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INTERACTING GENES RESPONSIBLE FOR COMPLEX

HUMAN DISEASE

Valentin Milanov Radoslav Nickolov

A challenging problem in human genetics is the identification and charac-
terization of susceptibility genes for complex human diseases such as car-
diovascular disease, cancer, hypertension and obesity. These conditions are
likely due to the effects of high-order interactions among multiple genes and
environmental factors. Genome-wide association studies, where hundreds
of thousands of single-nucleotide polymorphisms (SNPs) are genotyped in
samples of cases and controls, offer a powerful approach for mapping of com-
plex disease genes. The classical statistical methods, parametric and non-
parametric, are usually limited to small number of SNPs. Here we propose
a new method based on a classical search algorithm - ”sequential forward
floating search”, utilizing entropy based criterion function. Using simulated
case-control data we demonstrate that the method has a high discovery rate
under different models of gene-gene interaction, including pure interaction
without main effects of the genes. The performance of the proposed method
is also compared to a method recently advocated in the literature: multifac-
tor dimensionality reduction (MDR).

1. Introduction

There are about 30, 000 − 40, 000 genes in the human genome. With the re-
cent report of the sequence that constitutes our genome and improving biological
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technology, we are now in a position to begin to detect the genes that predispose
humans to complex diseases: cancer, diabetes, hypertension, obesity, etc. The
search for genetic components of complex human diseases is based on studying
the observed correlations between genetic markers and disease. One approach is
the candidate-gene association study approach. Known genetic markers in the
candidate gene are genotyped, and their association to the disease is tested with
statistical association analysis methods. However there is a growing awareness
that complex interactions among multiple genes and multiple environmental fac-
tors play an important role in determining an individual’s risk of various common
diseases. The idea is not new, [1] emphasized that the relationship between genes
and biological end points is dependent on dynamic interactive networks of genes
and environmental factors.

Genetic studies aim to determine which genetic polymorphisms play a func-
tional role in the etiology of a disease. However, the general strategy for iden-
tifying Mendelian disease genes has largely been unsuccessful when applied to
identifying susceptibility genes for common complex multifactorial diseases [2].
This is primarily due to the fact that the Mendelian approach requires each sus-
ceptibility factor to have a large independent main effect on disease risk because
in general only one genetic locus is investigated at a time. Complex diseases
are common, with unknown modes of inheritance and arise as a result of multi-
ple mechanisms: common alleles with small to moderate effects, rare alleles with
moderate to large effects, complex gene-gene and gene-environmental interactions
[3, 4], etc. The gene-gene interaction is known as epistasis.

Epistasis-interaction between different genes

How can an interaction or epistasis be defined? There are two main interpre-
tation of the notion of epistasis. Biological interaction usually corresponds to a
situation in which the qualitative nature of the mechanism of action of a factor is
affected by the presence or absence of an other factor [5]. Epistasis is the control
of a phenotype by two or more genes. This genetic interaction often involves the
masking of the phenotypic effects of one gene by the effects of a second gene. A
gene is epistatic when its presence suppresses the effect of the other gene.

The above definition of epistasis can not be directly applied to binary traits.
In human genetics, the phenotype of interest is often qualitative and usually di-
chotomous, indicating presence or absence of disease. Mathematical models for
the joint action of two or more loci focus on the penetrance, or the probability of
developing disease given genotype. Statistical interaction between loci requires
a dependent effect, where the risk associated with a genotype at a locus is de-
pendent on a genotype at another locus. As example consider two risk loci (A
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and B). Locus A with two possible alleles, A or a, and locus B with possible
alleles, B or b. Suppose that a predisposing allele is required at both loci in order
to exhibit the trait, i.e. one or more copies of both allele A and allele B are
required. Then, when the effects of both loci are considered, one can obtain the
penetrance table shown in Table 1.

BB Bb bb

AA 1 1 0

Aa 1 1 0

aa 0 0 0

Table 1: Penetrance of multilocus genotype: probability of disease given the
genotypes at the considered marker loci

In the above table, the effect of allele A can only be observed when allele B
is also present: without the presence of B, the effect of A is not observable. The
effect at locus A would appear to be ‘masked’ by that at locus B. By analogy
with the example in Table 1, we might say that locus B is epistatic to locus A,
since when the genotype b/b is present at locus B, the effect of the alleles at locus
A is not observable. However, one can equally say that locus A is epistatic to
locus B, since when the genotype a/a is present at locus A, the effect of the alleles
at locus B is not observable. Although not many epistatic interactions have been
described to date [6, 7, 8, 9], there is little doubt that many such interactions
exist.

