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MAXIMAL NUMBER OF SUCCESSORS IN A NGINAR(1)
PROCESS

Pavlina K. Jordanova, Ivan K. Mitov*

In this paper we obtain upper and lower bounds for normalized sequences of
maxima, associated with a stationary integer-valued autoregressive process
of first order with geometric marginals (NGINAR(1) process). These processes
are a special case of AR(1) processes and strictly stationary ergodic Markov
chains.

1. Introduction

Correlated statistical data expressed in terms of counts taken sequentially in time
are often used in practice. Some examples include the total claim amount in an
insurance company or the number of survivals in a population at a fixed moment
in time. Mathematical models for such data with different marginal distributions
have been recently investigated.

In 1970 Anderson shows that under linear normalizations the geometric dis-
tribution does not belong to max-domain of attraction of any max-stable law. He
discusses independent and identically distributed (i.i.d.) random variables (rv’s)

*The first author is partially supported by grant RD–05-333/2010 (RD-07-1028) of Shumen
University, Bulgaria.

2000 Mathematics Subject Classification: 60J80, 60J20, 60J10, 60G10, 60G70, 60F99.
Key words: Markov chains; NGINAR process; Branching processes; Processes of maxima;

Stationary sequences.



110 Pavlina K. Jordanova, Ivan K. Mitov

with distribution function (d.f.) F, whose support consists of all sufficiently large
integers, and obtains that for some t > 0,

(1) lim
n→∞

1 − F (n)

1 − F (n + 1)
= et.

if and only if there exist cn, such that for all x ∈ R,

(2) e−e−t(x−1)
≤ lim inf

n→∞
Fn(x + cn) ≤ lim sup

n→∞
Fn(x + cn) ≤ e−e−tx

.

In 1983 Leadbetter, Lindgren and Rootzen discuss the problem of estimating
the extrema of a stationary sequence and find the following two conditions that
guarantee we do not go far away from the i.i.d. case.

Condition D(un): For any integers r, s, n and 1 ≤ i1 < · · · < ir < j1 <

· · · < js ≤ n, such that j1 − ir ≥ l(n) we have

|P( max
i∈A1∪A2

Xi ≤ un) − P(max
i∈A1

Xi ≤ un)P(max
i∈A2

Xi ≤ un)| ≤ αn,l(n),

where A1 = {i1, i2, . . . ir}, A2 = {j1, j2, . . . js} and αn,l(n) → 0 as n → ∞ for some
sequence l(n) = o(n).

Condition D′(un):

lim sup
n→∞

n

[ n
k
]

∑

j=2

P(X1 > un,Xj > un) → 0, as k → ∞.

In 1992 McCormick and Park generalize Anderson’s result for stationary se-
quence. They define continuous function:

Fc(x) =

{

− log(1 − F (x)), x ∈ N

F ([x]) + (x − [x])(F ([x + 1]) − F ([x])), x ∈ R

and prove that for a stationary sequence X1,X2, . . . , with d.f. F , whose support
consists of all sufficiently large integers, conditions D(cn + x) and D′(cn + x)
together guarantee that

(3) e−e−t(x−1)
≤ lim inf

n→∞
P(Mn < x + cn) ≤ lim sup

n→∞
P(Mn < x + cn) ≤ e−e−tx

,

where Mn = max(X1,X2, . . . ,Xn) and 1 − Fc(cn) = n−1 .
Integer valued autoregressive process of first order (INAR(1)) was introduced

by Al-Osh and Alzaid (1987). It is based on binomial thinning operator. This
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model was generalized to INAR(d) by Du and Li (1991). It is useful tool for mod-
eling discrete-time dependent counting processes. McCormick and Park (1992)
and Hall and Mireira (2006) study the behaviour of extreme value generated by
such models and obtain bounds for the distribution of the maximum based on
negative binomial autoregressive process.

Ristič et al. (2009) define and investigate a new first-order integer-valued
autoregressive process with geometric marginals denoted by NGINAR(1). The
problem of scalar multiplication for discrete rv’s is resolved by the use of the
negative binomial thinning operator. These processes are a special case of strictly
stationary counting processes, AR(1) processes and ergodic Markov chains, i.e.
they are aperiodic and positive recurrent.

