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STRONG CONSISTENCY OF THE CONDITIONAL LEAST

SQUARES ESTIMATOR FOR A NONSTATIONARY
PROCESS. EXAMPLE OF THE GARCH MODEL

Christine Jacob

We consider the Conditional Least Squares Estimator (CLSE) of a un-
known parameter θ0 ∈ Rp of the conditional expectation of a real stochastic

process {Yn} having finite first two conditional moments E(Yn|Fn−1)
a.s.
< ∞,

E(Y 2

n |Fn−1)
a.s.
< ∞ at each time n, where E(Yn|Fn−1) is Lipschitz and may

be nonlinear in θ0 and {Fn} is an increasing sequence of σ-algebra. We
generalize to this class of processes the necessary and sufficient condition
got for the strong consistency of the CLSE of θ0 in the particular linear
deterministic (or linear stochastic if p = 1) model E(Yn|Fn−1) = θT

0
Wn.

We illustrate this theoretical result with examples, mainly a nonstationary
GARCH(1, 1) model.

1. Introduction

Let {Yn}n∈N be an observed one-dimensional real stochastic process defined on a

probability space (Ω,F , P ) and let {Fn} be an increasing sequence of σ-algebra

depending on observed processes. We assume that {Yn} satisfies:
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MY : E(Yn|Fn−1) =: fn(θ0, ν0) = f (1)
n (θ0) + f (2)

n (θ0, ν0)

θ0 ∈ Θ ⊂ R
p, 0 < p < ∞, ν0 ∈ N ⊂ R

q, 0 ≤ q ≤ ∞,

lim
n

E(Y 2
n |Fn−1)

a.s.
< ∞,(1)

where θ0 is a unknown parameter that we want to estimate, f
(1)
n (θ0) is the

Fn−1-measurable parametric part of the model that may be nonlinear in θ0,

and f
(2)
n (θ0, ν0) is a Fn−1-measurable nuisance part that may be nonparamet-

ric. In this case q = ∞ and ν0 = {f (2)
n (θ0, ν0)}. The case q = 0 is defined by

f
(2)
n (θ0, ν0) = 0, for all n, and corresponds to the classical parametric setting.

We assume that, as n → ∞, {f (2)
n (θ0, ν0)} is asymptotically relatively negligible

compared to {f (1)
n (θ0)} (see section 3.). So finally

Yn = f (1)
n (θ0) + f (2)

n (θ0, ν0) + ηn,

where by construction ηn is a martingale difference, that is E(ηn|Fn−1) = 0.

Some examples of processes satisfying MY are nonlinear regression models

with random covariates and heteroscedastic variances, noisy dynamical models,

nonlinear time series model (TARMA, SETAR, bilinear processes, . . . ), financial

models (ARCH initiated by [3], GARCH and others), and branching processes.

We deal here with the CLSE (Conditional Least Squares Estimators) of θ0

in the approximate model {fk(θ0, ν̂)}k≤n, where ν̂ = {ν̂n} is any sequence of

estimations of ν0n when q = ∞, or ν0 when q < ∞, with either fk(θ0, ν̂) =

fk(θ0, ν̂n), for all k ≤ n, if q < ∞, and fk(θ0, ν̂) = fk(θ0, ν̂k), for all k, if q = ∞.

The CLSE of θ0 is defined by:

θ̂n = arg min
θ∈Θ

Sn|bν(θ), Sn|bν(θ) =

n∑

k=1

(Yk − fk(θ, ν̂))2.(2)

It is well-known in classical regression theory that the rate of convergence of {θ̂n}
is optimal when E(η2

n|Fn−1) is constant in n. Generalizing this property, {θ̂n}
will have an optimal convergence rate under the following assumption

0 < lim
n

E(η
2
n|Fn−1)

a.s.
≤ lim

n
E(η2

n|Fn−1)
a.s.
< ∞.(3)

So {Yn} will be generally derived from the studied original process {Zn} by

some suitable normalization: Yn = Znλ
−1/2
n , where λn is Fn−1 measurable and
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independent of the unkown parameters of the model. The particular cases q = ∞
with ν̂ = 0 and q = 0 correspond to the estimations of θ0 in the parametric model

{f (1)
k (θ0)}k≤n considered respectively as an approximate model or an exact one.

We will focus here on the strong consistency which is particularly useful when

the goal of the estimation is either the knowledge of the true parameter or the

prediction of the future behavior of the process from the estimated model or the

estimation of the residual distribution.

The consistency property of {θ̂n} is a classical topic in the parametric set-

ting q = 0. The proofs and the required conditions depend on the linearity or

nonlinearity of fn(.) in θ0, since in the linear case {θ̂n} has an explicit expression

allowing direct proofs contrary to the general nonlinear case. They also depend

on the properties of {ηn}, if they are independent, stationary or only check the

more general martingale difference property. We assume here only this last prop-

erty, particular useful when ηn may be nonstationary. Published conditions for

getting the strong consistency of {θ̂n} in model MY involve the strong identifi-

ability of the parameter and this last condition is a necessary and sufficient one

in the particular linear model fn(θ) = θTWn, where Wn is either a deterministic

vector and {ηn} are i.i.d. ([9]) or Wn is stochastic with p = 1 ([10]): lim
n

θ̂n
a.s.
= θ0

if and only if

lim
n

λmin

{
n∑

k=1

WkW
T
k

}
a.s.
= ∞,(4)

where λmin

{
n∑

k=1

WkW
T
k

}
is the smallest eigenvalue of

n∑
k=1

WkW
T
k . Defining

Dn(θ) =
n∑

k=1

(fk(θ) − fk(θ0))
2,(5)

(4) is equivalent to lim
n

Dn(θ)
a.s.
= ∞, for all θ 6= θ0. This quantity is the identifi-

ability criterion of θ0 in the model.

