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BOOTSTRAP FOR CRITICAL BRANCHING PROCESS

WITH NON-STATIONARY IMMIGRATION

I. Rahimov, M. H. Omar

In the critical branching process with a stationary immigration the stan-
dard parametric bootstrap for an estimator of the offspring mean is invalid.
We consider the process with non-stationary immigration, whose mean and
variance α(n) and β(n) are finite for each n ≥ 1 and are regularly varying se-
quences with nonnegative exponents α and β, respectively. It turns out that
if α(n) → ∞ and β(n) = o(nα2(n)) as n → ∞, then the standard parametric
bootstrap procedure leads to a valid approximation for the distribution of
the conditional least squares estimator. We state a theorem which justifies
the validity of the bootstrap. By Monte-Carlo and bootstrap simulations
for the process we confirm the theoretical findings. The simulation study
highlights the validity and utility of the bootstrap in this model as it mimics
the Monte-Carlo pivots even when generation size is small.

1. Introduction

Let Z(n), n ≥ 0, Z(0) = 0 be a discrete time branching stochastic process with

immigration. It is defined by two families of independent, nonnegative integer
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valued random variables {Xni, n, i ≥ 1} and {ξn, n ≥ 1} recursively as

(1.1) Z(n) =

Z(n−1)∑

i=1

Xni + ξn, n ≥ 1.

Assume that Xni have a common distribution for all n and i, and families {Xni}
and {ξn} are independent. Variables Xni will be interpreted as the number of

offspring of the ith individual in the (n − 1)th generation and ξn is the number

of immigrating individuals in the nth generation. Then Z(n) can be considered

as the size of nth generation of the population.

In this interpretation, a = EXni the mean number of offspring of a single

individual is crucial. Process Z(n) is called subcritical, critical or supercritical

depending on a < 1, a = 1 or a > 1, respectively. The independence assumption

of families {Xni} and {ξn} means that reproduction and immigration processes

are independent. However, unlike in the classical models, we do not assume that

ξn, n ≥ 1, are identically distributed, i. e. the immigration distribution depends

on the time of immigration. It is well known that asymptotic behavior of the

process with immigration is very sensitive to any changes of the immigration

process in time. In the case of Bernoulli offspring distribution, i.e. P{Xni =

1} = 1 − P{Xni = 0} = p, process defined in equation (1.1) can be considered

as an integer-valued, first order autoregressive (INAR(1)) time series model with

non stationary noise ξk.

As it was shown in [9], if a sample {Z(k), k = 1, . . . , n} is available, the

weighted conditional least squares estimator (WCLSE) of the offspring mean is

(1.2) ân =

n∑
k=1

(Z(k) − α(k))

n∑
k=1

Z(k − 1)

, α(k) = Eξk.

The maximum likelihood estimators (MLE) for the offspring and immigration

means in the process with a stationary immigration were derived in [2] for the

power series offspring and immigration distributions and are based on the sample

of pairs {(Z(k), ξk), k = 1, . . . , n}. The MLE for the offspring mean has the same

form as ân with ξk in place of α(k), and the MLE for the immigration mean is

just the arithmetic mean of the number of immigrating individuals.

In [11] the author investigated validity of the bootstrap estimator of the

offspring mean based on MLE and demonstrated that in the critical process with

a stationary immigration the asymptotic validity of the parametric bootstrap
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does not hold. Similar invalidity of the parametric bootstrap for the first order

autoregressive process with autoregressive parameter ±1 was earlier proved in

[1]. The main cause of the failure is the fact that in the critical case the MLE

does not have the desired rate of convergence (faster than n−1).

The results obtained recently in [9] show that in the process with non-

stationary immigration the conditional least squares estimator (CLSE) may have

a normal limit distribution and the rate of convergence of the CLSE to the pa-

rameter under estimation is faster than n−1. Given this, will the standard para-

metric bootstrap for the weighted CLSE of the offspring mean be valid in this

non-classical model? In this paper we address this question. We demonstrate

that the validity of the bootstrap depends on the relative rate of the immigration

mean and variance. Assuming that the immigration mean and variance vary reg-

ularly with nonnegative exponents α and β, respectively, we state results which

show that if β < 1 + 2α, the bootstrap leads to a valid approximation for the

CLSE. More precisely, conditions α(n) → ∞ and β(n) = o(nα2(n)) as n → ∞,

are sufficient for the validity of the standard parametric bootstrap.

Investigation of the problems related to the bootstrap methods and their ap-

plications has been an active area of research since its introduction by Efron [6].