In 1995, Dion, Gauthier and Latour (1995) define the generalized integer-
valued autoregressive time series of order d as a functional of the multiple branch-
ing processes with immigration. In the case d = 1 the two models are the same.
The fact that the NGINAR(1) process is a special case of the generalized integer-
valued autoregressive time series of order d, allows us to consider this process as
a special case of a branching process with immigration.

In this paper we investigate maximal number of successors of the NGINAR(1)
process, i.e. we deal with normalized maxima of correlated identically geometri-
cally distributed rv’s. In order to obtain upper and lower bounds for the d.f. of
the normalized maxima we use direct calculations. We do not use the standard
approaches discussed above because it is difficult to verify conditions D(un) and
D′(un).

The next section starts with a description of the NGINAR(1) model. Then
we obtain some properties of these processes and give the main result of the
paper, namely the upper and lower bounds for the maximal number of successors
of NGINAR(1) process. Finally we present the dependence of these bounds on
the model parameters.

Along the paper
d
= stands for the equality in distribution and

w
→ for the weak

convergence. We suppose that all considered random elements are defined on the
same probability space, (Ω,A,P).

2. Asymptotic behaviour of maxima

Ristič et al. (2009) define a stationary process {Xn : n = 0, 1, . . . } by

(4) X0 = 1, Xn = α ∗ Xn−1 + εn, n = 1, 2, . . .



112 Pavlina K. Jordanova, Ivan K. Mitov

where the operator ∗ is called negative binomial thinning operator. It is defined
by

α ∗ X =

X
∑

i=1

Wi, with

0
∑

i=1

= 0,

where Wi are independent, geometrically distributed rv’s with parameter

pα =
1

1 + α
, α ∈ [0, 1).

The process Xn is assumed to have geometric marginals with parameter

pµ =
1

(1 + µ)
, µ > 0

and {εn, n = 1, 2, . . . } are i.i.d. random variables, independent of {Xn−k : k =
0, 1, . . . , n} and {Wi : i = 1, 2, . . .}.

These assumptions mean that

P(Xn = k) = (1 − pµ)kpµ, k = 0, 1, . . .

(briefly Xn ∼ Ge(pµ)) and the random variables {εn : n = 1, 2, . . .} have proba-
bility mass function

P(εn = j) =
(1 − pµ)pα − 1 + pα

pα − pµ
pµ(1 − pµ)j +

(1 − pµ)(1 − pα)

pα − pµ
pα(1 − pα)j ,

j = 0, 1, . . . .
The latter implies that

εn
d
= WI{A} + XI{A},

where W and X are independent random variables, W ∼ Ge(pα), X ∼ Ge(pµ), A

is an event with probability P(A) =
(1 − pµ)(1 − pα)

pα − pµ
, and I{A} is the indicator

of the event A. The process is well defined for α <
µ

1 + µ
.

Let {Wn,i, i = 1, . . . , n−1, n ≥ 1} be a triangular array of i.i.d. geometrically
distributed rv’s with parameter pα. Then, the relations

(5) X0 = 1, Xn =

Xn−1
∑

i=1

Wn,i + εn, n = 1, 2, . . . .
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suggest the following branching process interpretation of this model. The ran-
dom variable Xn could be considered as the number of individuals in the n-th
generation. Then µ represents the average number of these individuals. Wn,i is
the number of successors of the i-th individual in the n-th generation. So, the
constant α is the average number of these successors and εn is the number of
immigrations in the n-th generation. The extinction probability of the sequence
is given by P(Xn = 0) = pµ.

If α = 0, then Xn
d
= εn, n = 1, 2, . . . , and all these rv’s are geometrically

distributed with parameter pµ. In this case the process is a pure immigration
process.

If α = 1−pµ, then εn ∼ Ge(pα) n = 1, 2, . . . and Xn ∼ Ge

(

pαpµ

1 − pα(1 − pµ)

)

,

but they are not independent. The authors call this process NGINAR(1) process.
First we obtain some preliminary results formulated in the following theorem.