But in the general nonlinear parametric setting MY with q = 0, under some

Lipschitz property of the model, the published theorems of consistency require

additional sufficient conditions. One condition is lim
n

E(η2
n|Fn−1)

a.s.
< ∞. The

other ones concern some rate of convergence to ∞ of {Dn(θ)}, and differ from

one author to another one ([1], [5], [7], [10], [11], [12], [17], [18], [21], . . . ). We

removed here these last unnecessary conditions, thus generalizing the necessary
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and sufficient condition (4) to our general setting MY with 0 ≤ q ≤ ∞. The

generalization of (4) that we called strong identifiability of θ0, and reduced to (4)

in the linear case, is the following when q = 0:

SI({Dn(θ)}) : lim
n

inf
θ:‖θ−θ0‖≥δ

Dn(θ)
a.s.
= ∞,∀ δ > 0,(6)

where ‖ · ‖ is any norm in Rp. This result is got thanks to a SLLNSM (strong

law of large numbers for submartingales).

The paper is organized in the following way. We show in Section 2. that

condition SI({Dn(θ)}) is a necessary and sufficient condition of consistency in

the general parametric setting MY with q = 0 provided that the model satisfies

the following Lipschitz condition:

LIP ({fk(θ)}): for all k, there exists a nonnegative Fk−1-measurable function

gk and a function h(·) : R+ → R+ with lim
xց0

h(x) = 0, such that ∀θ1 ∈ Θ, θ2 ∈

Θ, |fk(θ1) − fk(θ2)|
a.s.
≤ h(‖θ1 − θ2‖)gk.

This result is got thanks to a SLLNSM given in Section 5..

In Section 3., the consistency conditions are generalized to MY with 0 ≤ q ≤
∞. This result shows the robustness of the consistency property since if θ̂n is

strongly consistent in a given model, then it is strongly consistent in every model

“close” to this given model.

In Section 4., we illustrate this result by some examples. The main one

is a GARCH(1, 1) model ξn = sn(θ)Un, {Un} i.i.d. (0,1), where sn(θ0) is the

volatility of the process. The strong consistency of the CLSE is proved without

assuming the stationarity of the process contrary to existing references based on

quasi-likelihood or CLSE ([2], [16], [15]). We show that the strong consistency of

the nonweighted CLSE is ensured as soon as {ξ2
n} does not die out as n → ∞,

and, when dealing with weighted CLSE, if in addition, the sequence of successive

upper records {ξ2
Lm

} satisfies ξ2
Lm

a.s.
= O([(Lm+1 − Lm)m]1/2), where Lm is the

index of the mth record. The nonstationarity allows burst phenomena with a

very large amplitude compared to the stationarity setting.

Other examples and detailed proofs may be found in [6].

2. Consistency in MY under q = 0

In all existing results based on the martingale difference property of {ηn}, Dn(θ)

defined by (5) plays a crucial role. This quantity is an identifiability criteria of the

parameter: θ0 is identifiable in {fn(·)}n if for all θ 6= θ0, {fn(θ)}n

a.s.
6= {fn(θ0)}n
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which is equivalent to limn Dn(θ)
a.s.
6= 0. In the linear model fn(θ) = θT

0 Wn, this

condition is equivalent to lim
n

λmin

{
n∑

k=1

WkW
T
k

}
a.s.
6= 0. Moreover the consistency

of {θ̂n} in this setting, when Wn is deterministic for all n ([9]) or Wn is stochastic

with p = 1 ([10]), is got if and only if (4) is checked. For example, let p = 1

and Yn = θ0Wn + ηn, {ηn} i.i.d. (0, σ2
0), {Wn} deterministic. Then θ̂n − θ0 =[

n∑
k=1

(Yk − θ0Wk)Wk

] [
n∑

k=1

W 2
k

]−1

. So V ar(θ̂n − θ0) = σ2

[
n∑

k=1

W 2
k

]−1

which does

not tend to 0 if
∞∑

k=1

W 2
k < ∞.

In this section, we generalize (4) to the setting of model MY under q = 0.

Assume θ0 ∈ Θ, where Θ is an open set and Θ is compact. let Bc
δ be the

complementary in Θ of the open ball of center θ0 and radius δ. Denote dk(θ) =

fk(θ0) − fk(θ), and Ln(θ) =
n∑

k=1

ηkdk(θ).

Proposition 2.1. Let p < ∞ and assume that there exists Ω∞ ⊂ Ω with

P (Ω∞) > 0 and such that on Ω∞, SI({Dn(θ)}) and LIP ({fk(θ)}) are checked.

Then limn θ̂n
a.s.
= θ0 on Ω∞.

P r o o f. We use Wu’s Lemma ([20], see Lemma 5.1) and Wu’s decomposition

based on Yk−fk(θ) = ηk +dk(θ) ([20]) implying Sn(θ)−Sn(θ0) = Dn(θ)+2Ln(θ)

and consequently,

inf
θ∈Bc

δ

Sn(θ) − Sn(θ0) ≥ inf
θ∈Bc

δ

Dn(θ)[1 − 2 sup
θ∈Bc

δ

|Ln(θ)|[Dn(θ)]−1](7)

Then the proof directly follows from the SLLNSM (Proposition 5.1) applied on

dk(θ) = fk(θ0) − fk(θ) and Θ̃ = Bc
δ . �

Assume now that θ̂h,n = arg minθ∈Θ Sh,n(θ), Sh,n(θ) =
n∑

k=h+1

(Yk − fk(θ))2,

where h may depend on n (for example n − h is constant, for all n), and denote

Ln(θ) − Lh(θ) =: Lh,n(θ) and Dn(θ) − Dh(θ) =: Dh,n(θ).

