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A partition of a positive integer n is a way of writing it as the sum of positive integers
without regard to order; the summands are called parts. The number of partitions of n,
usually denoted by p(n), is determined asymptotically by the famous partition formula
of Hardy and Ramanujan [5]. We shall introduce the uniform probability measure P on
the set of all partitions of n assumming that the probability 1/p(n) is assigned to each
n-partition. The symbols E and V ar will be further used to denote the expectation and
variance with respect to the measure P . Thus, each conceivable numerical characteristic
of the parts in a partition can be regarded as a random variable. Erdös and Lehner [2]
were apparently the first who have studied random integer partitions by a probabilistic
approach. Subsequent work by a number of authors provides considerable information
about the structure of ”typical” partition. (We refer the reader e.g. to [1], [9-13], [3], [4],
[6] and [8]).

If κ is one of the p(n) partitions of n and s ≥ 1, let Zs,n = Zs,n(κ) and Ys,n = Ys,n(κ)
denote the number of parts larger than s − 1 that κ has, counted respectively with and
without multiplicity. Wilf [14] observed that for most partitions of n, Z0,n exceeds Y0,n.
In particular, he showed that

E(Y0,n) ∼ (6n)1/2/π(1)

as n → ∞, while Erdös and Lehner’s result [2] obtained long ago, states that

E(Z0,n) ∼ π−1(3/2)1/2n1/2 log n.

As a matter of fact, Erdös and Lehner did better by finding an appropriate normalization
for Z0,n in order that there be a nontrivial limiting distribution; they showed that

lim P [πZ0,n/(6n)1/2 − log
(6n)1/2

π
< v] = e−e−v

,−∞ < v < ∞.(2)
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One year later this result was strengthened to a form of a local limit theorem by Auluck,
Chowla and Gupta [1]. A recent paper of Hwang [6] supplied it by a better estimate on the
rate of convergence. Fristedt [3] also obtained some further extensions and determined
asymptotically the probability distribution of Zs,n. The results summarized in the present
review form a part of a project aimed at a closer investigation of differences that appear
in the asymptotic behavior of Ys,n and Zs,n. We first state below Fristedt’s result for
Zs,n.

Theorem 1 [3]. Suppose that s = sn is such that sn/n1/2 → ∞ and πsn/(6n)1/2 −
1

2
log n → −∞ as n → ∞. Then, for any fixed v,

lim
n→∞

P{[Zs,n+π−1(6n)1/2 log (1−exp (−πs/(6n)1/2))]/π−1/2(6n)1/4 exp (−πs/2(6n)1/2)<v}

= (2π)−1/2

∫ v

−∞

e−w2/2dw.

Substantial extensions concerning the joint distribution of counts of parts with
bounded sizes in a random partition were recently made by Pittel [8]. He also stud-
ied Zs,n and obtained results comparable with those of Szalay and Turan [9-11]. In
particular, he proved that the distribution of Zs,n is asymptotically concentrated around
a deterministic number as n → ∞ in a range of s including the value s = O(n1/2) (see
his Thm. 2).

For different part sizes, it turns out that the random variable Y0,n, appropriately
normalized, converges weekly to a Gaussian random variable as well. Goh and Schmutz
[4] proved this fact directly; it can be also deduced using a general method suggested in
[7] (see Example 2), where an asymptotic expression for V ar(Y0,n) was also derived. We
summarize all what is known for the asymptotic behavior of the total number Y0,n of the
distinct part sizes in the next theorem.

Theorem 2 [14, 4, 7]. As n → ∞, (1) holds together with

V ar(Y0,n) ∼ (6n)1/2(1/2π − 3/π3).

Furthermore, for any fixed v,

lim
n→∞

P{[Y0,n − (6n)1/2/π]/(6n)1/4(1/2π − 3/π3)1/2 < v}

= (2π)−1/2

∫ v

−∞

e−w2/2dw.

The results of Theorem 2 are extended by the following limit theorem for Ys,n.

Theorem 3 If the integers s = sn are such that sn = λ(6n)1/2/π + o(n1/4), where
0 ≤ λ < ∞, then

E(Ys,n) ∼ (6n)1/2e−λ/π = µn(λ),

V ar(Ys,n) ∼ (6n)1/2[e−λ(1 − e−λ/2)/π − 3e−2λ(λ + 1)2/π3] = σ2

n(λ),
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and, for any fixed v,

lim
n→∞

P{[Ys,n − µn(λ)]/σn(λ)} = (2π)−1/2

∫ v

−∞

e−w2/2dw.

Obviously, the results of Theorem 2 follow immediately from those of Theorem 3.
The main tool in our proof here is the saddle-point method. Furthermore, note that
Theorem 1 establishes the convergence of Zs,n to a Gaussian distribution when s grows
slightly faster than n1/2, while in Theorem 3 we prove the same convergence for Ys,n

assuming that s is exactly of order n1/2. In a subsequent study we plan to describe the
limiting distribution of Zs,n when s = O(n1/2) and to make a closer examination of the
change of the limiting distribution of Zs,n from Gaussian one (see Theorem 2) to an
extreme-value (see (2)).
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