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DENSITIES WITH SPHERICAL LEVEL SETS IN THE

GAUSS-EXPONENTIAL DOMAIN

Guus Balkema

For a sequence of independent observations Zn = (Xn, Yn) from the bivariate
standard normal density there are at least three asymptotic descriptions of
the sample clouds:

• Let rn =
√

2 logn. The sample clouds {Z1/rn, . . . ,Zn/rn} converge
onto the closed unit disk E. The probability of a sample point outside
a disk of radius r > 1 tends to zero, as does the probability for any
m ≥ 1 of less than m sample points in a disk centered in a point of E.

• The two components of Z1 are independent, and hence asymptotically
independent. The margins lie in the domain of the Gumbel distribu-
tion. Hence the sample clouds converge in distribution to a Poisson
point process on the space X = [−∞,∞]2 \ {(−∞,−∞)}. The mean
measure lives on the two boundary lines in −∞.

• Let Hn be halfplanes such that P{Z ∈ Hn} = 1/n. The high risk
scenario ZHn describes the vector Z conditioned to lie in the halfplane
Hn. There exist affine transformations αn mapping the upper halfplane
{v ≥ 0} ontoHn such that α−1

n (ZHn) ⇒ W = (U, V ). The components
U and V are independent variables, Gaussian and exponential. Under
the same normalization the sample clouds converge in distribution to a
Poisson point processN on the plane with Gauss-exponential intensity.

This paper looks at sample clouds from light-tailed unimodal densities with
spherical level sets. What conditions will give the asymptotic behaviour
above? We do not assume that the level sets are concentric.
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1. Introduction

The Gauss-exponential point process is a Poisson point process on R
d with inten-

sity e−χ where

(1.1) χ(w) = uTu/2 + v w = (u, v) ∈ R
d−1 × R.

This point process plays the role of the Gaussian distribution among the point

processes. Its intensity is more symmetric then the d-dimensional Gaussian den-

sity. The level sets of the intensity are parabolas, vertical translates of the stan-

dard parabola P ,

(1.2) {e−χ > e−t} = P + ted P = {v < −uTu/2}.

The mean measure ρ has the property that

ρ(A+ sed) = e−sρ(A) s ∈ R, A a Borel set in R
d.

Densities with spherical level sets are simple to describe. The set {g > e−t}
is an open ball of radius rt centered in pt, and may be written as Bt = pt + rtB,

where B denotes the open unit ball in R
d. We assume that the densities g are

continuous. Hence cl(Bs) ⊂ Bt for s < t. This implies ‖pt − ps‖ < rt − rs for

s < t. The set {g > 0} = B∞ =
⋃

Bn is an open ball, an open halfspace or R
d.

Definition 1. (S,S0): S is the set of all continuous functions g ≥ 0 with

spherical level sets, Bt = {g > e−t} = pt + rtB, and rn+1/rn → 1. The subset

S0 consists of those functions which are determined by the sequence of balls Bn.

The balls Bt for n < t = n+ θ < n+ 1 are defined by linear interpolation:

(1.3) pt = pn + θ(pn+1 − pn) rt = rn + θRn+1 Rn = rn − rn−1.

Functions g ∈ S are integrable since they are light-tailed: rn+1 ∼ rn implies

rn < eǫn eventually for any ǫ > 0. By altering the function g on a compact subset

of its domain B∞ one can make it into a density g0 ∈ S (or S0). Since we are

only concerned with the asymptotic behaviour we drop the assumption that the

function g has integral one.

The densities which we are really interested in are unimodal densities with

convex level sets. This paper may be regarded as an attempt to gain insight

in the asymptotics of such densities. Spherical level sets make it possible to

construct examples and counterexamples, while their asymptotic behaviour still is

sufficiently complex to warrant interest. A density with smooth convex level sets
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may be altered in a given direction and still have smooth convex level sets. For

densities in S such changes in the asymptotic behaviour in a particular direction

are not possible. This makes S an ideal class to study the domain D of Gauss-

exponential attraction in the global sense. In Example I it will be shown that the

Gauss-exponential asymptotics may break down in a quite complicated way even

for functions whose level sets are balls. Example II shows how bad behaviour

on the lower halfplane of convex level sets which agree with disks in the upper

halfplane may affect the Gauss-exponential asymptotics for horizontal halfplanes.

Definition 2. (D,D(ω),D0(ω)): Let g be a continuous integrable non-nega-

tive function on R
d with convex level sets. For any halfspace H = {ω ≥ t} let pH

denote the integral of g1H . The function g lies in the Gauss-exponential domain,

and we write g ∈ D, if for any sequence of halfspaces Hn for which pHn
is positive

and vanishes for n→ ∞ there exist affine transformations αn : w 7→ qn +Anw,

where the An are invertible linear transformations, such that αn maps the upper

halfspace J+ = {(u, v) | v ≥ 0} onto Hn, and such that

(1.4) hn(w) :=
g(αn(w))

g(αn(0))
→ h(w) = e−χ(u,v) w = (u, v) ∈ R

d.

Convergence should hold uniformly on compact sets and in L1 on all halfspaces

{v ≥ v0 + aTu}. We write g ∈ D(ω) for a direction ω ∈ ∂B if the limit relation

holds for all halfspaces Hn = {ωn ≥ tn} with ωn → ω, and g ∈ D0(ω) if it holds

for (parallel) halfspaces {ω ≥ tn}.

There is a second reason for our interest in densities with spherical level sets.

The limit relation

(1.5) (f(t+ s) − f(t))/a(t) → s t→ ∞, s ∈ R,

plays an important role in the de Haan theory of univariate extremes and second

order regular variation, see (1.4) in [7]. The same limit relation also crops up

in the theory of regular variation for matrices, which describes the asymptotic

behaviour of perturbed linear differential equations and the stability of dynamical

systems. The function f is increasing with a slope given by a(t) which varies

slowly in the additive sense. The level sets of g ∈ S ∩ D satisfy an asymptotic

relation which may be described as a geometric analogue of (1.5). The function

t 7→ rt describing the size of the balls Bt satisfies (1.5) with a(t) = rt− rt−1. But

in the geometric setting we also need conditions on the change in the direction
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in which the centers of the balls move, and on the excentricity of the balls,

the departure from concentricity. How does one describe in geometric terms

the regular variation of the balls {g > e−t} which will yield Gauss-exponential

asymptotics? That is the question which will be addressed in this paper.

If g is the density of a vector Z and H is a halfspace for which pH = P{Z ∈ H}
is positive then the high risk scenario ZH is the vector Z conditioned to lie in H.

The high risk scenario has density g1H/pH . The L1 convergence in the definition

of D implies convergence of the normalized high risk scenarios

(1.6) Wn = α−1
n (ZHn) ⇒ W = (U, V ),

where U is standard Gaussian on R
d−1 and V is standard exponential on [0,∞)

and independent of U. We write ⇒ for convergence in distribution. If pHn
∼ c/n

then sample clouds with the same normalization converge. Let Z1,Z2, . . . be

independent observations from the density g. Then for v0 ∈ R, a ∈ R
d−1

(1.7) Nn = {α−1
n (Z1), . . . , α

−1
n (Zn)} ⇒ N weakly on J = {v ≥ v0 + aTu}.

HereN is the Poisson point process with intensity c0e
−χ where c0 = c/(2π)(d−1)/2 .

The main question in this paper is: What conditions should the sequence of

balls Bn satisfy in order that the corresponding function g in S0 lies in D?

Univariate asymptotics

A brief description of the univariate case may help the reader to put the

multivariate results into perspective.

There exists a simple procedure for constructing continuous decreasing densi-

ties g on [0,∞) which lie in the domain of attraction of the Gumbel distribution

for maxima. Moreover, see [2] Section 6.6, any df in the domain of attraction is

tail asymptotic to a df with a density g as above.

