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1 Introduction

Those experienced in probabilistic modelling are well aware of the stringent, often un-
realistic, assumptions that are imposed to retain explicit computability of interesting
descriptors of a model. They share the resulting frustration with workers in statistics,
physical applied mathematics, and mathematical biology. The advent of modern com-
puters radically changed the range of explicit computability. The rare explicit analytic
solutions are now relatively less important. Although there is residual reluctance to recog-
nizing that reality and to adapting mathematical education accordingly, the computer
and algorithmic thinking are now indispensable to applied mathematicians.

Computational science: Between the purely theoretical exploration of models by
mathematical formalism and the empirical, experimental study of prototypes, there lies
the rich, still emerging methodology of computational science. In brief, that methodology
seeks understanding of the qualitative behavior of the model though systematic numerical
computation or simulation. For the computational scientist, the algorithm fulfills the
same function as the laboratory tool for the experimental physicist. The mathematical
rigor that the former puts into the construction of the algorithm is on a par with the
depth of theoretical physical understanding that the latter must bring to experimentation.
With the ongoing rapid evolution of computers and greater familiarity with their use,



6 M.F. Neuts

computational science will merge, I am convinced, with all analysis and experimentation.
It is, in fact, a natural bridge between these two approaches. They should never have
been thought of as distinct to begin with.

Since the early 1970s, I have devoted my efforts to developing such methodology for
probability models, and specifically, for queues and point processes.

All mathematical thought deals with idealized structures. When we study, say, a
queueing model, we postulate an idealized version of the service mechanism and of the
arrival process. To be appealing, that idealized version ought to: be mathematically
sufficiently simple for analysis (tractability), be capable of representing a wide variety of
qualitatively different features (versatility), and should lead to results that, with reason-
able effort, can be implemented on today’s computers (computability.) For example, the
homogeneous Poisson process, that simplest of point processes, excels in tractability, has
little or no versatility, and few results derived under Poisson assumptions offer a compu-
tational challenge. Sometimes, I illustrate that by saying that, among point processes,
the Poisson process occupies a comparably privileged place as the constant function holds
among functions of a real variable.

The first lecture dealt with versatile, algorithmically tractable generalizations of the
exponential distribution and Poisson process, to wit, distributions of phase type (PH-
distributions) and the Markovian arrival process (MAP).

When the Poisson input of classical queueing models, such as M/G/1 queue, is
replaced by a MAP, we can still use embedded Markov renewal processes, the traditional
tools for their analysis. The transition probability matrices of these embedded processes
retain the same formal structure as in the elementary case, but their elements are now
matrices themselves. The preservation of structure, not of analytic detail, enables us to
treat these generalized models in substantially the same way as the elementary case. Of
course, along the way many mathematical results must be generalized to serve in this
new setting. These developments, known collectively as the matrix- analytic methods for
probability models, were reviewed in the second lecture.

The third lecture was devoted to thought experiments in which random transforma-
tions are applied to point processes to bring out quantifiable descriptors of their behavior.
In relation to these, there are many open questions of a theoretical nature; there is room
for methodological development in computer experimentation, data analysis and visual-
ization.

2 PH-Distributions and the Markovian Arrival Process

The distributions of phase-type (PH-distributions) form a large class of probability dis-
tributions which is dense in the set of all distributions on the right half-line. Their
importance lies in the tractable solutions they provide for many useful probability mod-
els. The Markovian arrival process (MAP) is a similarly tractable generalization of the
Poisson process. Expositions of the basic properties of both are found in Lucantoni [?],
and in Neuts [?] and [?]. Although it takes some practice to master the matrix formalism
used in calculations, the methodology is elementary and constructive.
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2.1 PH-Distributions

Any probability distribution that can be the probability law of the time to absorption in
a finite Markov chain with a single absorbing state is of phase type. There are entirely
similar developments for continuous and for lattice distributions of phase type. For the
continuous case, let Q be the generator of a finite Markov chain with a single absorbing
state, partitioned as

Q =

(

T T0

0 0

)

,

where T is a non-singular matrix, and T0 is a column vector such that Te+T0 = 0. Its
initial probability vector is similarly partitioned as (α, α∗), where α∗ is the probability
of instantaneous absorption. The distribution of the time until absorption is then given
by:

F (x) = 1 − αexp(Tx)e, for x ≥ 0,(1)

and its density portion is

F ′(x) = αexp(Tx)T0, for x > 0.(2)

These are the generic forms of a PH-distribution and its density. Their similarity
to the exponential distribution is obvious. The transient states of the Markov chain
are called phases. The pair (α, T ) is called a representation of the PH-distribution.
Representations are not unique. An interesting, difficult problem is to construct minimal
representations of PH-distributions with either as few phases or as few parameters as
possible.