Proposition 2.2. Assume that there exists Ω∞ ⊂ Ω with P (Ω∞) > 0 and

such that, on Ω∞, SI({Dn(θ)}), LIP ({fk(θ)}) are checked, and moreover

lim
n

sup
θ∈Bc

δ

Dn(θ)[Dh,n(θ)]−1
a.s.
< ∞. Then lim

n
θ̂h,n

a.s.
= θ0 on Ω∞.
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When n − h is constant, this setting is particularly suitable for branching

processes studied on their nonextinction set since the proposition requires that

Dh,n(θ) tends to ∞ at the same rate as Dn(θ).

P r o o f. According to (7) written with Sh,n(θ) instead of Sn(θ), it is sufficient

to prove that limn supθ Lh,n(θ)[Dh,n(θ)]−1 = 0. For that, we use

Lh,n(θ)

Dh,n(θ)
=

Ln(θ)

Dn(θ)

Dn(θ)

Dh,n(θ)
− Lh(θ)

Dh(θ)

Dh(θ)

Dh,n(θ)
. �

3. Consistency in MY containing a nuisance part

Assume now that {f (2)
n (θ0, ν0)} is not identically null. We consider the CLSE of

θ0 in the approximate model {fk(θ, ν̂)}k≤n, defined by (2). Since we deal with

a.s. consistency, we assume in the proofs that ν̂ is a nonrandom sequence of

estimations.

Let

Dn(θ, ν̂) :=

n∑

k=1

[dk(θ, ν̂)]2, D(1)
n (θ) :=

n∑

k=1

[d
(1)
k (θ)]2,

d
(1)
k (θ) := f

(1)
k (θ0) − f

(1)
k (θ), D(2)

n (θ, ν̂) :=
n∑

k=1

[d
(2)
k (θ, ν̂)]2,

d
(2)
k (θ, ν̂) := f

(2)
k (θ0, ν0) − f

(2)
k (θ, ν̂), L(2)

n (θ, ν̂) :=
n∑

k=1

ηkd
(2)
k (θ, ν̂)

and so on.

As in section 2. assume θ0 ∈ Θ, where Θ is an open set and Θ is compact,

and assume ν ∈ N , where N is compact when q < ∞.

Proposition 3.1. Let p < ∞ and assume that there exists Ω∞ ⊂ Ω with

P (Ω∞) > 0 and such that on Ω∞,

1. SI({D(1)
n (θ)}) is checked and for all δ > 0,

lim
n

sup
θ∈Bc

δ

D(2)
n (θ, ν̂)

[
inf

θ∈Bc

δ

D(1)
n (θ)

]−1
a.s.
= 0.

2. LIP ({fk(θ, ν)}) is checked in θ, ν when q < ∞
(resp. LIP ({fk(θ, ν̂)}) is checked in θ when q = ∞).
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Then lim
n

θ̂n|bν a.s.
= θ0 on Ω∞.

P r o o f. We have

Sn|bν(θ) − Sn|bν(θ0) = Dn(θ, ν̂n) − D(2)
n (θ0, ν̂n) + 2Ln(θ, ν̂n) −

2L(2)
n (θ0, ν̂n).

Since Dn(θ, ν̂) = D
(1)
n (θ)+D

(2)
n (θ, ν̂)+2

∑n
k=1 d

(1)
k (θ)d

(2)
k (θ, ν̂), using Hölder’s

inequality, we get

inf
θ∈Bc

δ

Sn|bν(θ) − Sn|bν(θ0) ≥ inf
θ∈Bc

δ

D(1)
n (θ)

[
1 − 2 sup

θ∈Bc

δ

[
D

(2)
n (θ, ν̂)

D
(1)
n (θ)

]1/2

− sup
θ∈Bc

δ

D
(2)
n (θ0, ν̂)

D
(1)
n (θ)

− 2 sup
θ∈Bc

δ

|Ln(θ, ν̂)|
D

(1)
n (θ)

− 2 sup
θ∈Bc

δ

|L(2)
n (θ0, ν̂)|
D

(1)
n (θ)

]
.

Then the result follows from Wu’s Lemma 5.1 and Proposition 5.1, applied on

supθ∈Bc

δ
,ν Ln(θ, ν)[D

(1)
n (θ)]−1 and supθ∈Bc

δ
,ν L

(2)
n (θ, ν)[D

(1)
n (θ)]−1 when q < ∞.

�

4. Examples

1. Example 1. fn(θ) = m + µn−α, α > 0, θ = (m,µ, α). We have

|fn(θ0) − fn(θ)| ≤ |m0 − m| + |µ0 − µ|n−α∗ + |α0 − α|µ∗ ln(n)n−α∗

≤ ‖θ0 − θ‖L1 , n large enough

where (µ∗, α∗) lies between (µ0, α0) and (µ, α), and moreover

inf
θ∈Bc

δ

Dn(θ) = O

(
inf‖α−α0‖≥δ

n∑
k=1

k−2α

)
which is equal to

O

(
inf

‖α−α0‖≥δ
{n1−2α1{2α6=1} + ln(n)1{2α=1}}

)
, implying

lim
n

infθ∈Bc

δ
Dn(θ) = ∞ if 0 ≤ 2α ≤ 1. Since Θ is open, then we assume

2α < 1 (the limit value α = 1/2 is on the boundary Θ \ Θ). Therefore for

2α < 1, lim
n

(m̂n, µ̂n, α̂n)
a.s.
= (m0, µ0, α0).