Here is the construction. Choose a sequence of positive reals Rn such that

Rn+1 ∼ Rn. Set rn = R1+· · ·+Rn and r∞ = sup rn ≤ ∞. Define g0 = e−ψ where

ψ is the continuous piecewise linear function on [0, r∞) with the value n in rn.

The function g0 has level sets {g0 > e−n} = [0, rn). Let R be the piecewise linear

function with the value Rn+1 in rn. By construction the slope of the function ψ

is asymptotic to 1/R(r) on intervals of length O(R(r)) around r. This yields an

exponential limit:

(1.8) g0 ∈ D+ ⇐⇒ g0(r + vR(r))/g0(r) → e−v r → r∞, v ≥ 0.
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The limit relation holds uniformly and in L1 on [v0,∞) for v0 ∈ R.

What does a sequence (rn) look like whose increments satisfy the condition

Rn+1 ∼ Rn? One may choose Rn = nρ for ρ ∈ R. Or take a positive C1 function

a on [0,∞) whose derivative vanishes at ∞. Set r0 = 0 and rn+1 = rn + a(rn).

Then Rn+1 = a(rn) ∼ Rn. The function a may converge or tend to infinity, but

it may also fluctuate. One may construct positive C1 functions a on [0,∞) with

vanishing derivative in ∞ such that a(sn) >>
√
sn for a sequence sn → ∞, and

also a(tn) << e−tn for a sequence tn → ∞.

The limit relation (1.8) implies convergence of the sample clouds Nn from the

density g0. The limit N is a Poisson point process on R with intensity e−v, which

gives a good description of the extremes for the density g0. The sample maxima

converge:

Mn = maxNn = α−1
n (Y1) ∨ · · · ∨ α−1

n (Yn) ⇒ V0 = maxN.

The same holds for the extreme upper order statistics Vn,n−k = α−1
n (Yn,n−k).

If we order the points of N in a decreasing sequence V0 > V1 > · · · , then

(Vn,n, . . . , Vn,n−m) ⇒ (V0, . . . , Vm) holds for any m ≥ 0. Similarly for g ∈
S0 ∩ D0(ω) the limit Gauss-exponential point process N contains all informa-

tion about the extremes of the sample clouds in the direction ω. In [4] and [5]

the points Wn = (Un, Vn) ∈ N are ordered in decreasing order of the vertical

coordinate. The horizontal parts Un may then be regarded as independent marks

with a standard Gaussian distribution.

Example 1. In dimension d = 1 let g ∈ S0 have level sets {g > e−n} = Bn =

(−sn, tn) with tn = 2 − 1/n for n ≥ 1 and sn = e
√
n. Set Tn = tn − tn−1 and

Sn = sn−sn−1. Then Tn ∼ 1/n2 implies Tn+1 ∼ Tn. So too Sn+1 ∼ Sn. It follows

that g ∈ D, even though the normalizations for the two tails are completely

different. The one-dimensional ball Bn has center pn = (tn − sn)/2 and radius

rn = (tn + sn)/2. Now construct the multivariate function g ∈ S0 with level sets

{g > e−n} = (0, pn) + rnB. Does it lie in D?

The three limits

For the Gaussian density the sample clouds converge onto the closed unit ball.

This result is due to [6]. It also holds for densities g ∈ S. The only difference

is in the normalization. The points of the sample clouds now have the form

(Zi − ptn)/rtn where tn = log n. Asymptotic equality rn+1 ∼ rn implies that the
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intensities tend to infinity uniformly on compact subsets of the unit ball, and to

zero uniformly and in L1 on the complement of the ball rB for any r > 1.

For the standard Gaussian vector the components are independent and hence

asymptotically independent. Asymptotic independence also holds for the den-

sities g ∈ S. This follows from the previous result. The unit ball is a smooth

convex set. Hence, see [3], the random variables Yi = ηi(Z), i = 1, . . . , d, are

asymptotically independent if the functionals η1, . . . , ηd are linearly independent.

Extremes in different directions come from sample points in disjoint regions.

The space X = [−∞,∞]d \ {(−∞, . . . ,−∞)} was introduced in [1] and used

in [8] to describe the convergence of the exponent measures for coordinatewise

extremes. Asymptotic independence will yield a limiting Poisson point process

on X with a mean measure which lives on the d lines in −∞ if the tails of the

d margins of the underlying df lie in the domain of the Gumbel law. Conditions

for this are given in Section 2 below.

The Gauss-exponential limit is a different matter. There one needs extra

conditions. The Gauss-exponential point process as a description of the as-

ymptotic behaviour of Gaussian sample clouds at the edge is due to [4]. The

standard Gaussian density has spherical symmetry. The multivariate function

g(z) = g0(‖z‖) lies in D if g0 ∈ D+. One may replace the level sets rtB of g

by scaled copies rtD of an egg-shaped set D, see [2], Theorem 9.1. It follows

that g ∈ S0 lies in D if the balls Bn are centered Bn = rnB and the increments

Rn = rn − rn−1 are asymptotically equal. The result remains true if Bn = rnD

where D is a translate of the unit ball B which contains the origin.

Let us give a brief sketch of the results of the paper. Section 2 describes D0(ω)

for the vertical direction ω = η = (0, 1). The condition for D0(η) is simple. The

boundaries of the horizontal halfspaces supporting the balls Bn associated with

g ∈ S0 should be asymptotically equidistant. The sample clouds then converge

weakly on all halfspaces J = {v ≥ v0+aTu}. We shall derive a simple asymptotic

expression for the marginal density. Section 3 characterizes D ∩ S. For g ∈ S0

to lie in the domain of attraction D the proper condition is AED, the bound-

aries of the three halfspaces supporting successive balls Bn−1, Bn, Bn+1 should

be asymptotically equidistant uniformly in the direction. We give a number of

alternative formulations of AED. The last section contains two examples. In

the first we construct a function g ∈ S0 which lies in D0(ω) for all ω, but not

in D. In the second we construct a continuous light-tailed bivariate density f

with convex level sets for which the high risk scenarios for horizontal halfplanes

converge. The corresponding sample clouds Nn converge weakly on all horizontal
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halfplanes J = {v ≥ v0}, but Nn(J) → ∞ in probability for any non-horizontal

halfplane J . The density has some other nice features. It is strictly positive and

on the upper halfplane it agrees with a function g ∈ S ∩D.

Notation

We write B for the open unit ball {zT z < 1}, ∂B for its boundary, the

unit sphere, and |A| for the volume (Lebesgue measure) of the Borel set A. For

bounded open sets we write U0 ⋐ U1 if U1 contains the closure cl(U0). Halfspaces

with direction ω have the form {ω ≥ t} for ω ∈ ∂B and t ∈ R. Halfspaces are

closed. The bounded open convex set U supports the halfspace H in the point p

if H and U are disjoint and p ∈ ∂H ∩ ∂U . Horizontal halfspaces have the form

H = {y ≥ y0}; the upper halfspace is J+ = {v ≥ 0}. We work with two sets of

coordinates. The original coordinates are z = (x, y); the normalized coordinates

are w = (u, v). Here y and v denotes the vertical component and x and u the

horizontal part.

2. High risk scenarios for horizontal halfspaces

For convergence of high risk scenarios on horizontal halfspaces and the associated

sample clouds the condition for g ∈ S0 is simple. The horizontal tangent planes

to the tops of the balls Bn = {g > e−n} should be asymptotically equidistant.

Theorem 2.1. Suppose g ∈ S0. Let zt = (xt, yt) be the point on the boundary

of Bt = {g > e−t} with the maximal y-coordinate. Set at := yt − yt−1 and

ct =
√
atrt, where rt is the radius of Bt. If an+1 ∼ an then

(2.1) etg(xt + ctu, yt + atv) → e−χ(u,v) t→ ∞

uniformly on compact sets in R
d and in L1 on all halfspaces J = {v ≥ v0 + aTu}

with v0 ∈ R, a ∈ R
d−1.

