(€) = w((&) (€ —&5))  for jeJ

and

2i€) = i) [ [ =€) for el
jeJ
Then properties (i) and (ii) are satisfied. The estimate supjej<§j>°‘|5| 10%0; L <
Cp for any multiindex 3 follows immediately. These estimates combined with
(39) and straightforward considerations give sup;c; (&) |0%p;|| = < Cp for all
multiindices 3. Thus (41) holds for all multiindices . Likewise one can easily
verify

Y i) =1 VEeR,
ieluJ

as well as the fact that {B;, Bj}icr jes is an admissible a-covering. To prove (iii)
it thus suffices to observe that sup;c; [ F¢;l|p1 < oo follows from || F ;|1 =
| F | L1, and that sup;c; [ F ¢il| 1 < oo follows from (41) and Lemma 3. O
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We are now in a position to prove two results which show that the embeddings
(30) in Theorem 1 are optimal, in most cases. This is a consequence of the
following Propositions 3 and 4.

Proposition 3. Ifp,g € [l,00], 0 < a3 <ay <1 andt,s € R then
1 1

MR C MY, = t§s+d(a2—a1)(———/>.

q P

Proof. We prove the result by showing that the assumption
ei=t—s—d(laz—a1)(1/qg—1/p') >0
implies that
(42) MPaoC MY

al,s = asg,t

cannot hold.

Let {¢j}jes be an a;-BAPU constructed according to Proposition 2, and
let {1;} be an ao-BAPU constructed according to Proposition 2 and modified
according to Lemma 4. Then there exists an infinite index set I such that the
following is true for some r > 0:

(i) If 41,42 € I and iy # i, then supp;, Nsupp ¢, = 0;
(i) 9i(§) =1 on B; = B(&,7(€)™), & eRY, i e 1.

Let ¥ € O®(R?) satisfy 0 < 9 < 1, supp?d C B(0,7) and 9(¢) = 1 when
¢ € B(0,7/2), and define 9;(§) = 9((&) (£ —&;)). Then ¢, = 1 in suppdJ;. Let
I’ C I be any finite subset, let {t;};c;» be a sequence of nonnegative numbers,
and set

= > ti(§) € CX(RY).
el’
Let g < co. It follows from our choice of ¥J; that

£z, = (3 (€ 1)) )

(43) e ) . .
- () = (5 )

Next we estimate ”fHMf;’lqs- Set
Ji={jeJ;suppp;NB; #0}, iel,
Ii={iel';suppp;NB; #0}, je
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By Lemma 2,
‘Jl‘ SJ <§i>d(a2—a1)7 S Il?
I < 1, jed.

Denoting the center of the ball in which ¢; is supported by n; € R?, this gives,
using Holder’s and Young’s inequalities, Lemma 2 and Lemma 3,

g \ /4

1 gz, = | Do) | Dt " (505)

" —
jedJ zEIj Ip

1/q
SA D m)* D tF T (090 11
JjeJ i€l
1/q
SO el F 0 F 14
il jeJ;
(44)
1/q
SO )t el
icl’ jEJ;
1/q
<20 D@y
iEI/jEJi

1/
< (S ooy

el’
We may assume that I = Ny. Since [§;] — oo as i — oo, we may assume that

2
(&;) > (i)=a, by passing to a subsequence if necessary. If we set

t = <i>7§ (&)~ dloz—ar)/adaa [pf
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then (43) and (44) give a contradiction to (42), as |I’| is made arbitrarily large.
This proves the result when ¢ < oo. The case ¢ = oo is settled with slight
modifications of the same proof. O

Proposition 4. Ifp,g € [1,00], 0 < a3 <ay <1 andt,s € R then

MR C MY, = t<s.

al,s =

Proof. We show that ¢ > s implies that (42) does not hold.

Let {¢;}jes, {¢i} and I be as in the proof of Proposition 3 and let ¥; =
I(E — &) € CP(RY), where ¥ € C°(R?), supp) C B(0,r) is the same as in the
proof of Proposition 3. Let f be given by

= 1:0:(¢) € CP(RY)

iel!
for some suitable sequence {t;};cp where I’ C I is finite. Let ¢ < co. We have

@5) [flares, > (3 (€0 (D) L))

icl’
= (X Cruldie) ) " = (X er)?) "
el el

In order to estimate HfHMg,l% we set

Ji={j€J;suppp;NB(&,r) #0}, i€l
Ij{:{iell;suppgojﬂB(fi,r)#@}, jeJ
As in the proof of Lemma 2 it follows that

sup | J;| < oo, supl|li| <oo, and (&)= (n;) when jecJ.
iel’ jeJ

As in the estimate (44) this gives, again using Holder’s and Young’s inequalities
and Lemma 3,



44 J. Toft, P. Wahlberg

q \ Va

S ) DT (o)

JjeJ i€l]

[z, =

Lr

N

jed ie];.

1/q

A

D I IR N N o B

iel’ jEJi

1/q
(Z@?j)sq > HLF T (00:) 14,

1/q
< ()
el’
As before (45) and (46) give a contradiction to (42). The case ¢ = oo follows in
the same manner. O

A combination of (24), Propositions 3 and 4, and duality give the earlier
mentioned optimality result concerning Theorem 1.

Corollary 1. Letp,qg € [1,00], se R and 0 < ag < ag < 1.
If 1/p <max(1/2,1/q) then

MBI C MY, = t<s+d(az—a1)b2(p,q).

a1,s =
I1/p > min(1/2,1/q) then
MP9 CMPY = > s+d(ag —a1)bi(p,q).

ag,t = 1,8
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