Now if α0 is known then limn(m̂n, µ̂n)
a.s.
= (m0, µ0) if 2α0 ≤ 1 which is

reduced to the necessary and sufficient condition given in the linear model

([9]).
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2. Example 2. Let the Bienaymé-Galton-Watson process Nn =
Nn−1∑
i=1

Xn,i,

where the {Xn,i} are i.i.d. (m0, σ
2
0), implying Yn = NnN

−1/2
n−1 = m0N

1/2
n−1 +

ηn. Let θ = m. Then |fn(m1)− fn(m2)| ≤ ‖m1 −m2‖N1/2
n−1 (Lipschitz) and

inf
m∈Bc

δ

Dn(m) = (m0 − m)2
n∑

k=1

Nk−1
a.s.−→ ∞ on the nonextinction set Ω∞,

where P (Ω∞) > 0 for m0 > 1. Therefore limn m̂n
a.s.
= m0 on Ω∞, assuming

m0 > 1.

Remark 4.1. (direct proof) Recall that the CLSE of m0 is the Harris

estimator

m̂n =

n∑
k=1

Nk

n∑
k=1

Nk−1

=

n∑
k=1

(Nkm
−k
0 )mk

0

n∑
k=1

mk
0

m0

n∑
k=1

mk−1
0

n∑
k=1

(Nk−1m
−(k−1)
0 )mk−1

0

.

Then use lim
n

Nnm−n
0

a.s.
= W , where W is a nonnegative variable, and

Toeplitz lemma. This implies lim
n

m̂n
a.s.
= m0 on the nonextinction set Ω∞.

Notice that the indirect proof based on Proposition 2.1 does not require

the knowledge of the asymptotic behavior of the process nor an explicit

expression for the estimator as it is the case in the direct proof.

3. Example 3. Let the size-dependent branching process Nn =
Nn−1∑
i=1

Xn,i,

{Xn,i} i.i.d. with E(Xn,1|Nn−1 = N) = m(N) = m0 + µ0N
−α0 ,

V ar(Xn,1|Nn−1 = N) = σ2(N) = O(Nβ0), α0 > 0, β0 < 1 known, m0 > 1,

θ = (m,µ, α). The asymptotic behavior of this model has been studied by

Klebaner ([8]). Model M is Yn = NnN
−(1+β0)/2
n−1 implying

fn(θ) = (m + µN−α
n−1)N

1−(1+β0)/2
n−1 = mN

(1−β0)/2
n−1 + µN

(1−(2α+β0))/2
n−1 .

Therefore

inf
θ∈Bc

δ

Dn(θ) = O

(
inf

‖α−α0‖≥δ

n∑

k=1

N
(1−(2α+β0))
k−1

)

= O

(
inf

‖α−α0‖≥δ
{mn((1−(2α+β0)))1{2α+β0 6=1} + n1{2α+β0=1}}

)
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Then limn infθ∈Bc

δ
Dn(θ) = ∞ on the nonextinction set Ω∞, for 2α+β0 ≤ 1.

Moreover, for all θ1, all θ2, there exists (µ∗, α∗) lying between (µ1, α1) and

(µ2, α2) such that on Ω∞,

fn(θ1) − fn(θ2) = (m1 − m2)N
(1−β0)/2
n−1 + (µ1 − µ2)N

(1−(2α∗+β0))/2
n−1 −

(α1 − α2)µ∗ ln(Nn−1)N
(1−(2α∗+β0))/2
n−1 .

Therefore |fn(θ1)−fn(θ2)| ≤ ‖θ1−θ2‖L1N
(1−β0)/2
n−1 , for n large enough since

P (limn Nn = 0 ∪ limn Nn = ∞) = 1.

So since Θ is open, for 2α+β0 < 1, we get lim
n

(m̂h,n, µ̂h,n, α̂h,n) = (m0, µ0, α0)

on Ω∞. In the same way if θ = (m,µ), then lim
n

(m̂h,n, µ̂h,n) = (m0, µ0) on

Ω∞ for 2α0 +β0 ≤ 1, while Lai and Wei’s condition in this linear stochastic

setting ([10]) is 2α0 + β0 < 1.

4. Other examples in branching processes may be found in ([13], [14]) and

([5]).

5. Example 4. the GARCH(p, q) model ξn = sn(θ0)Un, where the {Un} are

i.i.d.(0, 1), sn(θ0) ≥ 0, Fn−1 is generated by {ξ2
k}k≤n−1, s2

n(θ0) is Fn−1-

measurable with Bθ(L)(s2
n(θ)) = Aθ(L)(ξ2

n), Bθ(L) = 1−
p∑

j=1
βjL

j, Aθ(L) =

α0 +
∑q

j=1 αjL
j , and L is the time lag operator, that is s2

n(θ) = α0 +
q∑

j=1
αjξ

2
n−j +

p∑
j=1

βjs
2
n−j(θ). Process {sn(θ0)} is called volatility. Then

E(ξ2
n|Fn−1) = s2

n(θ0) and {ξn} follows a GARCH(p, q) model. Assume that

the observations are {Xn}n≥0, where Xn = γ0 + ξn, γ0 being an unknown

parameter. The particular case γ0 = 0 corresponds to the observation of

{ξn}n≥0. We assume here for simplification p = 1, q = 1, and α00 > 0,

α10 > 0, β10 > 0. By definition,

s2
n(θ) = α0 + α1ξ

2
n−1 + β1s

2
n−1(θ) = α0 + (α1U

2
n−1 + β1)s

2
n−1(θ).

This implies, when assuming E(U2
n|Fn−1) = E(U2

n), that the following con-

dition E(α10U
2
1 + β10) < 1 ⇐⇒ α10 + β10 < 1 is a necessary condition for

the stationarity of {s2
n(θ0)} and equivalently for {ξn}. This is the usual

classical setting for deriving the asymptotic properties of any estimator of

(α00, α10, β10): under the stronger assumption of stationarity and ergodicity

of the observed process, the CLSE is strongly consistent ([15]).
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But here we do not assume any stationarity condition. The nonstationar-

ity of {ξn} (and therefore of {s2
n(θ0)}) allows burst phenomena that are

illustrated by simulations of the GARCH(1, 1) model with {Un} i.i.d.,

U2
n ∼ exp(1), Un independent of sn(θ0). In fig. 1 we see that as the non-

stationarity increases, the magnitude of the highest burst increases which

shows that appearant high nonlinearity may be modelled by nonstationary

processes.