The coinheritance of alleles on haplotypes of tightly linked loci leads to asso-
ciations between these alleles in the population, known as linkage disequilibrium
(LD). Linkage disequilibrium can be detected in population samples. A pair of
loci is said to be in linkage disequilibrium when, in a sample of individuals, their
joint haplotype frequencies deviate from those expected under independence. For
example, consider two closely spaced loci 1 and 2 on a chromosome with alleles
A, a, and B, b. Suppose pA, pa and pB , pb are the frequencies of these alleles in
the population. Let the frequency of the AB haplotype is pAB . Two loci are in
independent or in linkage equilibrium if p(AB) = p (A) p(B).

Many indirect association studies employ a dense map of polymorphisms to
identify associated trait loci, and some even allow scanning all the genes through-
out the genome, [10]. These usually utilize biallelic single nucleotide polymor-
phisms (SNPs) as markers. SNPs are variations in DNA sequence where one of
the four nucleotides is substituted for another (for example, C for A). SNPs are
the most frequent type of polymorphism in the genome, and they make up the
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majority of markers in a whole-genome association map.

Multi-locus methods are specifically designed to find multiple disease loci that
may influence the disease by intricate genetic patterns, gene-gene interaction
and gene-environment interactions. One of these methods is the Multifactor
Dimensionality Reduction (MDR) [11]. Multifactor-Dimensionality Reduction
(MDR) is a special case of patterning and recursive partitioning (PRP)

PRP is extension of the classification and regression tree (CART) method. In
PRP method individuals are assigned to genotype groups based on their multilo-
cus genotypes and then using the resulting classification as a predictor variable
in a recursive partitioning [12]. PRP starts by creating a categorical variable for
genotype group (which is referred to as pattern) such that individuals with iden-
tical multi-locus genotypes are assigned to one and the same group. The groups
are formed using subsets of SNPs. For example, considering two SNPs, A and B,
there are nine levels of the pattern variable corresponding to each cell (genotype)
in Table 2.

SNP 1\ SNP 2 AA Aa aa

BB AABB AaBB aaBB

Bb AABb AaBb aaBb

bb AAbb Aabb aabb

Table 2: Each level of the pattern variable corresponds to two-locus genotype -
9 possible

In general, if the total number of loci is N , then there are N choose n ways
of choosing n SNPs at a time. Therefore N choose n genotype groups (pattern
variables) are created correspondingly. Each one of these pattern variables can
be included as potential predictors in RP. MDR is a special case of PRP in which
(1) tree growth is restricted to a single split, and (2) misclassification error (i.e.
the proportion of people incorrectly classified) is used as the measure of impurity.
This result follows directly from the fact that MDR yields a partition of the data
into two groups in a manner that minimizes the misclassification rate. The six
steps in MDR are described with Figure 1 in the appendix.

The MDR algorithm has reasonable power to detect epistasis, [13]. However,
the best multilocus predictor is discovered using an exhaustive search, which
makes it not applicable to large number of predictors.

To address this and other limitations, a flexible computational framework for
detecting and interpreting gene-gene interactions has recently been proposed [14].
In the first step entropy-based measures of information gain are used to select
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interesting predictors from the pool of possible candidates, a set of thousands of
single-nucleotide polymorphisms (SNPs).

Recently, other methods incorporating entropy measures have been proposed,
[15].

In this article, first we define entropy based measure of association between
candidate set of polymorphisms and the disease status. Second we propose novel
search procedure using the defined measure of association in float search algorithm
for identifying susceptibility genes for complex human diseases among thousands
of candidate genes, in particular gene-gene interaction using balance case-control
samples. Third we compare the proposed method to MDR under three main
scenarios.

2. Methods

Entropy as measure of association of group of m polymorphisms with disease
status

The statistical entropy of X is defined as

H(X) = −
N∑

i=1

pi log pi

where X is random vector with probability distribution P (X = xi) = pi, for
i = 1...N , N is the number of possible values of X.

We use the concept of entropy to define measure of association of m ≥ 2
independent candidate marker loci and the disease status. We consider SNP
markers.

Denote g1, . . . , gG, the set of all multilocus genotypes formed using m SNP
loci, where the allele at the the ith locus is either allele 1 or allele 2. Since at
each locus three genotypes can occur, (1/1, 1/2, and 2/2) the total number of
genotypes is G = 3m.