Corollary 2.2. The integral of g over the horizontal halfspace Ht = {y ≥ yt}
supporting the ball Bt satisfies

(2.2) pt =

∫

g1Ht
∼ at(2πatrt)

(d−1)/2/et t→ ∞.

P r o o f. By L1 convergence the integral of ht over J+ converges to (2π)(d−1)/2 ,

the integral of h over J+. The density of α−1
t (Z) is Dte

−tht where Dt is the

absolute value of the determinant of the linear part of αt. �
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These results allow us to compute for probability densities in S0 the asymp-

totic value of P{Z ∈ A} for horizontal halfspaces far up, but also for Borel subsets

of such halfspaces whose boundary has zero Lebesgue measure.

We shall prove the theorem in two steps, first proving pointwise convergence

uniformly on compact sets, and then proving L1 convergence on halfspaces of the

form {v ≥ v0 + aTu}. It suffices to prove hn → h since

hn+θ(w) = eθeng(αnα
−1
n αn+θ(w)) = eθhn(α

−1
n αn+θ(w))

and βn = α−1
n αn+θn

→ τ θ : w 7→ w + θed if θn → θ ∈ R. This implies

eθnhn(βn(w)) → eθh(w + θed) = h(w).

This limit relation holds uniformly on compact sets. It holds in L1 on halfspaces

H of the form above since L1 convergence fn → f implies L1 convergence fn ◦
βn → f ◦β if βn → β and if f is continuous a.e., and since hn1Hn

→ h1H0
in L1 if

the halfspaces converge: Hn = {v ≥ vn + aTnu} for n ≥ 0 and vn → v0, an → a0.

So L1 convergence of (hn1βnH)(βn(w)) gives L1 convergence of hn(βn(w))1H (w).

We start out with an increasing sequence of balls Bn. Choose new coordinates

w = (u, v) with the origin in the boundary point zn = (xn, yn) of Bn with the

largest y-coordinate, and rescale the vertical and horizontal coordinates so that

Bn becomes an elongated cylinder symmetric ellipsoid which approximates the

standard paraboloid P in (1.2). The ellipsoids

(2.3) Et = diag(
√
t, . . . ,

√
t, t)B̃ B̃ = B − ed t > 0

increase to P as t increases to ∞. Hence so do

(2.4) diag(
√

rn/an, . . . ,
√

rn/an, rn/an)(B̃n/rn) B̃n = Bn − zn

since an ≤ 2Rn = o(rn) for rn+1 ∼ rn, which implies rn/an → ∞.

What does the ball Bn+1 look like in the new coordinates? Since the radii of

the balls are asymptotically equal it will look like a translate of P , and so will

the ball Bn+k for any fixed integer k. What conditions should one impose on the

sequence of balls to ensure that there exist normalizations such that

(2.5) α−1
n (Bn+k) → P + ked = {e−χ > e−k} n→ ∞, k ∈ Z.

We first show that variations in the value of the horizontal component of the

point zn = (xn, yn) are innocuous.
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Lemma 2.3. Let B0 ⊂ B1 be disks in the plane of radius r0 and r1 = r0 +R

respectively. Suppose B0 supports the horizontal halfplane {y ≥ 0} in (a, 0) and

B1 supports the horizontal halfplane {y ≥ b} in (0, b). The larger disk intersects

the horizontal axis in an interval (−s, s) where a2/s2 < R/r1.

P r o o f. Observe that s2 = 2r1b − b2 and that a2 + (R − b)2 ≤ R2 since the

distance between the centers is bounded by R. Hence a2 ≤ 2Rb− b2, and R < r1
implies a2/s2 < R/r1. �

Proposition 2.4. Let B1 ⊂ B2 ⊂ · · · be open balls in R
d. Suppose Bn has

radius rn and supports the horizontal halfspace {y ≥ yn} in a point zn = (xn, yn)

for n ≥ 1. Define

(2.6) αn : w = (u, v) 7→ (xn + cnu, yn + anv) an = yn − yn−1, cn =
√
anrn.

If rn+1 ∼ rn and an+1 ∼ an then (2.5) holds, and hn → e−χ uniformly on compact

sets.

P r o o f. The balls B̃n = Bn − zn converge to P under the linear trans-

formations A−1
n where An(u, v) = (cnu, anv). Hence so do the balls B̃n+k =

(rn+k/rn)B̃n. Now observe that α−1
n (zn+k − zn) = ((xn+k − xn)/cn, (yn+k −

yn)/an) → (0, k) since ‖xn+k − xn‖ <<
√

|k|anrn by Lemma 2.3 and yn+i −
yn+i−1 = an+i ∼ an. The inclusion En ⊂ Et ⊂ En+1 for the ellipsoids A−1

n (B̃t)

for t ∈ [n, n + 1] implies Et → P uniformly for |t − n| ≤ m; the relation

zn+θ = zn+θ(zn+1−zn) holds for g ∈ S0 and implies that α−1
n (Bn+sn

) → P+sed
for sn → s. Convergence of the level sets implies eng(αn(w)) → e−χ(w) uniformly

on compact sets. �

We now turn to L1 convergence on halfspaces J = {v ≥ v0 + aTu}.
Write α−1

n (Bn+m) = A−1
n (B̃n+m) +A−1

n (zn+m − zn). Then

α−1
n (Bn+m) =

rn+m

rn
Ern/an

+ (
xn+m − xn

cn
,
yn+m − yn

an
).

Let 0 < ǫ < 1/d ∧ 1/4 where d is the dimension. There exists an index n0

such that an+1 < eǫan and rn+1 < eǫrn for n ≥ n0. For n ≥ n0 the quotients

an+m/an, rn+m/rn and cn+m/cn then are bounded by emǫ for m ≥ 1. Then

Rn/rn ≤ 1 − e−ǫ < ǫ for n ≥ n1 = n0 + 1, and Lemma 2.3 gives ‖xn − xn−1‖ ≤
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2
√
ǫcn ≤ cn. Hence for n ≥ n0 the level set {hn ≥ e−m} = α−1

n (Bn+m) is

contained in emǫP + (u(m), v(m)) where

v(m) =
an+m

an
+ · · · + an+1

an
≤ memǫ ‖u(m)‖ ≤ cn+m

cn
+ · · · + cn+1

cn
≤ memǫ.

The following result is well known. It shows the way in which we shall proceed.

Lemma 2.5. Suppose hn → h uniformly on compact sets. Let J be a half-

space. If for any ǫ > 0 there exists m ≥ 1, a compact set K and an index n0 such

that {hn > e−m}∩ J ⊂ K and
∫

J hn(w)∧ e−mdw < ǫ for n ≥ n0 then hn → h in

L1(J).

Proposition 2.6. Under the conditions of Proposition 2.4 convergence hn →
e−χ holds in L1 on halfspaces J = {v ≥ v0 + aTu}.

P r o o f. The function hn has level sets {hn > e−m} = α−1
n (Bn+m). This

gives the inequality

(2.7) hn ≤ e
∑

m

e−m1α−1
n (Bn+m).

It suffices to prove that there exist θ ∈ (0, 1), p ≥ 0 and C0 ≥ 1 such that

(2.8) |J ∩ α−1
n (Bn+m)| ≤ C0(1 +m)peθm n ≥ n0,m ≥ m0.