The class of PH-distributions has many useful closure properties that allow oper-
ations such as convolution, mixing, or some forms of conditioning to be given matrix
representations in terms of the representations of the components of these operations.
The explicit construction of representations is of paramount importance. It often leads to
large, but specially structured matrices. A very general closure theorem for PH- distrib-
utions is found in Assaf and Levikson [?], but at that level of generality the constructions
of representations is not known, and is likely to be impossible.

Necessary and sufficient conditions for a probability distribution on [0,∞) to be of
phase-type were established in a beautiful paper of O’Cinneide [?]. While any distrib-
ution on [0,∞) is the limit of sequences of PH-distributions, the actual construction of
approximations is done by numerical procedures. An excellent discussion of these and
of procedures for fitting PH-distributions to data, is found in the article by Asmussen,
Nerman, and Olsson [?], which also reviews the related literature.

The PH-renewal process, the renewal process with an underlying phase-type distrib-
ution, leads to an elementary, but useful construction. Assuming, for ease of exposition,
that α∗ = 0, we restart, upon each absorption, the absorbing Markov chain, instanta-
neously and independently of the past. Defining path functions by right-hand continuity,
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we obtain an m- state Markov chain with generator

Q∗ = T + T0
α,(3)

which, without loss of generality, can be made irreducible. The generator Q∗ plays a
crucial role in the derivation of explicit matrix formulas for the renewal function and
the renewal density of PH-renewal processes. It also clearly shows that the PH-renewal
process is a particular case of the MAP. It is now customary to develop the matrix
formalism for MAPs and to obtain the results for the renewal process by noticing the
simplifications induced by that fact that the matrix D1 = T0

α is dyadic.

2.2 The MAP

In modelling, say, the arrivals to a queue, we are primarily interested in the interarrival
times, the successive intervals between arrivals. Renewal processes and, most commonly
the Poisson process, are the most familiar processes used in modelling. However, as we
know, stochastic models requiring as few as two general renewal processes are, in all
but a few cases, already analytically intractable. For example, queues whose input is
the superposition of two independent non- Poisson, renewal streams defy analysis except
in very special cases. To model a modest form of dependence in the input stream,
the process of the successive intervals between transitions in a Markov renewal process,
(semi-Markovian arrivals), has been considered, but the tractability of the corresponding
models is severely limited.

The MAP, of which we briefly discuss only the continuous-time version, is generated
by the transitions of a particular class of Markov renewal processes related to irreducible
continuous-parameter Markov chains.

We consider an irreducible m × m generator D with invariant probability vector π.
We write the matrix D as the sum of matrices D0, D1, where D0 has negative diagonal
elements and all its remaining elements and those of D1 are nonnegative. Moreover, D0

is nonsingular and [−D0]
−1 is a nonnegative matrix.

The MAP is the point process generated by the transitions epochs of the m-state
Markov renewal process with transition probability matrix

F (x) =

∫

x

0

exp(D0u)duD1, for x ≥ 0.(4)

The MAP is parametrized by the matrices D0 and D1. The homogeneous Poisson process
of rate λ arises when D1 = −D0 = λ. The MAP is closely related to the Markov
chain with generator D. A nice, intuitively appealing description of how the MAP is
constructed by adding a Markovian labeling of transitions is given in Lucantoni [?]. For
a survey giving many examples of MAPs, see Neuts [?]. To name only one important
property, the superposition of two independent MAPs is also a MAP. That allows us, at
least in some cases, to provide a full analysis of the effect of superpositions. A practical
situation where that arises involves the decision whether or not to accept an additional
job stream to a single server queue with spare capacity for service.



Algorithmic Methods in Queues. . . 9

The Markov-modulated Poisson process, (MMPP), is the special type of MAP where
the matrix D1 is diagonal, say, with diagonal elements λ1, ..., λm. It is the doubly sto-
chastic Poisson process whose rate assumes one of m values depending on the state of
an underlying Markov chain with generator D. Statistical procedures for fitting MMPPs
are studied in Rydén [?] and [?], and in references therein. Statistical methodology for
general MAPs is more difficult and deserves further attention.

This is not the place for a detailed exposition of the matrix formalism of MAPs.
Let me discuss instead why they are such an appealing, potentially very useful class
of point processes. In the first place, they are a versatile generalization of the Poisson
process which, in its matrix formalism, preserves some of the analytic tractability of
the elementary case. That is particularly evident from the elegant results obtained for
classical queueing models in which Poisson arrivals are replaced by MAPs.