As a result, a large number of papers and monographs have been published. We

note monographs [5] and [7] and the most recent review articles [4] and [8] as

important sources of the literature on bootstrap methods. As it was mentioned

before, invalidity of the bootstrap for the critical process with a stationary im-

migration was shown in [11]. In [3] a modification of the standard bootstrap

procedure was proposed, which eliminated the invalidity in the critical case. The

second-order correctness of the bootstrap for a studentized version of MLE in

subcritical case is proved in [12].

In Section 2 of the paper, we present the theoretical development of the para-

metric bootstrap and state main result on validity of the bootstrap. We also

demonstrate that in the important particular case of the Poisson immigration

process the bootstrap is valid. The proof of this result is based on certain ap-

proximation theorems for the sequence of nearly critical processes and will be

published elsewhere. In present paper we concentrate our attention on a simu-

lation study of the problem. So, Section 3 contains Monte-Carlo and bootstrap

simulations and empirical investigation of the process with non-stationary im-

migration. The Conclusion section, Section 4, highlights the theoretical and the

empirical findings for the behavior of the estimator of this stochastic process

with non-stationary immigration and discusses other future research avenues of

interest.
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2. The theoretical developments

The process with time-dependent immigration is given by the offspring distri-

bution of Xki, k, i ≥ 1, and by the family of distributions of the number of

immigrating individuals ξk, k ≥ 1. We assume that the offspring distribution has

the probability mass function

(2.1) pj(θ) = P{Xki = j}, j = 0, 1, . . . ,

depending on parameter θ, where θ ∈ Θ ⊆ R. Then a = EθXki = f(θ) for

some function f . We assume throughout the paper that f is one-to-one mapping

of Θ to [0,∞) and is a homeomorphism between its domain and range. It is

known that these assumptions are satisfied, for example, by the distributions of

the power series family [3].

What concerns the distributions of the number of immigrating individuals, we

assume that ξk follows a known distribution with the probability mass function

(2.2) qj(k) = P{ξk = j}, j = 0, 1, . . . ,

for any k ≥ 1.

Throughout the paper ”
d
→ ” and ”

P
→ ” will denote convergence of ran-

dom variables in distribution and in probability, respectively, and also X
d
= Y

denotes equality of distributions. We assume that b = V arXni < ∞ and

α(k) = Eξk, β(k) = V arξk are finite for any k ≥ 1 and are regularly varying

sequences of nonnegative exponents α and β, respectively. Then A(n) = EZ(n)

and B2(n) = V arZ(n) are finite for each n ≥ 0 and a = 1. To provide the asymp-

totic distribution of ân defined in (1.2), we assume that there exists c ∈ [0,∞]

such that

(2.3) lim
n→∞

β(n)

nα(n)
= c

and denote for any ε > 0

δn(ε) =
1

B2(n)

n∑

k=1

E[(ξk − α(k))2; |ξk − α(k)| > εB(n)].

As it was proved in [9], if a = 1, b ∈ (0,∞), α(n) → ∞, β(n) = o(nα2(n)),

condition (2.3) is satisfied and δn(ε) → 0 as n → ∞ for each ε > 0 , then as

n → ∞

(2.4)
nA(n)

B(n)
(ân − a)

d
→ (2 + α)N (0, 1).
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Furthermore, under the above conditions, A(n)/B(n) → ∞ as n → ∞ and when

c = 0 the condition δn(ε) → 0 is satisfied automatically. More detailed discussion

and examples can be seen in [9].

We now describe the bootstrap procedure to approximate the sampling dis-

tribution of the pivot

Vn =
nA(n)

B(n)
(ân − a).

Given a sample Xn = {Z(k), k = 1, . . . , n} of population sizes, we estimate the off-

spring mean a by the weighted CLSE ân and obtain the estimate of the parameter

θ as θ̂n = f−1(ân) from equation a = f(θ). Further, we replace θ in the probabil-

ity distribution (2.1) by its estimate. Given Xn, let {X
∗(n)
ki , k, i ≥ 1} be a family of

i.i.d. random variables with the probability mass function {pj(θ̂n), j = 0, 1, . . . }.
Now we obtain the bootstrap sample X ∗

n = {Z∗(n)(k), k = 1, . . . , n} recursively

from

(2.5) Z∗(n)(k) =

Z∗(n)(k−1)∑

i=1

X
∗(n)
ki + ξk, n, k ≥ 1,

with Z∗(n)(0) = 0, where ξk, k ≥ 1, are independent random variables with the

probability mass functions {qj(k), j = 0, 1, . . . }. Then, we define the bootstrap

analogue of the pivot Vn by

(2.6) V ∗

n =
nA(n)

B(n)
(â∗n − ân),

where â∗n is the weighted CLSE based on X ∗

n , i.e.