Let J = {v ≥ aTu− a0}. The volume of P ∩ {v > −r} is

|P ∩ {v > −s}| = B(d− 1)

∫ r

0
s(d−1)/2ds =

2B(d− 1)

d+ 1
s(d+1)/2

where B(m) is the volume of the unit ball in R
m. The volume of P ∩ J is

|P ∩ {v > −h}| where h = a0 + aTa/2 is the distance between ∂J and the

tangent plane {v = aTu+ aTa/2} to P in −a parallel to ∂J . We shall determine

a uniform upper bound for the volume of the set (emǫP + memǫ(q, θ)) ∩ J for

‖q‖ ≤ 1, 0 ≤ θ ≤ 1. Write c = emǫ. Then

|c(P+m(q, θ)) ∩ J | = cd|P ∩ (J/c−m(q, θ))|(2.9)

= cd|P ∩ {v ≥ aT (u −mq) − a0/c−mθ}| = cd|P ∩ {v ≥ c0}|(2.10)
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with c0 = aTa/2+maTq+mθ+a0/c. There is a constant C0 = C0(d, a0,a) such

that

|c(P +m(q, θ)) ∩H| ≤ cdC0(m+ 1)(d+1)/2 ‖q‖ ≤ 1, θ ∈ [0, 1].

This yields the bound (2.8). �

The proof of Theorem 2.1 follows from the Propositions 2.4 and 2.6. The

uniform convergence on compact sets was a consequence of the convegence of

the ellipsoids αn(Bn+k) to the paraboloids P + ked. (All we needed there was

rn+1 ∼ rn and an+1 ∼ an.) For the L1 convergence one only needs the upper

bounds an+1 < eǫan and rn+1 < eǫrn eventually for a sufficiently small ǫ > 0.

From univariate EVT it is known that two functions in D+ are asymptotic

if they assume the values e−n in the same points rn. In particular if g0 ∈ D+

satisfies g0(rn) = e−n and ψ is the piecewise linear function with the values

ψ(rn) = n, then e−ψ is asymptotic to g0 in r∞. Let g ∈ S. For ω ∈ ∂B define

(2.11) gω(t) = max
ωz=t

g(z) t ∈ R.

For the vertical coordinate η gη(t) = maxx g(x, t). If g ∈ S0 has level sets

Bt = {g > e−t} and zt = (xt, yt) is the point on ∂Bt where the vertical coordinate

is maximal, then t 7→ yt is linear on each interval [yn, yn+1], and gη ∈ D+ if

an+1 ∼ an for an = yn+1 − yn. Theorem 2.1 remains valid if we replace the

condition an+1 ∼ an by gη ∈ D+.

If g is the density of a vector Z = (X, Y ), then X conditional on Y = yt
is asymptotically normal N(xt, atrt) for t → ∞. The asymptotic behaviour of

conditional distributions on halfspaces and hyperplanes has been treated in [2]

and [9].

Theorem 2.7. Let g ∈ S and gη ∈ D+. Choose Ct such that g̃t : u 7→
g(xt + ctu, yt)/Ct is a probability density on R

d−1. Then Ct ∼ (atrt)
(d−1)/2 and

g̃t(u) → e−u
T
u/2/(2π)(d−1)/2 uniformly on compact sets and in L1 t→ ∞.

P r o o f. Convergence on compact sets follows from Theorem 2.1. The L1

convergence follows as in the proof of Proposition 2.6. One needs only consider

integrals over horizontal hyperplanes {v = v0} with v0 ≥ 0. �

The function gη is not the vertical marginal gd, but there is a simple relation.
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Theorem 2.8. Suppose g ∈ S. If gη ∈ D+ then gd ∈ D+ and

(2.12) gd(yt) ∼ (atrt)
(d−1)/2/et t → ∞.

P r o o f. The asymptotic relation 2.12 follows from the asymptotic expression

for Ct in Theorem 2.7. This implies that gd/gη is asymptotically constant over

intervals of length of order an around tn, which ensures that gd satisfies the basic

limit relation (1.8). The remaining two relations follow by the remark preceding

the theorem. �

The results of this section hold for any direction ω ∈ ∂B. If Z has density

g ∈ S and gω ∈ D+ then the rv ω(Z) has a density in D+, see (2.12) and

g ∈ D0(ω). The high risk scenarios converge for halfspaces Hn = {ω ≥ tn}.
Convergence for halfspaces {ωn ≥ tn} with directions ωn → ω is a different

matter.

Example 2. Let g ∈ S0 have level sets Bn = {g > e−n} where Bn is the ball

with radius rn centered on the vertical axis, which intersects the vertical axis in

the interval (n − 2rn, n). Then g ∈ D0(η) for the vertical direction η. The only

condition on Rn = rn − rn−1 is Rn = o(rn). Choose rn = n4 for even indices

and r2n+1 = r2n + 1. The balls B2n and B2n+1 are concentric. The ball B2n−1

is a contraction of B2n from a center (0, cn) with cn → 63n/32. The distance

between parallel tangent planes to Bn and Bn+1 is one. The results of the next

section show that the distance between the tangent planes to B2n−1 and B2n

with a direction ωn at distance 1/n from η is asymptotic to 16n. The boundaries

of the halfspaces of direction ωn supporting B2n−1, B2n, B2n+1 are certainly not

asymptotically equidistant. The Gauss-exponential asymptotics fail.

3. The condition AED

For g ∈ S0 to lie in D the balls Bn = {g > e−n} should be asymptotically equidis-

tant. More precisely the boundary planes of the halfspaces supporting three suc-

cessive balls Bn−1, Bn, Bn+1 should be asymptotivcally equidistant uniformly in

the direction (of the halfspaces). For a direction ω ∈ ∂B let Hn = {ω ≥ tn}
support the level set Bn = {g > e−n}. The constant tn depends on ω and is

strictly increasing in n. Define the ratio

(3.1) ρn(ω) =
tn+1 − tn
tn − tn−1

ω ∈ ∂B, n > 1.

If ρn(ω) = 1 the planes ∂Hn−1, ∂Hn, ∂Hn+1 are equidistant.
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Definition 3. (The condition AED) The function g ∈ S0 with level sets

Bn = {g > e−n} is AED if ρn → 1 uniformly on ∂B.

The condition AED is geometric. It does not depend on the origin, nor on

the coordinates. The ratio of the distance between three successive planes does

not even depend on the euclidean norm.

One can define the ratio ρn(ω) also for continuous functions with convex level

sets Dn. If Dn = nD for a bounded convex open set D containing the origin,

then ρn ≡ 1. In particular this holds if D is an excentric ball D = B − c for a

point c ∈ B. We find it more convenient to start with the unit ball, and scale it

from a point c ∈ B. This yields a family of balls

(3.2) B(c, r) = c + r(B − c) r > 0, c ∈ B.

Example 3. Let rn = R1 + · · · + Rn with 0 < Rn ∼ Rn+1. Then the sets

B(c, rn) are asymptotically equidistant since ρn(ω) ≡ Rn+1/Rn.

Theorem 3.1. If g ∈ S0 is AED then g ∈ D.

P r o o f. Let Hn = {ωn ≥ tn} be halfspaces supporting the level sets Bsn
=

{g > e−sn} in zn. Suppose sn → ∞. A rotation which maps ω into η = (0, 1)

maps Hn into a horizontal halfspace tangent to the ball {gn > e−sn} where the

graph of gn is a rotation of the graph of g. Since the results of Theorem 2.1

hold uniformly for rn+1 ∼ rn and an+1 ∼ an they apply to the sequence (gn),

and esngsn
(αsn

(w)) → e−χ(w) uniformly on compact sets and in L1 on halfspaces

J = {v ≥ v0 + aTu}. �

Let g ∈ S0 have level sets Bt = {g > e−t} = pt + rtB. The level sets Bt for

t ∈ [n, n + 1] are defined by linear interpolation. It follows that Bt−ǫ, Bt, Bt+ǫ
are equidistant for n + ǫ ≤ t ≤ n + 1 − ǫ. So too the balls Bn−1, Bn, Bn+1 are

equidistant if pn+1 = pn+(pn−pn−1) and rn+1 = rn+Rn. The ratio will satisfy

1 − ǫ ≤ ρn(ω) ≤ 1 + ǫ ω ∈ ∂B

if Bn+1 lies between the balls with centers pn + (1 ± ǫ)(pn − pn−1) and radii

rn+(1±ǫ)Rn. This raises the question of describing all balls which lie in between

two given balls. Given the balls B0 ⋐ B1 how does one describe the balls in

between?