Denote by qµ = 1 − pµ, qα = 1 − pα and by NBi(n; p) the negative binomial
distribution with parameters n and p.

Theorem 1. Let {Xn : n = 0, 1, . . . } be NGINAR(1) process and
ξy ∼ NBi([y] + 1; pα). For y ≥ 0

1.

Φ(s, y) = E(sX2|X1 ≤ y) = EsX1 ×

(

1 − q
[y]+1
µ Esξy

)

1 − q
[y]+1
µ

;

2.

P(X2 = k|X1 ≤ y) =
P(X1 = k) − q

[y]+1
µ P(X1 + ξy = k)

1 − q
[y]+1
µ

, k = 0, 1, . . . ;

3.

P(X2 ≤ y|X1 ≤ y) = 1 −
q
[y]+1
µ

1 − q
[y]+1
µ

P(X1 + ξy ≤ [y]).

P r o o f. 1. For the probability generating function Φ we obtain consequently:

Φ(s, y) = E(sX2|X1 ≤ y)) =
∞
∑

j=0

sjP(X2 = j|X1 ≤ y) =

=

∞
∑

j=0

sj P(X2 = j,X1 ≤ y)

P(X1 ≤ y)
=

∞
∑

j=0

[y]
∑

r=0

sj P(X2 = j,X1 = r)

P(X1 ≤ y)
=
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=

[y]
∑

r=0

∞
∑

j=0

sj P(X2 = j|X1 = r)P(X1 = r)

P(X1 ≤ y)
.

From the model definition we have

Φ(s, y) =

[y]
∑

r=0

∞
∑

j=0

sj P(X1 = r)

P(X1 ≤ y)
.

.

(

P(
r+1
∑

k=1

W2,k = j)P(A) + P(
r
∑

k=1

W2,k + X = j)P(Ā)

)

=

=

[y]
∑

r=0

P(X1 = r)

P(X1 ≤ y)

(

(EsW )r+1P(A) + (EsW )rEsXP(Ā)
)

=

=
EsWP(A) + EsXP(Ā)

P(X1 ≤ y)

[y]
∑

r=0

(EsW )rP(X1 = r) =

=
Esε

P(X1 ≤ y)

[y]
∑

r=0

(EsW )rqr
µpµ =

Esε

P(X1 ≤ y)
pµ

1 − (EsW qµ)[y]+1

1 − EsW qµ
.

In the last expression we substitute respectively

Esε =
1 − pαqµ − qαs

(1 − qµs)(1 − qαs)
,

P(X1 ≤ y) = 1 − q[y]+1
µ ,

EsW =
pα

1 − qαs
,

and
(EsW )[y]+1 = Esξy .

In this way we get

Φ(s, y) =

1 − pαqµ − qαs

(1 − qµs)(1 − qαs)

1 − q
[y]+1
µ

×pµ×
1 − q

[y]+1
µ Esξy

1 −
qµpα

1−qαs

=
pµ

(1 − qµs)
×

(

1 − q
[y]+1
µ Esξy

)

1 − q
[y]+1
µ

.

Because X1 is geometrically distributed with parameter pµ, we have

EsX1 =
pµ

1 − qµs
,
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and therefore

Φ(s, y) = EsX1 ×

(

1 − q
[y]+1
µ Esξy

)

1 − q
[y]+1
µ

.

2. The probability P(X2 = k|X1 ≤ y) will be found from the equation

(6) P(X2 = k|X1 ≤ y) =
Φ(k)(0, y)

k!

where Φ(s, y) = E(sX2 |X1 ≤ y) and Φ(k) is the k-th derivative of Φ with respect
to s.

Now 1. entails

P(X2 = k|X1 ≤ Ln(x)) =
Φ(k)(0, y)

k!
=

=
P(X1 = k) − q

[Ln(x)]+1
µ P(X1 + ξ[Ln(x)]+1 = k)

1 − q
[Ln(x)]+1
µ

.