In simulation methodology, it is very easy to generate realizations of MAPs with a
variety of initial conditions. For example, with one particular, readily computed, initial
probability vector, one obtains the stationary version of the MAP. That can serve to
eliminate some sources of initialization effects that commonly plague simulations.

Because of their relationship to finite Markov chains and their matrix-analytic for-
malism, MAPs and PH- distributions can occasionally be used to prove results that are
presently intractable for general distributions. Noteworthy examples of that technique
are found in Neuts and Takahashi [?] and Neuts [?]. In the first paper, it is shown that
the steady-state distributions in a complex multi-server queue have asymptotically ex-
ponential or geometric tails. That result is likely to be valid under broader assumptions
on the tail behavior of general service time distributions, but the appropriate methods
to prove such results do not yet exist.

Similarly, it is sometimes possible to prove general results by passing through the
techniques of MAPs or PH- distributions. If the end results, at least for continuous
functionals, do not involve the explicit form of MAPs or PH- distributions, they hold in
general. That is a general consequence of the unique extension theorem for continuous
functions on a dense subset of a topological space. That method is described in some
detail and is utilized in [?].

However, the greatest appeal of MAPs lies, I believe, in their use as benchmarks in
statistical or data-analytic studies of point process data. Our toolbox of mathematical
descriptors of physical properties of point processes is still very limited; it mostly consists
of second-order moment formulas. There is much discussion, notably in the telecommu-
nications community, of the physical characteristics of data streams that are most crucial
to design and performance. The imprecise term burstiness is used to describe qualities
of data streams not readily captured by elementary, tractable point process models.

There is an ongoing investigation of random transformations of point processes that
can elucidate their behavior in a quantitative way. An early example of a thought exper-
iment that is a random transformation of a point process led to the notion of peakedness.
One imagines the point process to be the input to an infinite server queue with inde-
pendent, identically distributed holding times. Equivalently, one associates i.i.d lifetimes
with each event in the point process and one derives the steady-state distribution of the
number of events alive at an arbitrary time epoch. The peakedness is defined by the
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coefficient of variation of that distribution. It depends, of course, on the distribution of
the holding times and is explicitly computable only for special distributions, among them
the exponential, and the MAP as the point process of interest. The peakedness, which
can be readily estimated from data, provides a limited, though useful descriptor of the!
variability of a point process. However, as it is presently defined, it is known to measure
only second-order properties of the process. For a thorough discussion of peakedness, see
Eckberg [?].

In the same spirit, my associates and I have investigated various other random trans-
formations. Among these are local poissonification [?], selective marking [?], competitions
for runs, [?], and alternative associations of lifetimes (clocks) to the successive events of
a point process, see [?] and [?]. For MAPs - and possibly only for MAPs - we can express
various distributions and other quantities of the induced descriptors by matrix formulas
that can be computationally implemented. The idea is to ascertain that, for MAPs with
well-understood behavior, certain particular descriptors indeed reflect that behavior in-
formatively. If so, that will induce confidence using that descriptor also in cases where a
clean theoretical analysis is not feasible. That situation is entirely analogous to that for
many common statistical procedures whi! ch can be fully justified only under normality
and independence assumptions.

Much more needs to be done. Aside from matrix-analytic studies of the random
transformations, it is necessary to develop algorithms for the computation of the various
distributions for MAPs and to study these distributions for representative models. Major
insight is gained from the visualization of these random transformations applied to simu-
lated data. However, finding the proper, most informative, and accurate visualizations is
not always easy. They require much trial-and-error on the part of the investigator. This
truly computation-intensive line of investigation is, in my opinion, highly promising.

3 Structured Markov Chains

In elementary queueing theory, two models, the M/G/1 and the GI/M/1 queues, allow
particularly tractable analyses. They are extensively discussed in all introductory texts
on queueing theory. Because of the Poisson input in the first, and the exponential service
time of the second, they also have many special properties. Results can be derived by
a variety of quick, clever arguments. Occasionally, these hide the general structural
properties accounting for the tractability of these models.

During the 1970s, it became clear that, in both cases, the crucial feature was
the structure of the transition probability matrices of their embedded Markov renewal
processes. In considerable generality, that structure reflects the fact that both models
and their generalizations basically are random walks on a semi-infinite, two-dimensional
strip of lattice points.
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The embedded Markov chain in models of M/G/1−type has the structure

P1 =

















0 B0 B1 B2 B3 B4 ...
1 C0 A1 A2 A3 A4 ...
2 0 A0 A1 A2 A3 ...
3 0 0 A0 A1 A2 ...
4 0 0 0 A0 A1 ...

... ... ... ...

















,

where the symbols 0 and i for i ≥ 1 stand for sets of m1 and m states respectively.