(3.3) B0 ⋐ p + rB ⋐ B1.
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Proposition 3.2. Let Bi = pi+riB with ‖p1−p0‖ < r1−r0. Let r ∈ (r0, r1).

Then (3.3) holds if and only if p ∈ (p0 + (r − r0)B) ∩ p1 + (r1 − r)B).

P r o o f. The ball p + rB contains B0 if and only if ‖p− p0‖ ≤ r − r0 and is

contained in R1 if and only if ‖p1 − p‖ ≤ r1 − r. �

The condition depends only on the difference r1 − r0. So too in our next

result.

Proposition 3.3. Let E be the open ellipsoid with focal points p0 and p1

consisting of all points z the sum of whose distance to p0 and p1 is less than

r1 − r0. Let ‖p−pi‖ = ci for i = 0, 1 and let r ∈ (r0 + c0, r1 − c1). Then p + rB

satisfies (3.3). Conversely if p + rB satisfies these inclusions then p ∈ E and

r0 + c0 < r < r1 − c1.

P r o o f. For any point z ∈ ∂E the sum ‖z− p0‖ + ‖z− p1‖ = r1 − r0. From

the description of E it follows that c0 + c1 < r1 − r0 if and only if p ∈ E. We

can then choose r ∈ (r0 + c0, r1 − c1), and the previous proposition gives the

inclusions (3.3) since ci < ai = |r−ri| for i = 0, 1. Similarly (3.3) by the previous

proposition implies ci := ‖p−pi‖ < ai = |ri−r| for i = 0, 1, and a0 +a1 = r1−r0
implies p ∈ E. �

Given two balls B0 ⋐ B1 one can define balls Bt inbetween by linear interpo-

lation. Bt is the ball pt + rrB where

pt = p0 + t(p1 − p0) rt = r0 + t(r1 − r0).

These balls belong to a family of balls B(c, r), r > 0. One may describe B1 as

an expansion of B0 by a factor r1/r0 from a center z ∈ B0. Let us introduce the

relative center c ∈ B, the position of z in coordinates in which B0 is the unit

ball.

Lemma 3.4. Let T > 0 denote the distance between the spheres ∂B0 and

∂B1 with radii r0 and r1 = r0 +R. If p1 = p0 then z = p0, T = R and c = 0; if

p1 6= p0 then

(3.4) c =
z − p0

r0
=

z − p1

r1
=

p0 − p1

R
τ := 1 − ‖c‖ =

T

2R
.

P r o o f. The first equality is the definition of c; the second holds because of

the expansion by r1/r0; the third holds by subtracting numerator and denomi-

nator; the fourth by scaling: 1 − ‖c‖ = T/2R. �
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It will be convenient to describe the sequence of balls Bn in a dynamic way

where Bn is obtained from Bn−1 by expansion by rn/rn−1 from the center zn =

pn+rncn. It suffices to know B0, the sequence of radii r1, r2, . . ., and the sequence

of relative centers cn ∈ B which are used to transform Bn−1 into Bn.

Proposition 3.5. Let xn and un be points in the open unit ball B and let δn
and δ′n in (0, 1) converge to zero. Then B(xn, 1 − δn), B,B(un, 1 + δ′n) are AED

if and only if

(3.5) δ′n ∼ δn τn := 1 − ‖xn‖ ∼ 1 − ‖un‖ ‖un − xn‖/
√
τn → 0.

P r o o f. We move up one dimension and consider cones C(u, v) in R
d×R with

top (u, v) with v < 1 and u ∈ B which intersect the horizontal plane R
d × {1}

in the unit ball. The intersection of the cone C(u, 0) with the horizontal plane

{y = t} is the open ball B(u, t) for t 6= 0 and the point set {u} for t = 0. The

cones C(u, 1 − e±ǫ) intersect the plane {y = 1 + s} in the balls B(u, 1 + e∓ǫs).
The intersection of C(x, 0) with this plane will lie between these two balls if (x, 0)

lies in both cones C(u, 1 − e±ǫ). Equivalently if

(3.6) x ∈ B(u, 1 − e−ǫ) ∩B(u, 1 − eǫ).

This intersection is an open convex set which is approximately equal to the set

B(u, 1) ∩ B(u,−1) contracted by a factor ǫ from the center u. The intersection

B(u, 1)∩B(u,−1) is the union of two caps of height 1−τ whose common base is a

disk of radius
√

τ(2 − τ). Condition (3.5) implies (3.6) for xn and un eventually

for any ǫ > 0, and conversely if xn and un satisfy (3.6) for a seqeunce ǫn → 0

then (3.5) holds. �

This yields a condition for AED.

Theorem 3.6. Let g ∈ S0 have level sets Bn = {g > e−n} = pn + rnB.

Suppose Bn+1 is the expansion of Bn by the factor rn+1/rn from the center zn =

pn+rncn+1. Set τn = 1−‖cn‖. Then g ∈ D holds if and only if Rn = rn−rn−1 ∼
Rn+1, τn ∼ τn+1 and ‖cn − cn−1‖/

√
τn → 0.

There are two conditions, one on the size of the balls Bn one on the structure,

the position of the relative center in the unit ball. These conditions are indepen-

dent. The size condition is Rn+1 ∼ Rn. If the relative centers cn eventually lie in

a disk with radius < 1 then the structure condition is simple: ‖cn−cn−1‖ → 0. If

τn → 0 the condition is ‖γn− γn−1‖ = o(
√
τn) for the unit vectors γncn/(1− τn).
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In the metric on B ⊂ R
2 given at the point rω ∈ B by

ds2 =
dr2

(1 − r)2
+
r2dω2

1 − r

the distance between two points (0, r0) and (0, r1) with 0 ≤ r0 < r1 < 1 by

integration is log((1−r0)/(1−r1)); the distance along a circle between rω and rζ

is d(ω, ζ)/(1− r). Take τ = 1− r = 1/n4. It takes n steps to go from (1− τ)ω to

(1− τ)ζ for ω and ζ in ∂B with distance d(ω, ζ) = 1/n if one walks along a circle

of radius 1− τ , but only 4 log n steps to reach the origin. So it is faster to go via

the origin, at least for n ≥ 30 since then 8 log n < n. In terms of this hyperbolic

metric dhyp the condition for AED is simple: the distance dhyp(cn+1, cn) should

vanish for n→ ∞.

Example 4. In dimension d = 1 the function g ∈ S0 with level sets {g >
e−n} = (−sn, tn) lies in D if Sn+1 ∼ Sn and Tn+1 ∼ Tn, see Example 1. For d > 1

let g ∈ S0 have level sets {g > e−n} = Bn with center (0, (tn − sn)/2) and radius

rn = (sn + tn)/2. Assume Tn ≤ Sn. Then τn = 1 − ‖cn‖ = Tn/Rn ∼ τn+1 and

AED holds since the centers all lie on the vertical axis.

Example 5. Let Bn be the disk in the plane of radius n which supports the

horizontal halfplane {y ≥ −1/(n− 1) in the point (xn,−1/(n− 1)). Let Bn+1 be

the expansion of Bn from the center zn = (xn − 1,−2/n) by the factor 1 + 1/n.

Then Bn+1 supports the horizontal halfplane {y > −1/n} in (xn + 1/n,−1/n).

We may choose xn to satisfy xn − log n → 0. The union of the disks is the open

lower halfplane. The function g ∈ S0 with these level sets lies in the Gauss-

exponential domain D since Rn ≡ 1, τn = (2/n − 1/(n − 1))/n ∼ 1/n2 and the

angle between the relative center cn and the vertical is asymptotic to 1/n which

implies ‖cn − cn−1‖ = o(τn).