The parameter space is Θ =]0, cM [×]0, α1M [×]0, 1[. Let the notations

Zn(γ0) := ξ2
n = s2

n(θ0) + s2
n(θ0)(U

2
n − 1) =: gn(θ0, ν0) + σn(θ0, µ0)ǫn

ξn := Xn − γ0.

Assuming 0 < β10 < 1, we can write

s2
n(θ) = Bθ(L)−1Aθ(L)(ξ2

n) =

∞∑

l=0

βl
1(α0 + α1ξ

2
n−(l+1)).

We define 0 as the time origin for the observation of the process, that is ξ2
l

is not observed for l < 0. We write s2
n(θ) = gn(θ, ν) = g

(1)
n (θ) + g

(2)
n (θ, ν),

where, for n ≥ 1,

g(1)
n (θ) = c + α1

n−1∑

l=0

β
n−(l+1)
1 ξ2

l , c = α0(1 − β1)
−1, θ = (c, α1, β1)

g(2)
n (θ, ν) = α1β

n−1
1

−∞∑

l=−1

β−l
1 ξ2

l .

Assume that for any 0 < β1 < 1,
−∞∑
l=−1

β−l
1 ξ2

l

a.s.
< ∞, which means that the

process starts at some finite negative time −n0. Then either lim
n

g
(2)
n (θ0, ν0)

a.s.
= 0, or g

(2)
n (θ0, ν0)

a.s.
= 0, for all n ≥ 1, when ξk = 0, for k < 0.

Let Tn(β) =
n−1∑
l=0

βn−(l+1)ξ2
l . Then g

(1)
n (θ0) = c0 + α10Tn(β10). Let λ

1/2
n =

1 + dTn(β∗), for some β∗ ∈ [0, 1[, d ≥ 0 (in λk, k ≤ n, d may be replaced by

any bounded nonrandom dn ≥ 0).
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Figure 1: The most erratic line represents {ξ2

n} while the smoothest one represents the
squared volatility {s2

n(θ)}. The right hand figures are zoom of the left hand figures
until time 200. On the first line, the stationarity setting θ0 = (10, 0.1, 0.8), where θ =
(α0, α1, β1). Then on the following lines, {ξn} is nonstationary with from the second line

to the last line: θ0 = (10, 0.2, 0.8), θ0 = (10, 0.22, 0.8), θ0 = (10, 0.3, 0.8)
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Then model MY is defined by

Yn(γ0) := ξ2
nλ−1/2

n =: fn(θ0, ν0) + ηn,

fn(θ0, ν0) := f (1)
n (θ0) + f (2)

n (θ0, ν0),

f (1)
n (θ0) := g(1)

n (θ0)λ
−1/2
n ,

{f (2)
n (θ0, ν0)} := {g(2)

n (θ0, ν0)λ
−1/2
n } =: ν0,

where E(η2
n|Fn−1) ∝ s4

n(θ0)λ
−1
n .

The CLSE of (γ0, θ0) is defined by:

γ̂n = arg min
γ

Sn(γ), Sn(γ) =

n∑

k=1

(Xk − γ)2λ
−1/2
k(8)

θ̂n = arg min
γ

Sn|bγ,bν(θ), Sn|bγ,bν(θ) =

n∑

k=1

(Yk(γ̂n) − fk(θ, ν̂k))
2,(9)

where, for all k, ν̂k =
̂
g
(2)
k (θ) = 0, that is fk(θ, ν̂k) = f

(1)
k (θ).

Proposition 4.1. Let Rm be the upper mth record of {ξn}, that is Rm :=

ξ2
Lm

, where {Lm} is the sequence of record indices, and let {nε
k}k := {n :

ξ2
n ≥ ε}, for some ε > 0. Then the CLSE of (γ0, θ0) is strongly consistent

on the set {{Rm
a.s.
= O([(Lm+1−Lm)m]1/2)}∩{lim

k
(nε

k+1−nε
k)

a.s.
< ∞}, when

d > 0, and on the set {lim
k

(nε
k+1 − nε

k)
a.s.
< ∞}, when d = 0.

P r o o f. Assume here the general nonstationary setting. Then the optimal

rate of convergence is ensured under (3), that is under

0
a.s.
< lim

n

c0 + α10Tn(β10)

1 + dTn(β∗)
≤ lim

n

c0 + α10Tn(β10)

1 + dTn(β∗)

a.s.
< ∞.(10)

Assume first d = 0. Then since Tn(β10) ≥ ξ2
n−1, lim

n
Tn(β10) ≥ lim

m
ξ2
Lm

which is infinite on the set Ω̃∞ :=
{
lim
m

ξ2
Lm

= ∞
}

, we cannot prove the

optimality in this case. Assume now d > 0.

On Ω̃c
∞, (10) is checked. It remains to check (10) on Ω̃∞. We denote, for

all k, Mk−1 = sup
l≤k−1

ξ2
l and nk = inf{0 ≤ l ≤ k − 1 : ξ2

l = Mk−1}, that
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is, there exists m such that Lm = nk, for all k : Lm < k ≤ Lm+1 and

ξ2
nk

= ξ2
Lm

= Rm (Rm is the mth record and Lm is its random index).