3. By 2. we have

P(X2 ≤ y|X1 ≤ y) =

[y]
∑

k=0

P(X2 = k|X1 ≤ y) =

=

[y]
∑

k=0

P(X1 = k) − q
[y]+1
µ P(X1 + ξy = k)

1 − q
[y]+1
µ

=

= 1 −
q
[y]+1
µ

1 − q
[y]+1
µ

[y]
∑

k=0

P(X1 + ξy = k) =

= 1 −
q
[y]+1
µ

1 − q
[y]+1
µ

P(X1 + ξy ≤ [y]). �

Denote by Mn = max(X1,X2, . . . ,Xn). As discussed in the introduction we
cannot obtain non-degenerate weak limit under linear normalizations. We are
looking for upper and lower bounds of P(L←n (Mn) < x), where Ln are strictly
increasing and continuous mappings, i.e. they preserve the operation maxima.
Further we are going to prove that

|P(Mn ≤ Ln(x)) − Pn(X1 ≤ Ln(x))| → 0, as n → ∞.
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In this way we could investigate the asymptotic behavior of Mn by investigating
the probabilities Pn(X1 ≤ Ln(x)).

Theorem 2. Let {Xn : n = 0, 1, . . . } be NGINAR(1) process,
Mn = max(X1,X2, . . . ,Xn) and Ln(x) = − logqµ

((n + 1)f(x))− 1, where f(x) is
continuous, positive and strictly increasing function.

1. |Pn (X1 ≤ Ln(x)) −

(

1 − q
[− logqµ

((n+1)f(x))]
µ

)n

| → 0, as n → ∞.

2. |P(Mn ≤ Ln(x)) − Pn(X1 ≤ Ln(x))| → 0, as n → ∞.

3. For all n ∈ N,

exp
{

−(qµf(x))−1
}

< lim inf
n→∞

P(Mn ≤ Ln(x)) ≤ P(Mn ≤ Ln(x)) ≤

≤ lim sup
n→∞

P(Mn ≤ Ln(x)) ≤ exp
{

−f−1(x)
}

.

P r o o f. 1. This limit relation follows from the particular form the geometric
distribution’s d.f. and the d.f. of maxima.

2. Since Ln(x) are non-decreasing and {Mn : n = 1, 2, . . . } is a stationary
Markov chain we have

P(Mn ≤ Ln(x)) = P(

n
⋂

i=1

Xi ≤ Ln(x)) =

= P(X1 ≤ Ln(x))P(X2 ≤ Ln(x)|X1 ≤ Ln(x)) . . .

. . . P(Xn ≤ Ln(x)|Xn−1 ≤ Ln(x)) =

= P(X1 ≤ Ln(x))Pn−1(X2 ≤ Ln(x)|X1 ≤ Ln(x)).

Then
|P(Mn ≤ Ln(x)) − Pn(X1 ≤ Ln(x))| ≤

≤ (n − 1)P(X1 ≤ Ln(x))|P(X2 ≤ Ln(x)|X1 ≤ Ln(x)) − P(X1 ≤ Ln(x))|.

Now using 3. from Theorem 1 we obtain

|P(Mn ≤ Ln(x)) − Pn(X1 ≤ Ln(x))| ≤

≤ (n − 1)P(X1 ≤ Ln(x)).
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.

∣

∣

∣

∣

∣

1 −
q
[Ln(x)]+1
µ

1 − q
[Ln(x)]+1
µ

P(X1 + ξ[Ln(x)]+1 ≤ [Ln(x)]) − P(X1 ≤ Ln(x))

∣

∣

∣

∣

∣

=

= (n − 1)q[Ln(x)]+1
µ × P(X1 ≤ [Ln(x)],X1 + ξ[Ln(x)]+1 ≥ [Ln(x)]) ≤

≤ (n − 1)q[Ln(x)]+1
µ × P(X1 + ξ[Ln(x)]+1 ≥ [Ln(x)]) =

= (n − 1)q[Ln(x)]+1
µ × P(X1 + 1 + ξ[Ln(x)]+1 ≥ [Ln(x)] + 1) =

= (n − 1)q[Ln(x)]+1
µ × P

(

X1 + 1

[Ln(x)] + 1
+

ξ[Ln(x)]+1

[Ln(x)] + 1
≥ 1

)

.