(2.7) â∗n =

n∑
k=1

(Z∗(n)(k) − α(k))

n∑
k=1

Z∗(n)(k − 1)

.

To state our main result, we need the following conditions be satisfied.

A1. a = 1 and moments Eθ[(Xki)
2] and Eθ[(Xki)

2+l] are continuous functions of

θ for some l > 0.

A2. δn(ε) → 0 as n → ∞ for each ε > 0.

A3. α(n) → ∞, β(n) = o(nα2(n)) as n → ∞.
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Theorem 2.1. If conditions A1–A3 and (2.3) are satisfied, then

(2.8) sup
x

|P{V ∗

n ≤ x|Xn} − P{Vn ≤ x}|
P
→ 0

as n → ∞.

Remark 2.1. As it was mentioned before, in the case where c = 0 condition A2

is automatically satisfied. In the case where c > 0 the condition is equivalent to

the Lindeberg condition for the family {ξn, n ≥ 1} of the number of immigrating

individuals.

Example 2.1. Let ξk, k ≥ 1, be Poisson with the mean α(k) such that α(k) →
∞, k → ∞, and regularly varies with exponent α. In this case β(n) = o(nα(n))

as n → ∞ and condition A3 is satisfied. Moreover, we realize that c = 0 in (2.3),

which implies that condition A2 is also fulfilled. Thus we have the following result.

Corollary 2.1. If ξk, k ≥ 1, are Poisson with mean α(k) → ∞, k → ∞, and

(α(k))∞k=1 is regularly varying with exponent α and condition A1 is satisfied, then

(2.8) holds.

Due to (2.4), we immediately obtain the following result from Theorem 2.1.

Corollary 2.2. If conditions of Theorem 2.1 are satisfied, then

sup
x

|P{V ∗

n ≤ x|Xn} − Φ(2 + α, x)|
P
→ 0

as n → ∞, where Φ(σ, x) is the normal distribution with mean zero and vari-

ance σ2.

In order to prove Theorem 2.1, one needs to obtain a series of results on con-

vergence in Skorokhod topology of an array of the branching processes. The

scheme of the proof is as following. Since the bootstrap sample X ∗

n is based

on the sequence of branching processes (2.5), we first investigate the array of

processes under suitable assumptions of near criticality. Second, we derive limit

distributions for the CLSE of the offspring mean in the sequence of nearly critical

processes. In the third step, we show that conditions of the limit theorems for

the CLSE are fulfilled by the bootstrap pivot V ∗

n . A detailed proof of Theorem

2.1 can be seen in [10], where it is proven in a slightly more general situation.
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Results, related to the threshold of the validity of the bootstrap will be published

elsewhere.

3. Simulation study

For the purpose of empirical investigation of bootstrapping for the branching

stochastic process with non-stationary immigration, we conducted Monte-Carlo

and bootstrap simulations of the process and compared them in this section.

All simulations in this study were conducted with computer programs written in

MATLAB 7.0. These programs are currently being prepared for user-friendliness

and are going to be published online. However, their specifications are described

in brief in this section.

To investigate the limiting behavior of the offspring mean estimator, the

Monte-Carlo simulation was conducted with the following specifications:

(1) Offspring distribution is Poisson with parameter a = 1. This signifies a

critical process.

(2) Immigration distribution is Poisson with parameter α(k) = k, k ≥ 2 and

α(1) = 2.

(3) Totally n = 99 generations and m = 2500 sample paths.

The graphs in Figure 1 below show the results of this simulation. In the

Figure, graph (a) represents supremum |CDF (V k) − CDFN (0, 2 + α)|, α = 1,

versus generation k, graph (b) displays cumulative distribution function (CDF)

of Monte-Carlo pivot Vk versus N (0, 2 + α) at the last generation, graph (c) de-

picts kurtosis (a sample analog of γk = E[(Vk − E[Vk])
4/σ4

Vk
]) of pivots Vkversus

generation k, and graph (d) shows standard deviation of pivots Vk versus gener-

ation k.