Assume β10 ≤ β∗ < 1. Then lim
n

Tn(β10)[Tn(β∗)]
−1

a.s.
< 1. Since Tnk+1(β) =

nk∑
l=0

βnk−lξ2
l = β

nk−1∑
l=0

βnk−1−lξ2
l + ξ2

nk
, then

Tnk+1(β10)

Tnk+1(β∗)
>

inf
l≤nk−1

{ξ2
l ξ−2

nk
}β10(1 − βnk

10 )(1 − β10)
−1 + 1

sup
l≤nk−1

{ξ2
l ξ−2

nk
}β∗(1 − βnk

∗ )(1 − β∗)−1 + 1

> [β∗(1 − β∗)
−1 + 1]−1(11)

yielding to lim
m

TLm+1(β10)[TLm+1(β∗)]
−1

a.s.
> 0. Next for Lm = nk < n <

Lm+1, then ξ2
n ≤ ξ2

nk
, yielding

1 + d0Tn+1(β10)

1 + dTn+1(β∗)
≥ 1 + d0β

n−nk

10 Tnk+1(β10)

1 + dβn−nk
∗ Tnk+1(β∗) + (1 − β∗)−1ξ2

nk

,(12)

where d0 := α10/c0. But (12) does not imply lim
n

Tn(β10)[Tn(β∗)]
−1

a.s.
>

0. But according to (10), on the set of trajectories ensuring the strong

consistency of the CLSE, we can improve the estimator by first calculating

θ̂
(1)
n with λ

1/2
k = 1 + Tk(β∗), k ≤ n, and then calculate θ̂

(2)
n using λ

1/2
k =

1 + α̂
(1)
1n /ĉ

(1)
n Tk(β̂

(1)
n ), k ≤ n, and so on. Another method is to calculate the

CLSE for estimating {Un}, then deriving the distribution of U1 from {Ûn},
and then calculating the MLE based on this distribution if this one belongs

to a parametric family.

We have

Sn|bγ,bν(θ) − Sn|bγ,bν(θ0) =
n∑

k=1

[(Yk(γ̂n) − Yk(γ0) + ηk + (fk(θ0, ν0) − f
(1)
k (θ))]2−
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n∑

k=1

[Yk(γ̂n) − Yk(γ0) + ηk + (fk(θ0, ν0) − f
(1)
k (θ0))]

2 =

n∑

k=1

(fk(θ0, ν0) − f
(1)
k (θ))2 −

n∑

k=1

(fk(θ0, ν0) − f
(1)
k (θ0))

2 +

2

n∑

k=1

[Yk(γ̂n) − Yk(γ0) + ηk][(f
(1)
k (θ0)) − f

(1)
k (θ))].

Using now Yk(γ̂n) − Yk(γ0) = (γ0 − γ̂n)2λ
−1/2
k + 2ξk(γ0 − γ̂n)λ

−1/2
k , the

previous quantity becomes

Sn|bγ,bν(θ) − Sn|bγ,bν(θ0) =

D(1)
n (θ) + 2

n∑

k=1

f
(2)
k (θ0, ν0)d

(1)
k (θ) + 2(γ0 − γ̂n)2

n∑

k=1

λ
−1/2
k d

(1)
k (θ) +

4(γ0 − γ̂n)
n∑

k=1

ξkλ
−1/2
k d

(1)
k (θ) + 2

n∑

k=1

ηkd
(1)
k (θ).(13)

Then, according to Bienaymé-Tchebyshev’s inequality, we get

inf
θ∈Bc

δ

Sn|bγ,bν(θ) − Sn|bγ,bν(θ0) ≥

inf
θ∈Bc

δ

D(1)
n (θ)


1 − 2




n∑
k=1

(f
(2)
k (θ0, ν0))

2

inf
θ∈Bc

δ

D
(1)
n (θ)




1/2

−

2(γ0 − γ̂n)2




n∑
k=1

λ−1
k

inf
θ∈Bc

δ

D
(1)
n (θ)




1/2

− 2 sup
θ∈Bc

δ

∣∣∣∣∣∣∣∣

n∑
k=1

ηkd
(1)
k (θ)

D
(1)
n (θ)

∣∣∣∣∣∣∣∣
−

4|γ0 − γ̂n| sup
θ∈Bc

δ

∣∣∣∣∣∣∣∣

n∑
k=1

ξkλ
−1/2
k d

(1)
k (θ)

D
(1)
n (θ)

∣∣∣∣∣∣∣∣


 .(14)
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Assume first γ0 = γ̂n = 0, equivalent to {ξk}k≥0 observed. Then limn θ̂n
a.s.
=

θ0 under (15) and (16) thanks to proposition 3.1: for all δ > 0,

lim
n

inf
θ∈Bc

δ

n∑

k=1

(g
(1)
k (θ0) − g

(1)
k (θ))2λ−1

k
a.s.
= ∞,(15)

limn

n∑
k=1

(g
(2)
k (θ0, ν0))

2λ−1
k

inf
θ∈Bc

δ

n∑
k=1

(g
(1)
k (θ0) − g

(1)
k (θ))2λ−1

k

a.s.
= 0.(16)

The first condition, which is SI({D(1)
n (θ)}), is satisfied if

lim
n

inf
|c−c0|≥δ

D
(1)
n (c, α10, β10)

a.s.
= ∞, equivalent to lim

n

n∑
k=1

λ−1
k

a.s.
= ∞, if

lim
n

inf
|β1−β10|≥δ

D
(1)
n (c0, α10, β1)

a.s.
= ∞, and if

lim
n

inf
|α1−α10|≥δ

D
(1)
n (c0, α1, β10)

a.s.
= ∞. First of all

n∑

k=1

λ−1
k =

n∑

k=1

[
1 + d

k−1∑

l=0

β
k−(l+1)
∗ ξ2

l

]−2

≥
n∑

k=1

[
1 + d(1 − β∗)

−1ξ2
nk

]−2
.

