


Pliska Stud. Math. Bulgar. 21 (2012), 201–216
STUDIA MATHEMATICA
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RIEMANN-HILBERT PROBLEMS WITH CANONICAL
NORMALIZATION AND FAMILIES OF COMMUTING

OPERATORS

V. S. Gerdjikov

Abstract. We start with a Riemann-Hilbert Problems (RHP) with canon-
ical normalization whose sewing functions depends on several additional vari-
ables. Using Zakharov-Shabat theorem we are able to construct a family of
ordinary differential operators for which the solution of the RHP is a common
fundamental analytic solution. This family of operators obviously commute.
Thus we are able to construct new classes of integrable nonlinear evolution
equations.

1. Introduction. The development of the soliton theory revealed an im-
portant class of NLEE (nonlinear evolution equations) that describe special types
of wave-wave interactions [1, 31, 16, 4, 24, 20, 32] which play important role in
various fields in physics.

A formal approach to the integrable equations started by Gel’fand and Dickey
[3, 17, 18] and developed actively later on (see e.g. [17, 18] and the references
therein) is well known. It allows one to construct the Lax representations for im-
portant classes of NLEE such as the dispersionless KP hierarchy but it disregards
the spectral properties of the Lax operators.

The topic quickly attracted mathematicians from spectral theory, dynamical
systems, Lie algebras, Hamiltonian dynamics, differential geometry, see [31, 26,
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27, 36, 37, 5, 16, 4] and the numerous references therein. It attracted also a num-
ber of physicists because they found important applications of these NLEE in fluid
mechanics, nonlinear optics, superconductivity, plasma physics etc. As a result
many different approaches for investigating the soliton equations and construct-
ing their Lax representations, soliton solutions, integrals of motion, Hamiltonian
hierarchies etc. were developed, see [38, 26, 27, 2, 31, 24, 37, 22]. Of course, it is
not possible in a short paper to list all important references that cover the broad
topics mentioned above.

The inverse scattering method has been applied to many physically impor-
tant multidimensional evolution equations including the N -wave equation, Davey-
Stewartson, Kadomtsev-Petviashvilli etc. [35, 22, 23, 36, 37, 38, 30]. They have
been treated by nonlocal generalizations of the Riemann-Hilbert problem and by
the ∂̄-method.

In the present paper we propose an alternative approach to the same class of
equations using as a starting point the Riemann-Hilbert problem (RHP) [40, 41,
36, 37, 31, 39]; the importance of the canonical normalization of RHP was noticed
in [10, 6]. Our aim is to show that this allows one to construct rings of commuting
operators and in addition gives a tool to study their spectral properties.

In Section 2 below we start with some preliminaries concerning the RHP. In
Section 3 we use the solutions of the RHP to construct family of jets of order
k, in Section 4 we list their simplest reductions. In the last two Sections we
demonstrate how this construction can be used to solve NLEE in two and higher
dimensional space-times. In Section 5 we use jets of order 1 to reproduce well
known results about the 3-wave equations in two- and three-dimensional space-
times. We also demonstrate the integrability of N -wave type equations in higher
dimensional space-times. In Section 6 we use jets of order 2 which allows us to
construct new types of integrable N -wave interactions whose interaction terms
contain quadratic and cubic nonlinearities, as well as x-derivatives. These equa-
tions also allow integrable extensions to three-dimensional space-time. The last
Section contains discussion and conclusions.

2. RHP with canonical normalization. Let us formulate the RHP:

ξ+(~x, t, λ) = ξ−(~x, t, λ)G(~x, t, λ), λk ∈ R, lim
λ→∞

ξ+(~x, t, λ) = 11,(1)

where ξ±(~x, t, λ) take values in the simple Lie group G with Lie algebra g.
ξ+(~x, t, λ) (resp. ξ−(~x, t, λ)) is an analytic functions of λ for Imλk > 0 (resp.
for Im λk < 0). For simplicity we consider particular type of dependence of the



RHP and families of commuting operators 203

sewing function G(~x, t, λ) on the auxiliary variables:

i
∂G

∂xs
− λk[Js, G(~x, t, λ)] = 0, i

∂G

∂t
− λk[K,G(~x, t, λ)] = 0.(2)

where k ≥ 1 is a fixed integer and Js are linearly independent elements of the
Cartan subalgebra Js ∈ h ⊂ g.