There are alternative descriptions of AED. We give two, leaving the proof

to the reader. The first is formulated in terms of the increments of the radii

Rn = rn − rn−1, the distance from the sphere ∂Bn−1 to the sphere ∂Bn, and to

the next sphere, ∂Bn+1.

Proposition 3.7. Let Tn denote the distance from the sphere ∂Bn1
to ∂Bn,

and T
(2)
n the distance from ∂Bn−1 to ∂Bn+1. Then AED holds if and only if

Rn+1 ∼ Rn Tn+1 ∼ Tn T (2)
n ∼ 2Tn.
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A function g ∈ S0 is determined by its level sets Bn = {g > e−n}. Introduce

the function ge determined by the even level sets B2n, and the function go defined

by the odd level sets. For 2n < t < 2n + 2 the level sets of ge are determined

by interpolation, and similarly for go for 2n − 1 < t < 2n+ 1. We then have the

characterization:

Proposition 3.8. The function g ∈ S0 lies in D if and only if ge and go are

asymptotic.

Proposition 3.9. A density g ∈ S0 lies in D if and only if it lies in D(ω)

for every ω ∈ ∂B.

P r o o f. If g ∈ D then g ∈ D(ω) for any ω. Conversely if g 6∈ D then the

ratio ρn in (3.1) does not converge uniformly to one on ∂B and there is an ǫ > 0,

a sequence of indices and a sequence ωn ∈ ∂B such that |ρmn
(ωn) − 1| > ǫ for

n = 1, 2, . . .. By compactness of ∂B there is a subsequence for which ωn converges

to a point ω ∈ ∂B. This implies g 6∈ D(ω). �

The level sets of g ∈ S0 form a piecewise linear curve in the space of balls.

At integer time points t = n two changes occur, the rate of growth changes,

Rn becomes Rn+1, and the relative center changes, cn−1 becomes cn. There is a

change in the direction in which the centers pt of the ball Bt move, determined by

the change in the unit vector γn = cn/(1− τn), and a change in the excentricity,

the value of τn which is one for concentric circles (and zero if the ball is expanded

from a point on its boundary). These changes can be measured in the two-

dimensional plane through the centers of three successive balls. Normalize the

middle ball to be the unit ball. First we shall take a closer look at the relation

between B and B(c, r) for r close to one. If c = 0 the distance between tangent

planes to the two balls is constant. For τ ∈ (0, 1) the distance varies with the

direction of the plane. It is a function of the angular distance ϕ between cn and

cn−1. For simplicity we take c to lie on the vertical axis, c = (1 − τ)ed. The

dependence on r is a factor |r − 1|.

Proposition 3.10. The distance δ between the boundaries of the halfspaces

with direction ω supporting B(c, r) and B for r > 0 and c = (1 − τ)ed is

(3.7) δ = |r − 1|(1 − cosϕ+ τ cosϕ) ϕ = δ(ω, ed).

P r o o f. Take d = 2. The line L from c perpendicular to ω intersects the

ray through ω in θω with θ = (1 − τ) cosϕ. The line is parallel to the tangent
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lines to B and B(c, r). Draw lines from the point where B(c, r) supports the

halfplane with direction ω to the origin and to c. One has two similar triangles

cut off by L and the tangent to B in ω in the proportion r : (1 + r). Hence

δ = δ(r) = r(1 − θ). �

In many cases we do not need the precise value of the distance.

Lemma 3.11. For ǫ > 0 there exists δ > 0 such that

e−ǫ(ϕ2/2 + τ) ≤ 1 − cosϕ+ τ cosϕ ≤ eǫ(ϕ2/2 + τ) 0 < ϕ ≤ δ, τ ∈ [0, 1]

1 − cosϕ+ τ cosϕ ≍ ϕ2 ∨ τ 0 < ϕ ≤ π, τ ∈ [0, 1].

On the sphere ∂Bn one may define an integer valued metric. The distance be-

tween any two points is the smallest number of segments in the shell cl(Bn)\Bn−1

connecting a point in ∂Bn and a point in ∂Bn−1 needed to construct a path from

the one point to the other. So the distance is an even number. It may be defined

for any pair of bounded open convex sets D0 ⋐ D1. The metric does not depend

on the coordinates. It is geometric and invariant for affine transformations. For

the balls Bn and Bn−1 this integer metric is roughly equal to the Euclidean metric

on ∂Bn divided by
√
n. For the shell cl(B) \ B(c, 1 − δ) the metric is no longer

isotropic. If c = (1 − τ)ed with τ small, then close to the North pole one needs

many more steps to cover the same Euclidean distance. In dimension d = 2 for

δ → 0 the metric is asymptotic to the metric dϕ/
√

2δ(1 − cosϕ+ τ cosϕ), where

dϕ is the Euclidean metric on the unit circle. For c = 0 the balls are concentric

and the distance from North pole to South pole is approximately π/
√

2δ; for

c = (1 − τ)ed and τ is small the distance between the poles is of the order of

log(1/τ)/
√
δ by Lemma 3.11.

The function δ in (3.7) yields an explicit formula for the ratio ρn in (3.1). Take

the plane through the centers of the balls Bn−1, Bn, Bn+1. Let the line through

pn and pn+1 be the vertical axis, and let the line through pn and pn−1 make

an angle ψ with the vertical axis. The ratio of the distance between halfplanes

whose normal makes an angle ϕ with the vertical by (3.7) is

Rn+1

Rn

1 − cosϕ+ τn cosϕ

1 − cos(ϕ− ψ) + τn−1 cos(ϕ − ψ)
.

The effect of ψ on ρn(ϕ) becomes clear if one takes τn = τn−1 close to zero and

Rn+1 = Rn.

For later use we prove:
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Lemma 3.12. Suppose r0 = 1 − ǫ0 and r1 = 1 + ǫ1 with ǫ0 and ǫ1 non-

negative and ǫ := ǫ0 + ǫ1 ≤ 4/π2. If ϕ ≥
√

2τ then the cap cut off from the ball

B(c.r1) by the halfspace with direction ω supported by B(c, r0) is disjoint from

the cone C = {rζ | r > 0, d(ζ, e) < ϕ/2}.

P r o o f. Assume d = 2. The cap has height h = ǫ(1 − cosϕ + τ cosϕ) and

base 2s ≤ 2
√

2hr1. The top of the cap lies on the ray with angle ϕ1 ≥ ϕ, and the

cap subtends an angle 2ψ on the larger disk. It suffices to prove that ψ ≤ ϕ/2.

Note that 2ψ < π/2 since ǫ is small, and this implies

ψ ≤ πs/(2
√

2r1) ≤ (π/2)
√
h ≤ (π/2)

√
ǫϕ

since the condition ϕ ≥
√

2τ implies 1 − cosϕ+ τ cosϕ ≤ ϕ2. �

4. Examples

Example I. Pointwise convergence

Recall that D is the intersection of D(ω) over ω ∈ ∂B by Proposition 3.9.

It is possible that g lies in D0(ω) for all ω ∈ ∂B but not in D. To understand

what goes wrong, consider g ∈ S0 with level sets {g > e−n} = nB. Alter g into

a density g̃ by cutting off caps of height a half with direction ζi from the balls

Bmi
for an increasing sequence mi. What is the effect on the asymptotics as one

alters the sequence ζi and the rate at which mi increases? We shall do something

similar for non-concentric level sets, translating the ball Bmi+1 in the directions

ζi so that the translate still lies between the balls Bmi
and Bmi+2. The new

function g̃ lies in S0 and has the same integral as g, but the asymptotics may

have changed.

Let U be a dense open set in the unit sphere ∂B. The complement of U may

be a finite set or a finite union of smooth closed curves. Such sets have no area.