Therefore
n∑

k=1

λ−1
k

a.s.
= ∞ for d = 0, and for d > 0 either on Ω̃c

∞, or on Ω̃∞

using
∑
k

λ−1
k ≥ ∑

m
(Lm+1 − Lm)[1 + d(1 − β∗)

−1ξ2
Lm

]−2, if the sequence of

records satisfies

Rm := ξ2
Lm

a.s.
= O([(Lm+1 − Lm)m]1/2), on Ω̃∞, for d > 0.(17)

In the standard extreme value theory for i.i.d. variables, Lm behaves asymp-

totically as exp m and is independent of the distribution of these variables.

In a general GARCH(1, 1) model, the distribution of the records indices

and values {(Lm, Rm)} may be calculated from the distribution of {Un},
when given, and {sn(θ)}.

Next, consider lim
n

inf
|β1−β10|≥δ

D
(1)
n (c0, α10, β1)

a.s.
= ∞. Define, for all ε > 0



150 Christine Jacob

small enough, the subsequence of indices {nε
k}k = {n : ξ2

n ≥ ε}. Then

D(1)
n (c0, α10, β1) ≥

∑

nε

k
≤n−2

[
nε

k
+1∑

l=0

(β
nε

k
+2−(l+1)

10 − β
nε

k
+2−(l+1)

1 )ξ2
l ξ−2

nε

k

]2

[
(1 + d

nε

k
+1∑

l=0

β
nε

k
+2−(l+1)

∗ ξ2
l )ξ−2

nε

k

]2

≥
∑

nε

k
≤n−2

(β10 − β1)
2

[ε−2 + d(1 − β∗)−1 supl≤nε

k
+1 ξ2

l ε−2]2

implying lim
n

inf
|β1−β10|≥δ

D
(1)
n (c0, α10, β1)

a.s.
= ∞ on Ω̃c

∞ for d = 0, and for

d > 0 on Ω̃c
∞ under (18):

∃ε > 0 : limn

n∑

k=1

1{ξ2
k
≥ε}

a.s.
= ∞ on Ω̃c

∞, for d > 0,(18)

which means that {ξ2
k} does not die out as k → ∞; (18) is satisfied under

the assumption that the {Un} are i.i.d. with a continuous distribution.

Consider next Ω̃∞. We have, in the same way,

D(1)
n (c0, α10, β1) ≥

∑

nk≤n−2

[
nk+1∑
l=0

(β
nk+2−(l+1)
10 − β

nk+2−(l+1)
1 )ξ2

l ξ−2
nk

]2

[
(1 + d

nk+1∑
l=0

β
nk+2−(l+1)
∗ ξ2

l )ξ−2
nk

]2

≥
∑

nk:nk≤n−2,ξ2
nk+1≤ξ2

nk

(β10 − β1)
2

[ξ−2
nk

+ d(1 − β∗)−1]2

which converges a.s. to ∞ on Ω̃∞ for d ≥ 0. The proof is similar for

limn inf |α1−α10|≥δ D
(1)
n (c0, α1, β10)

a.s.
= ∞.

Study now (16), assuming (15). This condition is satisfied if {ξ2
k}k<0 is null.
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Otherwise, we have

n∑
k=1

(g
(2)
k (θ0))

2λ−1
k

n∑
k=1

(g
(1)
k (θ0) − g

(1)
k (θ))2λ−1

k

≤
sup
k≤N

(g
(2)
k (θ0))

2
N∑

k=1

λ−1
k

n∑
k=1

(g
(1)
k (θ0) − g

(1)
k (θ))2λ−1

k

+

sup
N<k≤n

(g
(2)
k (θ0))

2

n∑
k=1

λ−1
k

n∑
k=1

(g
(1)
k (θ0) − g

(1)
k (θ))2λ−1

k

.

Since lim
n

g
(2)
n (θ0)

a.s.
= 0, then (16) is checked if

lim
n

Qn
a.s.
> 0, Qn :=

inf
θ∈Bc

δ

n∑
k=1

(g
(1)
k (θ0) − g

(1)
k (θ))2λ−1

k

n∑
k=1

λ−1
k

.(19)

Then (19) is checked if lim
k

inf
θ

(g
(1)
k (θ0) − g

(1)
k (θ))2

a.s.
> 0. Defining kε

k =

sup{l ≤ k − 1 : ξ2
l ≥ ε} = sup{nε

l ≤ k − 1}, this is checked if

lim
k

inf
|β1−β10|≥δ

(
β

k−(kε

k
+1)

1 − β
k−(kε

k
+1)

10

)2 a.s.
> 0

which is itself satisfied when

lim
k

(nε
k+1 − nε

k)
a.s.
< ∞.(20)

This means that the durations of the time periods during which {ξ2
k} is null

or converges to 0 are bounded. Since, for d > 0, this assumption is stronger

than (18), lim
n

θ̂n
a.s.
= θ0 under (15) and (16), or under the stronger condition

(17) with (20) (when {ξ2
k}k<0 may be nonnull) or with (18) (when {ξ2

k}k<0

is null).

Assume next that {Xk} is observed. Then according to proposition 2.1,

limn γ̂n
a.s.
= γ0 if

lim
n

n∑

k=1

λ
−1/2
k

a.s.
= ∞(21)
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which is checked under (17). So the consistency of {θ̂n} requires (15), (16),

(21) (all satisfied under (17) and (20)) and the following assumptions (22)

and (23) coming from (14): for all δ > 0,

lim
n

[
inf

θ∈Bc

δ

n∑

k=1

[g
(1)
k (θ0) − g

(1)
k (θ)]2λ−1

k

][
n∑

k=1

λ−1
k

]−1
a.s.
> 0,(22)

lim
n

sup
θ∈Bc

δ

∣∣∣∣∣∣

[
n∑

k=1

ξkλ
−1/2
k d

(1)
k (θ)

][
n∑

k=1

[d
(1)
k (θ)]2

]−1
∣∣∣∣∣∣

a.s.
< ∞.(23)

Since λk ≥ 1, then λ−1
k ≤ 1 leading to (23) according to the SLLNSM

(proposition 5.1), and (22) is (19) which is checked under (20).