The canonical normalization of the RHP means that we can introduce the
asymptotic expansion

ξ±(~x, t, λ) = exp Q(~x, t, λ), Q(~x, t, λ) =

∞
∑

k=1

Qk(~x, t)λ−k.(3)

Since ξ±(~x, t, λ) are group elements then all Qk(~x, t) ∈ g. However,

Js(~x, t, λ) = ξ±(~x, t, λ)Jsξ̂
±(~x, t, λ), K(~x, t, λ) = ξ±(~x, t, λ)Kξ̂±(~x, t, λ),(4)

belong to the algebra g for any J and K from g. If in addition K also belongs to
the Cartan subalgebra h, then

[Js(~x, t, λ),K(~x, t, λ)] = 0.(5)

An important tool in our considerations plays the well known Zakharov-
Shabat theorem [40, 41] formulated below

Theorem 1. Let ξ±(x, t, λ) be solutions to the RHP (1) whose sewing func-

tion depends on the auxiliary variables ~x and t via eq. (2). Then ξ±(x, t, λ) are

fundamental solutions of the following set of differential operators:

Lsξ
± ≡i

∂ξ±

∂xs

+ Us(~x, t, λ)ξ±(~x, t, λ) − λk[Js, ξ
±(~x, t, λ)] = 0,

Mξ± ≡i
∂ξ±

∂t
+ V (~x, t, λ)ξ±(~x, t, λ) − λk[K, ξ±(~x, t, λ)] = 0.

(6)

P r o o f. The proof follows the lines of [40, 41]. We introduce the functions:

g±s (~x, t, λ) = i
∂ξ±

∂xs

ξ̂±(~x, t, λ) + λkξ±(~x, t, λ)Jsξ̂
±(~x, t, λ),

g±(~x, t, λ) = i
∂ξ±

∂t
ξ̂±(~x, t, λ) + λkξ±(~x, t, λ)Kξ̂±(~x, t, λ),

(7)
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and using (2) prove that

g+
s (~x, t, λ) = g−s (~x, t, λ), g+(~x, t, λ) = g−(~x, t, λ),(8)

which means that these functions are analytic functions of λ in the whole complex
λ-plane. Next we find that:

lim
λ→∞

g+
s (~x, t, λ) = λkJs, lim

λ→∞
g+(~x, t, λ) = λkK.(9)

and make use of Liouville theorem to get

g+
s (~x, t, λ) = g−s (~x, t, λ) = λkJs −

k
∑

l=1

Us;l(~x, t)λk−l,

g+(~x, t, λ) = g−(~x, t, λ) = λkK −
k

∑

l=1

Vl(~x, t)λk−l.

(10)

We shall see below that the coefficients Us;l(~x, t) and Vl(~x, t) can be expressed in
terms of the asymptotic coefficients Qs in eq. (3). �

Lemma 1. The set of operators Ls and M commute, i.e. the following set

of equations hold:

i
∂Us

∂xj

− i
∂Uj

∂xs

+ [Us(~x, t, λ) − λkJs, Uj(~x, t, λ) − λkJj ] = 0,

i
∂Us

∂t
− i

∂V

∂xs

+ [Us(~x, t, λ) − λkJs, V (~x, t, λ) − λkK] = 0.

(11)

where

Us(~x, t, λ) =

k
∑

l=1

Us;l(~x, t)λk−l, V (~x, t, λ) =

k
∑

l=1

Vl(~x, t)λk−l.(12)

P r o o f. The set of the operators Ls and M (6) have a common FAS, i.e.
they all must commute. The eqs. (11) are an immediate consequence of (6). �
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3. Jets of order k. In what follows we will consider the jets of order k of
J (x, λ) and K(x, λ), see (5). We introduce them by:

Js(~x, t, λ) ≡
(

λkξ±(~x, t, λ)Jlξ̂
±(~x, t, λ)

)

+
= λkJs − Us(~x, t, λ),

K(~x, t, λ) ≡
(

λkξ±(~x, t, λ)Kξ̂±(~x, t, λ)
)

+
= λkK − V (~x, t, λ).