Figure 1 (a) shows that the supremum of |CDF (Vk) − CDF (N(0, 2 + α))|
decreases as generation value grows larger. Since the graph of the supremum

difference in CDFs generally approaches zero as k −→ ∞, apart from sampling

errors, the Monte-Carlo simulation produced pivots that can be considered to

approach normality as reported earlier in our theoretical results. This is further

supported by the close empirical and theoretical cumulative distribution functions

at the 99th generation as shown in Figure 1 (b). In particular, Figure 1 (c)

shows the kurtosis (blue line) of Vk hovering around the usual normal distribution

kurtosis of 3 (red dotted line) from about the 20th generation onwards. The

standard deviation of Vk in Figure 1(d) also decreases with increasing generation

number. However, unlike the kurtosis, the standard deviation of Vk reaches our
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Figure 1: Pivot Behavior for m = 2500 Monte-Carlo Simulations and n = 99

theoretical standard deviation of 2 + α (red dotted line) at a slower rate since

this occurs only at the 60th generation onwards.

Figure 2 below shows the behavior of the weighted conditional least square

estimates (WCLSE) of the offspring means over a long term where the process

reaches 99 generations. Although initially the WCLSE went up to more than 2,

in the long run, these estimates of offspring means stably reaches 1 (for a critical

case) starting from generation of 4 onwards.

For the purpose of empirical investigation of the bootstrap, we also conducted

simulations with the following specifications:

(1) An initial random sample from the process was generated with n = 15
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Figure 2: Offspring Means through WCLSE from a single path, n = 99

generations and the estimated offspring mean
∧

an was obtained.

(2) The initial random sample was treated as a pseudo-population with off-

spring mean
∧

an treated as a known parameter. Resampled offspring paths were

obtained from this pseudo-population, where the offspring distribution is Poisson

with parameter a =
∧

an

(3) Immigration distribution is Poisson with parameter (a) α(k) = log(k),

k ≥ 2 and α(1) = log(2), (b) α(k) = k, k ≥ 2 and α(1) = 2, or (c) α(k) = k3,

k ≥ 2 and α(1) = 23 = 8.

(4) Totally, n = 15 generations and m = 10, 000 bootstrap resampled paths.

(5) Monte-Carlo simulations were also conducted to match each bootstrap

specification above for comparison purposes.

Figure 3 shows the behavior of the WCLSE of offpspring means for a single

path from the process when immigration rates are (a) α(k) = log(k), (b) α(k) = k,

or (c) α(k) = k3. Although the WCLSE can be negative for lower generations (see

equation 1.2), from Figure 3, the estimator hovers around 1 (for the critical case)

for larger generations according to the rate of immigration. For bootstrapping
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Figure 3: WCLSE offspring means for a single path, n = 15

purposes, the WCLSE estimates at generation 15 (a =
∧

an) is used as the offspring

mean parameter for the process in place of the unknown true parameter.

The graphs in Figure 4 below show the distribution of pivots for the Monte-

Carlo (on the left column of Figure 4) and the Bootstrap (right column of Figure

4) simulations. For instance, Figure 4 parts (a) and (b) represent the pivot dis-

tribution when the branching process has an immigration mean α(k) = log(k).

The second row shows the same when α(k) = k and the last row shows the

distributions when α(k) = k3. In addition, for comparison, the theoretical nor-

mal limiting distribution N (0, 2 + α) is also superimposed on each of the pivot

histograms in Figure 4.
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Figure 4: Empirical vs Theoretical Distribution of Pivots at n = 15, m = 10000

When the immigration rate is slower (i.e. when immigration mean α(k) =

log(k)), the pivot distribution seems negatively skewed when compared to the

normal distribution. However as immigration rates grow more rapidly, the pivot

distributions are more symmetric and are tending towards the normal distrib-

ution. Note also that the bootstrap pivot distributions on the right column of
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Figure 4 mirror the pivot distributions from the Monte-Carlo simulations very

closely. Also, when α(k) = k3, the Monte-Carlo and bootstrap pivot distribution

each converges to normality faster than when α(k) = k and when α(k) = log(k),

which confirms our theoretical findings earlier. Thus, the convergence rate is

partially governed by the increasing rate of immigration.

For the purpose of studying deviations of Monte-Carlo pivots from normality

and the bootstrap pivots, we also defined the supremum differences sup |CDF (Vk)

−N (0, α+2)| and sup |CDF (Vk)−CDF (V ∗

k )|. We compared these supremums for

the pivots at each generation from 2 to 15. The results of these comparisons are

given in Table 1 for different mean immigration rates, with a = Sup|CDF (Vk)−
CDFN (0, 2 + α)|, b = Sup|CDF (Vk) − CDF (V ∗

k )|, and c = a/b.

As can be seen in the table, bootstrap approximation is consistently better

than normal approximation of the branching process with non-stationary immi-

gration. The ratio of the supremum differences in CDF are generally at least 4

to 5 times smaller for the bootstrap pivots compared to the approximation by

normal. This is further verified by examining the CDF in Figure 5 below for this

comparison.