One can easily construct for any ǫ > 0 dense open sets U ⊂ ∂B whose area is

less than ǫ. Choose a dense sequence of points in the unit sphere and let U be

the union of open disks in ∂B centered in these points with area less than ǫ/2n.

For such a dense open set U we shall construct a density g̃ ∈ S0 with the

following properties:

• the high risk scenarios ZHt converge in distribution for t→ ∞ to the Gauss-

exponential limit vector for the halfspaces Ht = {ω ≥ t} for each ω ∈ ∂B,

and



32 Guus Balkema

• the high risk scenarios ZHn converge to the Gauss-exponential limit vector

for all sequences of halfspaces Hn = {ωn ≥ tn} with tn → ∞ and ωn → ω

for ω ∈ U , and

• for each ω ∈ ∂B \ U there exists a sequence of halfspaces Hn = {ωn ≥ tn}
with tn → ∞ and ωn → ω such that the high risk scenarios ZHn converge,

but the limit is not Gauss-exponential.

Theorem 4.1. For any dense open set U ⊂ ∂B there exists a density g̃ ∈ S0

which lies in D0(ω) for all ω ∈ ∂B, but in D(ω) only for ω ∈ U .

Construction and proof. There are nine steps.

1) We shall assume that U c is non-empty. For ω ∈ ∂B let ϕU (ω) denote the

distance of ω to U c. The function ϕU is continuous on ∂B and U = {ϕU > 0}.
There is a sequence of points ζn ∈ U such that every point in U c is limit of a

subsequence. We may arrange that ϕU (ζn) = 1/n. Let A ⊂ R
d be the union

of the sets An = {rω | 0 ≤ r ≤ mn + 2n; 0 < ϕU (ω) < 1/n} for some strictly

increasing sequence of integers mn to be specified in step 3). The set A is small:

for each unit vector ω there exists an r0 > 1 such that rω ∈ Ac for r ≥ r0.

2) Let g ∈ S0 satisfy AED. With each halfspace H = {ω ≥ t} with t ∈ R

is associated an affine transformation αH mapping the upper halfspace J+ =

{v ≥ 0} onto H such that for any sequence of halfspaces Hn the associated

transformations αn satisfies

hn(w) := g(αn(w))/g(αn(0) → e−χ(w),

provided max g1Hn
is positive and vanishes for n→ ∞.

3) We assume that Bn = {g > e−n} has radius rn = n for all n ≥ 1. There is

a strictly increasing sequence of integers mi ≥ i3 such that Bn has relative center

ci = (1 − 1/i3)ζi for |n −mi| ≤ i where ζi ∈ ∂B is defined in 1) above, and such

that Bmi
is centered. (Start out with two successive centered balls Bn0−1 and

Bn0
. Now define Bn0+k for k = 1, 2, . . . to be balls which are symmetric around

the line Rζi. The boundary contains a point ykζi with yk > 0, and the increments

yk − yk−1 = ak lie in (0, 2) since rn = n. Moreover ak/ak+1 is close to one by

the condition AED. It is possible to construct such a sequence of increments

ak with a1 = 1 such that ak = 1/i3 for k = k0 − i, . . . , k0 + i and such that

a1 + · · · + ak0 = k0, and (by symmetry) such that a1 + · · · + a2k0 = 2k0 and

a2k0 = 1, and | log(ak/ak−1| < 1/i for all k.)
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4) Define g̃ ∈ S0 to have level sets B̃n = {g̃ > e−n} where B̃mi+1 = Bmi+1 +

ζi/2i
3 and B̃n = Bn for all n which are not of the formmi+1. Hence g̃ ≍ g. If αi is

the affine normalization associated with the halfspace Hi supporting Bmi
in miζi

then g̃(αn(w))/g̃(αn(0)) → h̃(w) where h̃ has parabolic level sets but h̃ 6= e−χ

since {h̃ > 1/e} = P+3ed/2 instead of P+ed. Note that Hi has direction ζi since

Bmi
is centered. This proves the third statement in the proposition. Pointwise

convergence of g̃(αn(w))/g̃(αn(0) yields L1 convergence since g̃ ≍ g.

5) Choose new coordinates so that Bmi
is the unit ball (by scaling by 1/mi).

The balls Bn for n = mi+k with |k| ≤ i are obtained by expansion or contraction

from the center c = (1 − τ)ζi where τ = 1/i3. The ratios ρn(ω), see (3.1) are

identically one since the center is constant and also the increments of the radii.

For the balls B̃n for n = mi we obtain

ρ̃mi
(ω) =

1 − γ + 3γ/2i3

1 − γ + γ/i3
= 1 +

γ/2i3

1 − γ + γ/i3
γ = cosϕ,

where ϕ is the angle between ω and ζi. Hence ρ̃mi
(ω) − 1 ∼ 1/(2 + ϕ2i3) for

ϕ→ 0. Lemma 3.11 gives

(4.1) d(ω, ζi) ≥ 1/2i ⇒ |ρ̃n(ω) − 1| ≤ C0/i |n−mi| ≤ i.

6) Let A∗ be the union of the sets A∗
n where A∗

i is the intersection of the ring

Bmi+2 \ Bmi
and the cone {rω | r > 0, d(ω, ζi) < 1/2i}. For any sequence zn

in the complement of A∗ for which g(zn) is positive and vanishes for n→ ∞ the

quotient g̃(zn)/g(zn) tends to one.

7) Let m be a positive integer. Let Hn be the halfspace of direction ωn
supporting the ball Btn in the point zn, and let αn be the associated affine

normalization. Assume tn → ∞. Let Cn = Cn(m) be the cap Btn+m ∩H ′
n where

H ′
n is the halfspace with direction ωn supporting Btn−m. The image α−1

n (Cn)

converges to the parabolic cap Pm = (P +med) ∩ {v > −m}. If the caps Cn are

disjoint from A∗ for n ≥ n0 then

h̃n(w) = g̃(αn(w))/g̃(αn(0)) → e−χ(w)

uniformly on compact subsets of the parabolic cap Pm.

8) Claim: If i ≥ 2m+ 4 ≥ 6 and C = Cn(m) intersects A∗
i then z ∈ Ai. First

observe that mi ∈ [tn −m− 2, tn +m+ 2]. By construction Bmi
is centered and

Bmi
/mi = B. The cap C/mi has height ǫ ≤ (2m + 4)/mi ≤ 1/i2 ≤ 1/36. Set

ω = z/‖z‖. By Lemma 3.12 the inequality d(w, ζi) = ϕ ≥ 1/i implies that C and
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the cone {rω | d(ω, ζi) < 1/2i} are disjoint. Hence we conclude d(ω, ζi) < 1/i

and |tn −mi| ≤ m+ 2 < i. This implies ‖z‖ ≤ mi + 2i and hence z ∈ Ai.

9) If zn is a sequence in Ac and zn ∈ ∂Btn with tn → ∞, then for any integer

m ≥ 1 the cap Cn(m) is disjoint from A∗ eventually. Hence g̃(αn(w))/g̃(αn(0)) →
e−χ(w) holds uniformly on compact sets. Weak asymptotic equality g̃ ≍ g then

yields L1 convergence on all halfspaces J on which g(αn(w))/g(αn(0)) → e−χ(w)

holds in L1(J). �

Example II. Convex level sets

L1 convergence to the Gauss-exponential function on {v ≥ 0} implies L1

convergence on all horizontal halfspaces {v ≥ v0}, v0 ∈ R by the Extension

Theorem in [2]. L1 convergence on non-horizontal halfspaces is a different matter.

There is a continuous strictly positive density f on the plane for which there

exist scale constant at such that

ht(u, v) := etf(atu, v + t) → h(u, v) = e−u
2/2−v t→ ∞

uniformly on compact sets of the plane and in L1 on horizontal halfplanes, but

for which
∫

J
ht(u, v)dudv → ∞ t→ ∞

for any halfplane J = {v ≥ v0 + au} with a 6= 0.