(13)

The subscript + used above means that we insert the asymptotic expansions of
ξ± and their inverse (3) and cut off the terms with negative powers of λ.

Obviously Us(x) ∈ g can be expressed in terms of Qs(x). In doing this we
take into account (5) and obtain [19]

Js(~x, t, λ) = Js +

∞
∑

k=1

1

k!
adk

QJs, K(~x, t, λ) = K +

∞
∑

k=1

1

k!
adk

QK,(14)

and therefore for Us;l we get:

Us;1(~x, t) = −adQ1
Js, Us;2(~x, t) = −adQ2

Js −
1

2
ad2

Q1
Js

Us;3(~x, t) = −adQ3
Js −

1

2
(adQ2

adQ1
+ adQ1

adQ2
) Js −

1

6
ad3

Q1
Js

...

Us;k(~x, t) = −adQk
Js −

1

2

∑

s+p=k

adQsadQpJs

−
1

6

∑

s+p+r=k

adQsadQpadQrJs − · · · −
1

k!
adk

Q1
Js,

(15)

and similar expressions for Vl(~x, t) with Js replaced by K.

4. Reductions of polynomial bundles. An important tool to construct
new integrable NLEE is based on Mikhailov’s group of reductions [28]. Below we
will use mainly Z2 and ZN with N > 2 reduction groups. The basic Z2-examples
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are as follows:

(16)

a) Aξ+,†(x, t, ǫλ∗)Â = ξ̂−(x, t, λ), AQ†(x, t, ǫλ∗)Â = −Q(x, t, λ),

b) Bξ+,∗(x, t, ǫλ∗)B̂ = ξ−(x, t, λ), BQ∗(x, t, ǫλ∗)B̂ = Q(x, t, λ),

c) Cξ+,T (x, t,−λ)Ĉ = ξ̂−(x, t, λ), CQ†(x, t,−λ)Ĉ = −Q(x, t, λ),

where ǫ2 = 1 and A, B and C are elements of the group G such that A2 = B2 =
C2 = 11. As for the ZN -reductions we may have:

(17) Dξ±(x, t, ωλ)D̂ = ξ±(x, t, λ), DQ(x, t, ωλ)D̂ = Q(x, t, λ),

where ωN = 1 and DN = 11.

These relations allow us to introduce algebraic relations between the matrix
elements of Q(x, t, λ) which will be automatically compatible with the NLEE.
The classes of inequivalent reductions of the N -wave equations related to the
low-rank simple Lie algebras are given in [8, 9, 11, 12, 13, 15].

5. On N -wave equations (k = 1) in 2 and more dimensions.
The integrability of the N -wave equations has been well known for several decades
now, [26, 27, 35, 38, 31, 14, 24, 23]. Their Lax representation involves two Lax
operators linear in λ which are particular case of (6) with k = 1:

Lξ± ≡i
∂ξ±

∂x
+ [J,Q(x, t)]ξ±(~x, t, λ) − λ[J, ξ±(~x, t, λ)] = 0,

Mξ± ≡i
∂ξ±

∂t
+ [K,Q(x, t)]ξ±(~x, t, λ) − λ[K, ξ±(~x, t, λ)] = 0.

(18)

The corresponding equations take the form:

i

[

J,
∂Q

∂t

]

− i

[

K,
∂Q

∂x

]

− [[J,Q], [K,Q(x, t)]] = 0(19)

In fact the construction of the FAS for the operator L (18)) [40, 41, 38, 31] was
the important step forward, that demonstrated the importance of the RHP for
solving integrable equations.

The most important and nontrivial example of such NLEE is the 3-wave
equations in two-dimensional space-time [38, 31]. The most important and non-
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trivial case corresponds to g ≃ sl(3)

(20) Q(x, t) =







0 u1 u3

−v1 0 u2

−v3 −v2 0






,

J = diag (a1, a2, a3),

K = diag (b1, b2, b3),

with tr J = tr K = 0 and a1 > a2 > a3. We also impose the reduction (16a) with
A = diag (1, ǫ1, ǫ2) where ǫ2

1 = ǫ2
2 = 1. Then the 3-wave equations take the form:

∂u1

∂t
−

a1 − a2

b1 − b2

∂u1

∂x
+ κǫ1ǫ2u

∗
2u3 = 0,

∂u2

∂t
−

a2 − a3

b2 − b3

∂u2

∂x
+ κǫ1u

∗
1u3 = 0,

∂u3

∂t
−

a1 − a3

b1 − b3

∂u3

∂x
+ κǫ2u

∗
1u

∗
2 = 0,

(21)

where

κ = a1(b2 − b3) − a2(b1 − b3) + a3(b1 − b2).(22)

Depending on the choice of the reduction and on interrelations between the group
velocities the 3-wave interactions may describe qualitatively different processes:
soliton decay and explosive soliton instability [38, 31].

In the case of 3-dimensional space-time we consider Q of the form (20), but
now let uj and vj be functions of x1 = x, x2 = y and t. Let also J1 = J and
J2 = I = diag (c1, c2.c3). Now the corresponding solution of the RHP ξ±(x, y, t, λ)
will be FAS not only of L and M above, but also of

Pξ± ≡i
∂ξ±

∂y
+ [I,Q(x, t)]ξ+(~x, t, λ) − λ[I, ξ+(~x, t, λ)] = 0,(23)

and all these three operators will mutually commute, i.e. along with [L,M ] = 0
we will have also [L,P ] = 0 and [P,M ] = 0. As a result Q(x, y, t) will satisfy two
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more NLEE of the form (24). Obviously it will satisfy also

(24)

2
∂u1

∂t
−

a1 − a2

b1 − b2

∂u1

∂x
−

a1 − a2

c1 − c2

∂u1

∂y
+ (κ1 + κ2)ǫ1ǫ2u

∗
2u3 = 0,

2
∂u2

∂t
−

a1 − a3

b1 − b3

∂u2

∂x
−

a1 − a3

c1 − c3

∂u2

∂y
+ (κ1 + κ2)ǫ1u

∗
1u3 = 0,

2
∂u3

∂t
−

a2 − a3

b2 − b3

∂u3

∂x
−

a2 − a3

c2 − c3

∂u3

∂y
+ (κ1 + κ2)ǫ2u

∗
1u

∗
2 = 0.

which is linear combination of the three equations mentioned above. Here κ1 = κ
(see eq. (22) and

κ2 = a1(c2 − c3) − a2(c1 − c3) + a3(c1 − c2).(25)

These three wave equations are related to the real forms of the algebra sl(3)
which has rank 2. Therefore, trying to add more auxiliary variables to the solution
of the RHP will not be effective since only two elements of all xsJs will be linearly
independent.

For N -wave equations related to Lie algebras g of higher rank r we can add
up to r auxiliary variables. The corresponding PDE takes the form:

r
∂Q

∂t
−

r
∑

s=1

(ad−1
Js

adJ)
∂Q

∂xs

− i
r

∑

s=1

ad−1
Js

[[J,Q], [Js, Q(~x, t)]] = 0(26)

where Q is an n×n off-diagonal matrix depending on r +1 variables. We remind
that if J = diag (a1, . . . , an) then

(adJQ)jk ≡ ([J,Q])jk = (aj − ak)Qjk, (ad−1
J Q)jk =

1

aj − ak

Qjk,

and similarly for the other Js. The coefficient r multiplying the t-derivative can
be removed by rescaling of t.

Again we can use additional reductions of the type (16). More details about
these equations will be given elsewhere.

6. New N -wave equations (k = 2) in 2 and more dimensions.
Here we shall give examples of new types of N -wave equations. Let us choose
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again g = sl(3). The general form of the potentials is given by

Q1(~x, t) =





0 u1 u3

−v1 0 u2

−v3 −v2 0



 , Q2(~x, t) =





q11 w1 w3

−z1 q22 w2

−z3 −z2 q33



 ,(27)

We also fix up k = 2. Then the Lax pair becomes

(28)

Lξ± ≡ i
∂ξ±

∂x
+ U(x, t, λ)ξ±(x, t, λ) − λ2]J, ξ±(x, t, λ)] = 0,

Mξ± ≡ i
∂ξ±

∂t
+ V (x, t, λ)ξ±(x, t, λ) − λ2]K, ξ±(x, t, λ)] = 0,

where using eq. (15)

U ≡ U2 + λU1 =

(

[J,Q2(x)] −
1

2
[[J,Q1], Q1(x)]

)

+ λ[J,Q1],

V ≡ V2 + λV1 =

(

[K,Q2(x)] −
1

2
[[K,Q1], Q1(x)]

)

+ λ[K,Q1].