So finally under (17) and (20), limn(γ̂n, θ̂n)
a.s.
= (γ0, θ0). The proof is similar

if more generally {ξn} is the innovation of a linear autoregressive process.

�

5. Strong Law of Large Numbers for SubMartingales

Proposition 5.1. Let Θ̃ ⊂ Rp, Θ̃ compact, p < ∞. Let {Fk} be an in-

creasing sequence of σ-algebra, and Ln(θ) =
n∑

k=1

ηkdk(θ), θ ∈ Θ̃, where, for all

k, ηk is Fk-measurable with E(ηk|Fk−1) = 0, E(η2
k|Fk−1) = σ2

k, lim
k

σ2
k

a.s.
< ∞,

and dk(θ) is Fk−1-measurable. For all k, n, let d∗k(θ) be Fk−1-measurable,

D∗n(θ) =
n∑

k=1

d2
∗k(θ), Dn(θ) =

n∑
k=1

d2
k(θ). Assume that there exists Ω∞ ⊂ Ω with

P (Ω∞) > 0 and such that on Ω∞, lim
n

sup
θ

Dn(θ)[D∗n(θ)]−1
a.s.
< ∞, SI({D∗n(θ)}),

LIP ({dk(θ)}), and LIP ({d∗k(θ)}) are checked. Then

lim
n

sup
θ∈eΘ |Ln(θ)|[D∗n(θ)]−1 a.s.

= 0 on Ω∞.(24)

P r o o f. If Θ̃ is a finite set (i.e. Card Θ̃ < ∞), thanks to the SLLNM (Strong

Law of Large Numbers for Martingales, th. 2.18, [4]),

lim
n

sup
θ∈Bc

δ

∣∣∣∣∣

[
n∑

k=1

ηkdk(θ)

]
[Dn(θ)]−1

∣∣∣∣∣
a.s.
= 0 on

{
lim
n

inf
θ∈Bc

δ

Dn(θ)
a.s.
= 0

}
.
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Now assume the general case Θ̃ ⊂ Rp. We define for each k a discretization of Rp

by a random grid Gk with fixed directions, a fixed origin, and a random mesh size

ǫk Fk−1-measurable and converging a.s. to 0 sufficiently rapidly as k → ∞. Let

{θk,i}i be the vertices of Gk ∩ Θ̃, let θk(θ) ∈ {θk,i}i such that ‖θk(θ) − θ‖ ≤ cǫk,

where c is a constant (take c =
√

p if the norm in condition LIP ({dk(θ)}) is the

euclidean norm). Then, denoting Gn(θ) := {θk(θ)}k≤n, we get

lim
n

sup
θ

|Ln(θ)|
D∗n(θ)

≤ lim
n

sup
θ

|Ln(θ,Gn(θ))|
D∗n(θ)

+ lim
n

sup
θ

|Ln(Gn(θ))|
D∗n(θ)

Ln(θ,Gn(θ)) :=

n∑

k=1

ηk(dk(θ) − dk(θk(θ))),

Ln(Gn(θ)) :=

n∑

k=1

ηkdk(θk(θ)).

Defining Dn(Gn(θ)) :=
n∑

k=1

[dk(θk(θ))]2, D∗n(Gn(θ)) :=
n∑

k=1

[d∗k(θk(θ))]2,

(25) sup
θ

|Ln(Gn(θ))|
D∗n(θ)

≤ sup
θ

|Ln(Gn(θ))|
D∗n(Gn(θ))

[
sup

θ

|D∗n(Gn(θ)) − D∗n(θ)|
D∗n(θ)

+ 1

]

which converges a.s. to 0 thanks to the SLLNM ([4]) and LIP ({dk(θ)}).
Next we must show that lim

n
sup

θ
|Ln(θ,Gn(θ))|[D∗n(θ)]−1 a.s.

= 0. For that the

successive steps are the following ones. We define Um,n(θ,Gn(θ)) =
n∑

k=m

ηk(dk(θ)−

dk(θk(θ)))[Dk(θ)]−1. Then we use the following property for submartingales (th.

2.1, [4], see also th. 5.1 further):

(26) λP

(
max

n:m≤n≤m′
sup

θ
|Um,n(θ,Gn(θ))| > λ

)
≤ E

(
sup

θ
|Um,m′(θ,Gm′(θ))|

)
.

Using LIP ({dk(θ)}) and the convergence of {ǫk} to 0 fast enough, we show

lim
m

lim
m′

E

(
sup

θ
|Um,m′(θ,Gm′(θ))|

)
= 0

from which we deduce lim
m

sup
n≥m

sup
θ

|Um,n(θ,Gn(θ))| P
= 0 thanks to (26), and then

lim
m

lim
n≥m

sup
θ

|Um,n(θ,Gn(θ))| a.s.
= 0. Finally the result will follow from

|Ln(θ,Gn(θ))| [D∗n(θ)]−1 =

∣∣∣∣∣

n∑

k=1

Uk,n(θ,Gn(θ))d2
k(θ)

∣∣∣∣∣ [D∗n(θ)]−1
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together with a generalized Toeplitz’s lemma applied on the supθ of this quantity.

�

Lemma 5.1. (Wu’s lemma (1981), [20]) If for all δ > 0, lim
n

inf
θ∈Bc

δ

(Sn(θ) −

Sn(θ0))
a.s.(P.)

> 0, then lim
n

θ̂n
a.s.(P )

= θ0.

Theorem 5.1. (Theorem 2.1, [4]) If {Si,Fi, 1 ≤ i ≤ n} is a submartingale,

then for each real λ, λP

(
max
i≤n

Si > λ

)
≤ E

[
Sn1{max

i≤n

Si>λ}

]
.
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