From the Kolmogorov’s SLLN we have that

ξ[Ln(x)]+1

[Ln(x)] + 1
= E(W ) + o(1) =

1 − pα

pα
+ o(1).

Then
|P{Mn ≤ Ln(x)} − Pn{X1 ≤ Ln(x)}| ≤

≤ (n − 1)q[Ln(x)]+1
µ × P

(

X1

[Ln(x)] + 1
+

1 − pα

pα
+ o(1) ≥ 1

)

= (n − 1)q[Ln(x)]+1
µ × P (X1 ≥ ([Ln(x)] + 1) (1 − α + o(1))) .

For the probability in the right hand side of the last expression we have that

P (X1 ≥ ([Ln(x)] + 1) (1 − α + o(1))) =

= 1 − P (X1 < ([Ln(x)] + 1) (1 − α + o(1))) → 1 − P {X1 < ∞} = 1 − 1 = 0,

because α ∈ [0, 1) and X1 < ∞ a.s.
We substitute Ln(x) and obtain

(n − 1)q[Ln]+1
µ = (n − 1)q

[− logqµ
((n+1)f(x))]

µ ≤

≤ (n − 1)q
− logqµ

((n+1)f(x))−1
µ =

n − 1

n + 1

1

qµf(x)
<

1

qµf(x)
< ∞.

In this way, we proved that

|P(Mn ≤ Ln(x)) − Pn(X1 ≤ Ln(x))| → 0, as n → ∞.

3. It is clear that
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(

1 − q
− logqµ

((n+1)f(x))
µ

)n

≥

(

1 − q
[− logqµ

((n+1)f(x))]
µ

)n

>

(

1 − q
− logqµ

((n+1)f(x))−1
µ

)n

,

lim inf
n→∞

(

1 − q
[− logqµ

((n+1)f(x))]
µ

)n

≥ exp

{

−
1

qµf(x)

}

and

lim sup
n→∞

(

1 − q
[− logqµ

((n+1)f(x))]
µ

)n

≤ exp

{

−
1

f(x)

}

.

Then for all n ∈ N,

exp
{

−(qµf(x))−1
}

< lim inf
n→∞

Fn(Ln(x)) =

= lim inf
n→∞

P(Mn ≤ Ln(x)) ≤ P(Mn ≤ Ln(x)) ≤

≤ lim sup
n→∞

P(Mn ≤ Ln(x)) = lim sup
n→∞

Fn(Ln(x)) ≤ exp
{

−f−1(x)
}

. �

Notes: 1. We do not use Anderson’s (1970) result in our proof, because of
difficulties in determination of the centering constants cn.

2. If one takes pµ = pµ(n) → 0, as n → ∞, i.e. qµ(n) → 1, then

lim
n→∞

P(Mn ≤ Ln(x))

exists and P(Mn ≤ Ln(x)) → exp
{

− 1
f(x)

}

, as n → ∞. Similar results for nor-

malized maxima of i.i.d. discrete random variables with changing parameters,
including geometrically distributed, were proved in Nadarajah and Mitov (2002).
They use linear transformations.

3. Finally, denote h(x) = log f(x), then f(x) = eh(x) and 1
f(x) = e−h(x). In

this way if we take pµ = pµ(n) → 0, as n → ∞ we obtain

P{Mn ≤ Ln(x)} → exp
{

−e−h(x)
}

=: H(x), h(x) ∈ R.

We could choose, for example, the following three special cases for the function
h(x) :

• if h(x) = x, x ∈ R, then H(x) = e−e−x
;
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Fig. 1. The distance between the upper and lower bound as a function of qµ

and x.

• if h(x) = β log x, x > 0, β > 0, then H(x) = e−x−β
;

• if h(x) = −β log(−x), x < 0, β > 0, then H(x) = e−(−x)β
.

The latter means, that under nonlinear normalization when the parameter
pµ = pµ(n) → 0, as n → ∞, X1,X2, . . . are neither independent nor identically
distributed, but we could obtain any of the three max-stable distributions as a
limit.

Figure 1. shows the distance between the upper and lower bound as a function
of qµ = 1− pµ and x. It is clear that the lower the value of qµ the greater will be
the distance between the upper and lower bounds.
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