Note, that this Lax pair is independent of the diagonal elements of Q2.
If we retain the generic potentials (27) the Lax pair above will provide us

with a set of 6 new complicated equations for the 6 independent functions uj and
wj . To make the things more simple we impose a Z2-reduction of the form (16a)
with A = diag (1, ǫ, 1), ǫ2 = 1. Thus Q1 and Q2 get reduced into:

(29) Q1 =





0 u1 0
ǫu∗

1 0 u2

0 ǫu∗
2 0



 , Q2 =





0 0 w3

0 0 0
w∗

3 0 0



 ,

and J and K are as in (20). Now L and M involve only 3 independent functions.
Skipping the details we get a new type of integrable 3-wave equations:

i(a1 − a2)
∂u1

∂t
− i(b1 − b2)

∂u1

∂x
+ ǫκu∗

2u3 + ǫ
κ(a1 − a2)

(a1 − a3)
u1|u2|

2 = 0,

i(a2 − a3)
∂u2

∂t
− i(b2 − b3)

∂u2

∂x
+ ǫκu∗

1u3 − ǫ
κ(a2 − a3)

(a1 − a3)
|u1|

2u2 = 0,

i(a1 − a3)
∂u3

∂t
− i(b1 − b3)

∂u3

∂x
−

iκ

a1 − a3

∂(u1u2)

∂x

+ ǫκ

(

a1 − a2

a1 − a3
|u1|

2 +
a2 − a3

a1 − a3
|u2|

2

)

u1u2 + ǫκu3(|u1|
2 − |u2|

2) = 0,

(30)



210 V. S. Gerdjikov

where the interaction constant κ is given by (22) and:

u3 = w3 +
2a2 − a1 − a3

2(a1 − a3)
u1u2.(31)

The diagonal terms in the Lax representation are λ-independent. Two of
them read:

i(a1 − a2)
∂|u1|

2

∂t
− i(b1 − b2)

∂|u1|
2

∂x
− ǫκ(u1u2u

∗
3 − u∗

1u
∗
2u3) = 0,

i(a2 − a3)
∂|u2|

2

∂t
− i(b2 − b3)

∂|u2|
2

∂x
− ǫκ(u1u2u

∗
3 − u∗

1u
∗
2u3) = 0,

(32)

These relations are satisfied identically as a consequence of the NLEE (30). The
third one also vanishes since tr [L,M ] = 0.

Let us now consider the case when the sewing function G of the RHP depends
on 3 variables: t, x1 = x and x2 = y with J1 = J and J2 = I = diag (c1, c2, c3).
For k = 2 we obtain a set of three ordinary differential operators: L, M (28) and

(33)

Pξ± ≡ i
∂ξ±

∂y
+ W (x, y, t, λ)ξ±(x, y, t, λ) − λ2]I, ξ±(x, y, t, λ)] = 0,

W ≡ W2 + λW1

=

(

[I,Q2(x, y, t)] −
1

2
[[I,Q1], Q1(x, y, t)]

)

+ λ[I,Q1(x, y, t)],

commuting identically with respect to λ. It is obvious that [L,P ] = 0 if

i(a1 − a2)
∂u1

∂t
− i(c1 − c2)

∂u1

∂y
+ ǫκ2u

∗
2u3 + ǫ

κ2(a1 − a2)

(a1 − a3)
u1|u2|

2 = 0,

i(a2 − a3)
∂u2

∂t
− i(c2 − c3)

∂u2

∂y
+ ǫκ2u

∗
1u3 − ǫ

κ2(a2 − a3)

(a1 − a3)
|u1|

2u2 = 0,

i(a1 − a3)
∂u3

∂t
− i(c1 − c3)

∂u3

∂y
−

iκ2

a1 − a3

∂(u1u2)