The density f is unimodal with convex level sets Dt = {f > e−t}. Moreover

it is symmetric around the vertical axis, f(−x, y) = f(x, y), and f(0, t) = e−t for

t ≥ t0. The density is light-tailed, e−ǫtDt → (0, 0) for any ǫ > 0. On the upper

halfplane the density f agrees with a density g ∈ S ∩ D.

The level sets of f have a simple form. The level sets of g are disks Bt =

{g > e−t} of radius rt which support the horizontal halfplane {y ≥ t} in the point

(0, t), and which intersect the horizontal axis in the interval (−xt, xt). Let Tt be

the circumscribed open isosceles triangle whose sides are tangent to the disk Bt
in the points (±xt, 0) and (0, t − 2rt). The level set Dt = {f > e−t} agrees with

Bt on the upper halfplane {y ≥ 0} and with the triangle Tt on the lower halfplane

{y ≤ 0}, at least for t ≥ t0.

Above the line v = −n the level set Qn = {hn > 0} of the normalized

function is an ellipse which fits nicely into the standard parabola P . The set Qn
is a bounded open convex subset of the plane. The functions hn converge to e−χ

uniformly on compact subsets of the plane and on halfspaces {v ≥ v0 + au} for



Densities with Spherical Level Sets in the Gauss-exponential Domain 35

v0, a ∈ R. Let J be the halfplane whose lower boundary is tangent to P with

slope −1. Because of convexity the precise shape of the level sets Qn+m below

the line v = −(n+m) should have no influence on the behaviour of the function

hn on the halfspace J . Yet we claim that the integral of hn over J goes to infinity

for n→ ∞.

Let Ht be the halfplane above the tangent line Lt to Bt in (0, xt) with slope

−λt. Then f ≥ e−(t+1) on the trapezium At bounded by the horizontal lines

y = 0 and y = t−2rt and the tangent lines Lt and Lt+1. This trapezium contains

a triangle of height 2rt − t bounded by lines with slopes −λt and −λt+1. Hence

(4.2) P{Z ∈ Ht} ≥ e−(t+1)|At| |At| ≥ (2rt − t)2(λ−1
t+1 − λ−1

t )/2.

The trapezium At may be large. The probability above may be much larger than

the probability for horizontal halfplanes {y ≥ t}.
Here are the details. The disk Bt intersects the horizontal line y = t − 1

in an interval of length 2Rt with Rt ∼
√

2rt. The cap of the ball Bt cut off

by the halfplane {y ≥ t − 1} in z-space corresponds to the cap cut off from the

parabola P = {v < −u2/2} by the halfplane {v ≥ −1} in w-space. We may take

normalizations αt(u, v) = (atu, t+ v) with at =
√
rt. We claim that

(4.3) qt := P{Z ∈ αt(J)}/P{Z ∈ αt(J+)} → ∞ J = {v ≥ c0 − cu}, c 6= 0.

It suffices to prove this for c0 large and c close to zero since J ∪ J+ then is small.

By symmetry we may assume c > 0.

The limit (4.3) holds for J = Jt = {v ≥ c0t − ctu} provided that c0t does not

increase too fast and ct does not vanish too fast. If c0t ≡ c0 and ct → 0 sufficiently

fast then P{Z ∈ αt(Jt)} ∼ P{Y ≥ t + c0} since the distribution of Z does not

charge hyperplanes, and hence qt → e−c0 . (The function H 7→ p(H) = P{Z ∈ H}
is continuous and positive.) We shall give an example where (4.3) holds with

J = Jt if c0t and ct are positive constants, but also if ct → 0 sufficiently slowly,

say ct = 1/t2, and c0t = log t. Assume ct ∈ (0, 1/2) tends to zero for t → ∞.

Then (0, c0t) ∈ Jt and hence αt(Jt) contains the point (0, t + c0t) and intersects

Dt+c0t
. The boundary of αt(Jt) has slope −κt where κt = ct/at.

Let us now become more specific. Let θ ∈ (1/2, 1). Set λt = e−t
θ/θ. There

is a disk Bt with radius rt having a horizontal tangent in (0, t) and a tangent

Lt of slope −λt in a point (xt, 0) ∈ ∂Bt. Straightforward computations give

rt(1 − cosϕt) = t for ϕt = arctan λt and

(4.4) λ̇t = −λt/t1−θ ϕ̇t ∼ λ̇t ṙt ∼ 4tθ/λ2
t t → ∞.
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Proposition 4.2. Probability densities g with level sets Bt = (0, t−rt)+rtB
as above lie in D.

P r o o f. This is Example 4 with Tn = n and Sn = 2rn − n. The function

t 7→ Tt obviously lies in D+, and so does t 7→ St since 2ṙ(t)− 1 ∼ 4tθ/λ2
t by (4.4)

and the derivative of log(4tθ/λ2
t ) vanishes for t→ ∞. �

The function λt satisfies the limit relations

(4.5) log
(λt
λs

)

∼ s− t

t1−θ
1

λs+1
− 1

λs
∼ 1

λss1−θ
s = st ∼ t→ ∞.

Recall that αt(u, v) = (atu, v + t) with at =
√
rt where rt ∼ 2t/λ2

t ∼ 2te2t
θ/θ

by (4.4). The Gauss-exponential asymptotics give

(4.6) P{Z ∈ αt(H+)} ≤ 4
√
te−t/λt t ≥ t1

since this probability is asymptotic to
√

2πate
−t. The halfspace αt(Jt) is bounded

by a line Kt with slope −κt where κt = ct/at ∼ ctλt/
√

2t. Define s = s(t) by

λs = κt. Then by (4.5)

(4.7) s− t ∼ t1−θ log(
√

2t/ct) t→ ∞.

Assume c0t ≤ s− t. Then

αt(Jt) ⊃ Hs ⊃ Hs ∩ {y ≤ 0} ⊃ As.

The size of the trapezium As was bounded in (4.2) by the asymptotic expression

4s1+θe5s
θ/θ. Hence

(4.8) P{Z ∈ αt(Jt)} ≥ e−ss1+θe5m
θ/θ s = s(t), t ≥ t2.

Together with (4.6) this yields the bound

log qt = log
P{Z ∈ αt(Jt)}
P{Z ∈ αt(H+)} ≤ s− t+ 4tθ/θ t ≥ t1 ∨ t2.

Take

(4.9) ct = e−4t2θ−1

c0t = 3tθ.

Then s− t ∼ 4tθ by (4.7) which implies n0t << s− t << 4tθ/θ and hence qt → ∞
for t→ ∞.



Densities with Spherical Level Sets in the Gauss-exponential Domain 37

Proposition 4.3. Let αt(u, v) = (atu, t+ v) with at =
√

2tet
θ/θ. Then

etf0(αt(w)) → e−u
2/2e−v w = (u, v) t→ ∞

uniformly on bounded sets and in L1 on all horizontal halfplanes {v ≥ c}, c ∈ R,

but on no others. Let Jt = {v ≥ c0t − ctu} with ct and c0t as in (4.9). Then

etP{Z ∈ αt(Jt)} → ∞.

The difference Jt \H+ is a thin sector St with top (ut, 0) with ut = 3tθet
2θ−1

,

and bounded by a horizontal halfline and a halfline with slope −ct. Let tn−tθn/θ =

log(2n
√
π). Then P{Y ≥ tn} ∼ 1/n. Let Z1,Z2, . . . be independent observations

from f . The sample clouds Nn = {β−1
n (Z1), . . . , β

−1
n (Zn)} with βn = αtn has

intensity nf ◦ βn. The expected number of points in the halfspace H+ goes to

one, but the expected number of points in the sliver Stn goes to infinity. For

m = 1, 2, . . .

P{Nn(Stn) > m} → 1 n→ ∞.
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