Figure 5: Validity of the Bootstrap for Various Immigration Means

The benefits of bootstrapping is clear. The distribution of the bootstrap

pivots mimics the distribution of the Monte-Carlo pivots very closely even at

lower generations. This is a very useful feature of the bootstrap for this type of

stochastic processes particularly when the process is still at the initial stages and

the normality limit theorem does not yet apply. Because of this feature, the initial

sample can be used as a pseudo-population for the bootstrapping procedure to

provide an empirical basis for an early stage inference on the process.
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α(k) = log (k) α(k) = k α(k) = k3

k a b c a b c a b c

2 0.5577 0.0709 7.9 0.3781 0.0036 105.0 0.2252 0.0102 22.1

3 0.4614 0.0670 6.9 0.2881 0.0066 43.7 0.2255 0.0084 26.9

4 0.3645 0.0821 4.4 0.2281 0.0093 24.5 0.1735 0.0158 11.0

5 0.3201 0.0385 8.3 0.1889 0.0077 24.5 0.1295 0.0131 9.9

6 0.2868 0.0320 9.0 0.1600 0.0093 17.2 0.0973 0.0090 10.8

7 0.2620 0.0255 10.3 0.1368 0.0108 12.7 0.0765 0.0056 13.7

8 0.2372 0.0210 11.3 0.1116 0.0141 7.9 0.0628 0.0060 10.5

9 0.2225 0.0193 11.5 0.1018 0.0155 6.6 0.0481 0.0060 8.0

10 0.2097 0.0224 9.4 0.0941 0.0166 5.7 0.0449 0.0054 8.3

11 0.1971 0.0179 11.0 0.0796 0.0121 6.6 0.0363 0.0053 6.9

12 0.1921 0.0221 8.7 0.0798 0.0105 7.6 0.0364 0.0064 5.7

13 0.1857 0.0256 7.3 0.0734 0.0109 6.7 0.0426 0.0066 6.5

14 0.1819 0.0300 6.1 0.0743 0.0111 6.7 0.0553 0.0054 10.2

15 0.1799 0.0212 8.5 0.0584 0.0090 6.5 0.0734 0.0069 10.6

Table 1: Comparison between Cumulative Distributions of Monte-Carlo(MC) Pivots Vk

with N (0, 2 + α) and with Bootstrap Pivots V ∗

k
for each Generation and Immigration

Rate α(k)

4. Concluding remarks

The main result of this paper shows that when condition A3 is satisfied the

sampling distribution of the CLSE can be approximated by the distribution of

the bootstrap version of the estimator. Since the bootstrap estimator can be

constructed by a large number of re-sampling, it can be used even when the

number of observed generations in the original sample is small, where the limit

theorem does not yet apply. This is particularly useful for real application of the

stochastic process model, where data may be scarce and early inference on the

process is of paramount importance. Moreover, the simulation results of Section

4 show that bootstrap is a better approximation comparatively than the normal

approximation (given by the limit theorem) of the CLSE.

It is known [9] that when condition A3 is not satisfied i.e. nα2(n) = o(β(n))

as n → ∞ pivot n(ân − a) as n → ∞ converges in distribution to a random

variable which is not normal and can be expressed in terms of certain functionals

of a time-changed Wiener process. Since the rate of convergence is not faster



242 I. Rahimov, M. H. Omar

than n−1, it is heuristically clear that the parametric bootstrap is invalid in this

case. To prove this formally, one needs to obtain the approximation results for

the array of branching processes in more general set up than it is done in present

paper.

Assume now that a sample of pairs {(Z(k), ξk), k = 1, . . . , n} is available. In

this case a natural estimator of the offspring mean is

ãn =

n∑
k=1

(Z(k) − ξk)

n∑
k=1

Z(k − 1)

.

The following questions related to this estimator is of interest. How much im-

provement in the sense of the rate of convergence we will get because of additional

observations on the number of immigrating individuals? Will the standard para-

metric bootstrap procedure be valid for ãn when condition A3 is not satisfied?

Since

ãn − a =

n∑
k=1

Z(k−1)∑
j=1

(Xkj − a)

n∑
k=1

Z(k − 1)

,

one can easily derive asymptotic distributions for the pivot, corresponding to

ãn from a martingale central limit theorem. By the arguments as in the proof

of Proposition 4.1 in [9], it is possible to prove that ãn is a strongly consistent

estimator of a.

The estimation problems and a justification of the validity of the bootstrap

for subcritical and supercritical processes with non-stationary immigration are

also open.
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