∂y

+ ǫκ2

(

a1 − a2

a1 − a3
|u1|

2 +
a2 − a3

a1 − a3
|u2|

2

)

u1u2 + ǫκ2u3(|u1|
2 − |u2|

2) = 0,

(34)

where κ2 is given by eq. (25). It is not difficult to write down the third new
3-wave equation which is a consequence of the commutation [M,P ] = 0.
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Since the three operators L, M , and N mutually commute, u1, u2 and u3

as functions of x, y and t should satisfy simultaneously the three NLEE of the
type (30). Therefore they should satisfy also any NLEE which is obtained as, say
linear combination of the above:

2i
∂u1

∂t
− i(~v(1) · ∇)u1 + ǫ(κ1 + κ2)

(

u∗
2u3

a1 − a2
+

u1|u2|
2

(a1 − a3)

)

= 0,

2i
∂u2

∂t
− i(~v(2) · ∇)u2 + ǫ(κ1 + κ2)

(

u∗
1u3

a1 − a3
−

u2|u1|
2

(a1 − a3)

)

= 0,

2i
∂u3

∂t
− i(~v(3) · ∇)u3 − i

(~κ · ∇)(u1u2)

(a1 − a3)2
+

ǫ(κ1 + κ2)

a1 − a3
(|u1|

2 − |u2|
2)u3

+
ǫ(κ1 + κ2)

(a1 − a3)2
(

(a1 − a2)|u1|
2 + (a2 − a3)|u2|

2
)

u1u2 = 0.

(35)

Here ∇ = (∂x, ∂y)
T , the characteristic velocities ~v(j), j = 1, 2, 3 and ~κ are two-

component vectors given by:

(36)

~v(1) =
1

a1 − a2

(

b1 − b2

c1 − c2

)

, ~v(2) =
1

a2 − a3

(

b2 − b3

c2 − c3

)

,

~v(3) =
1

a1 − a3

(

b1 − b3

c1 − c3

)

, ~κ =

(

κ1

κ2

)

,

and κ1 = κ, see eq. (22).

7. Discussion and conclusions. We have proposed a method for con-
structing families of commuting operators. Applied to jets of order 1 with
g ≃ sl(3) this method reproduces the well known results for the 3-wave equations
in two- and three-dimensional space-times. It is shown that N -wave equations
related to Lie algebras of rank r allow integrable extensions to r + 1-dimensional
space-times. Below we briefly discuss some open problems and generalizations.

Using jets of order 2 gives us the simplest nontrivial examples for new types of
integrable 3-wave equation whose interaction terms contain quadratic and cubic
nonlinearities, as well as x-derivatives. These equations also allow integrable
extensions to three-dimensional space-time.

It is not difficult to obtain many other new integrable 3- and N -wave equa-
tions. Indeed, one can choose: i) higher rank simple Lie algebras; ii) different
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types of grading; iii) different power k of the polynomials U(~x, t, λ) and V (~x, t, λ)
and iv) different reductions of U and V .

These new NLEE must be Hamiltonian. It is natural to view the jets U(~x, t, λ)
as elements of more complicated co-adjoint orbits of the relevant Kac-Moody
algebra, generated by the chosen grading of f, see [25, 33, 34].

By construction, the method allows treating multi-dimensional NLEE. In the
examples above we used the algebra sl(3) and demonstrated integrable 3-wave
equations in 2 + 1-dimensional space-time. If we want to study new types of
integrable N -wave models in r+1 space-time dimensions we have to consider Lie
algebras of rank r and accordingly larger values for N .

The method allows one also to apply Zakharov-Shabat dressing method [40,
41, 29, 21] for constructing their explicit (N -soliton) solutions. Instead of solving
the inverse scattering problem for L we would rather deal with a Riemann-Hilbert
problem with canonical normalization. For polynomials of order k the contour
on which the RHP is defined consists of k straight lines lk : arg λ = πi/k passing
through the origin. Of course, it may necessary to use dressing factors with more
specific λ-dependence.

This approach can be used also to analyze the NLEE derived by Gel’fand-
Dickey approach [3, 17, 18]. It would provide the possibility to systematically
construct the spectral decompositions that linearize the relevant NLEE [7, 16].
Still more challenging is to study the soliton interactions of the new N -wave
equations.
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