The embedded Markov chain in models of GI/M/1−type has the structure

P2 =

















0 B00 B01 0 0 0 ...
1 B10 B11 A0 0 0 ...
2 B20 B21 A1 A0 0 ...
3 B30 B31 A2 A1 A0 ...
4 B40 B41 A3 A2 A1 ...

... ... ... ...

















.

In both cases, the sequence of matrices {Ai} consists of substochastic matrices, whose
sum A is stochastic. A particular subclass, common to both types, has a block tri-
diagonal matrix,

P3 =

















0 B00 B01 0 0 0 ...
1 B10 B11 A0 0 0 ...
2 0 B21 A1 A0 0 ...
3 0 0 A2 A1 A0 ...
4 0 0 0 A2 A1 ...

... ... ... ...

















.

For the continuous-parameter case, these are known as quasi-birth-and-death processes
or QBDs. They arise in a wide variety of practical applications in computer performance
and telecommunications modelling.

The theory of the Markov renewal processes of the M/G/1 and GI/M/1 types is
now fully developed. A brief summary cannot do justice to its richness. Its original
development is presented in my two books [?] and [?], but both have been greatly sup-
plemented by new mathematical results, algorithmic developments, and generalizations
to structures such as tree-like graphs, and others that have appeared since their publi-
cation. A review of these recent developments with an extensive bibliography is given in
Neuts [?].

We shall cite only one, possibly the most widely known matrix-analytic result, the
matrix-geometric theorem. If a Markov chain with transition probability matrix P2 is
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positive recurrent - and explicit conditions for that are known - then its invariant proba-
bility vector x, partitioned as x0, x1, x2, ... into row vectors of appropriate dimensions,
satisfies

xi = x1R
i−1, for i ≥ 1,(5)

where the m×m matrix R is the minimal, nonnegative solution of the non-linear equation

R =

∞
∑

i=0

RiAi.(6)

Once the matrix R is known, the vectors x0 and x1 are obtained by solving a system
of linear equations. The matrix R has a nice probabilistic interpretation. That has led
to several insightful algorithms for its numerical computation as, for example, that for
QBDs in Latouche and Ramaswami [?].

The inclusion of the labels M/G/1 and GI/M/1 in the names of these Markov
renewal processes refers only to their simplest, elementary cases. Their versatility goes far
beyond these classical examples. However, the theory also incorporates generalizations
of Poisson arrivals in a natural way. For example, the model MAP/G/1 is a single-server
queue whose arrivals are described by a Markovian arrival process. For that model, an
elegant article by Lucantoni [?], discusses the matrix analogues of all formulas known for
the classical M/G/1 queue and shows how the derivations for that scalar case extend in
a natural manner to the generalized model.

4 Current Directions - Open Problems

The overview of the matrix-analytic methods presented so far describes only the barest
outlines of a fertile area of research with continued rapid growth. Announcements of new
results and articles are found in a Matrix-Analytic Bulletin that I send out by e- mail a
few times per year. To subscribe, send me a message at marcel@sie.arizona.edu.

The development of efficient algorithms to solve the cited non-linear equation for the
matrix R and the related equation

G =

∞
∑

i=0

AiG
i,(7)

which arises in models of M/G/1−type, is making major progress. We refer to the
recent work of Bini and Meini [?], Latouche and Ramaswami [?], Meini [?], and Akar
and Sohraby [?].

Structured matrices of either type in which the blocks in the transition probability
matrix are themselves infinite matrices, or even general operators, arise in the study of
dependent queues. In a major paper, Tweedie [?] showed that the matrix- geometric
theorem generalizes to the operator case. However, at that level of generality, even the
equilibrium condition can no longer be stated in explicit form. Several queueing problems
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with deceptively simple statements, such as the two-server shortest queue with Poisson
arrivals and exponential service times, can be formulated as QBDs with infinite blocks.
A subject of current interest is the development of well-justified truncations by which
such models can be investigated computationally.

The exploration of descriptors for point processes, in which MAPs serve as algorith-
mically tractable benchmark processes, is highly promising. I have already mentioned
the existing literature on this, so let me state here one of my thornier unsolved problems.
In local poissonification, the numbers of events in a stationary point process during suc-
cessive intervals of length a are recorded. If k events occur in such an interval, they are
replaced by an equal number of points that are independently and uniformly distributed
over that interval. That is done for all intervals. The operation clearly preserves the rate
of the process. In repeated local poissonification, that operation is applied repeatedly to
the resulting point processes with the understanding that the grid of equidistant points is
each time placed in a ”random” position, so as to preserve stationarity. It is conjectured
that, even with a sequence of window lengths ai which is bounded away from 0! , the
successive poissonifications converge to a Poisson process of the same rate.
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