Considering the multilocus genotypes as states of random vector X we define
the entropy of the controls and cases correspondingly as En,G and Ed,G as

(1) En,G(X) = −

G∑

i=1

pgi,n log pgi,n , Ed,G(X) = −

G∑

i=1

pgi,d log pgi,d

where pgi,n, pgi,d are the multilocus genotype frequencies in normal and dis-
eased individuals respectively.
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If none of the candidate SNPs are associated with the disease the distribution
of multilocus genotypes in normal and diseased group would not exhibit signif-
icant difference in the frequency of the genotype gi, or pgi,n ≈ pgi,d.This will
result in similar entropy signals, Enormal,G(X) ≈ Edisease,G(X) in both groups.
In contrary if we assume that the SNPs are associated with the disease status
then we expect to observe a pattern for the multilocus genotypes that are partic-
ular for the diseased individuals-high risk genotypes. The order in the system in
genotype states in the group of diseased individuals will result in relatively small
estimate of Edisease,G(X) compared to Enormal,G(X). In the extreme case when
only one multilocus genotype is high-risk, then the frequency of this genotype in
the diseased group of individuals is going to be high, close to 1, and the other
genotypes will have really small frequencies.

We propose to use the difference between the entropy of genotype states of
normal individuals and entropy of genotype states of diseased individuals as a
measure of association between the set of m SNPs and disease status.

ED(X, G, m) = Enormal,G(X) − Edisease,G(X) =(2)

= −

G∑

i=1

pgi,normal log pgi,normal +

G∑

i=1

pgi,disease log pgi,disease

In general bigger margin of the two signals will indicate stronger association
between the group of m selected polymorphisms and the disease status.

Standardized Entropy Criterion

In practise association studies aim to select set of polymorphisms among two
or more candidate sets that describes the best way the association between the
trait of interest and the genetic variation.

We defined criterion to compare two different candidate sets of polymorphisms
(SNPs) using the defined entropy measure as in 2, in samples of 2n unrelated
individuals: n cases and n controls. We assume that underlying population is
homogeneous. The sets may have some polymorphisms in common. To answer
the question which one has stronger association with the disease status we need
a uniform measure to compare them. For these reasons we propose Standardized
Entropy Difference (SED) measure in the form

(3) SED(X, G, m) =
Enormal,G(X) − Edisease,G(X)

Enormal,G(X)
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If ngi,n, ngi,d are the numbers of individuals having genotype gi in the given
sample, for normal and diseased individuals respectively, for 1 ≤ i ≤ G. Then
using the maximum likelihood estimates of the genotype frequency, pgi,n, pgi,d one
can use as criterion the estimated SED measure to decide which of the candidate
sets of polymorphisms has stronger association with the disease.

Search procedure utilizing the entropy as a measure of association, Modified
Adaptive Float Search (MAFS)

One of the challenges that search algorithms need to deal identifying func-
tional polymorphisms in complex disease is the unknown number of genes in-
teracting. We describe a method based on modification of suboptimal search
algorithm, Adaptive Sequential Forward Floating Search (ASFFS) as in [16].
The ASFFS is feature selection method for finding a subset of d features from
a given set of D measurements, d < D. In contrast with the classical floating
search methods which use only single feature adding or removing, respectively,
in the number of features o added or removed at the time is determined adap-
tively according to r-actual generalization limit which is always smaller than user
prespecified absolute generalization limit rmax. As result the nearer, the current
subset size, k, is to the final one, d,the higher is the generalization limit, this can
be determined by setting up parameter b and checking if |d − k| < b. Terminating
condition is k ≥ d+∆, where ∆ is determined heuristically. For details of ASFFS
see Figure 2 in the appendix.

The search procedure ASFFS can not be directly utilized for identifying dis-
ease associated polymorphisms due to the fact that number of features d is prede-
termined, in practise the number of associated polymorphisms is unknown. We
propose use of criterion function that allows to compare not only sets with the
same cardinality but also sets with different number of features. We achieve this
by using the uniform (not depending on the number of features in the set) crite-
rion SED. The MAFS search procedure consists of steps that one encounter in
the ASFFS with few modifications. First, when a candidate of set of k features
is selected it is not evaluated versus the best set of k features so far but versus
the overall best set of size K so far, in general K 6= k. In this way the search
procedure goes through less steps since local improvements of the best set of size
k are not replacing the current set. The nested effect is not an issue since the
algorithm floats according to ASFFS. The algorithm uses the same parameters as
the ones used in the ASFFS and one additional terminating parameter Λ, number
of features that has been added to the best set of features without successfully
improving the criterion function. We have Λ < rmax, where rmax was the maxi-
mum generalization limit. The method can allow higher generalization level than
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the general ASFFS, since it has reduced run time.

3. Data Simulation

To evaluate the power of MAFS for detecting gene-gene interactions, we simu-
lated case-control data using several main scenarios. Under each scenario models
involving independent loci without single main effects were considered. If main
effects were present, it could be difficult to evaluate whether particular loci were
detected because of the main effects, or because of the interactions, or both that
is why interactions without main effects only were considered in this study. Un-
der these settings the degree of complexity is higher and it is good way to test
the ability of the method to identify gene-gene interactions. All genotypes were
generated according to Hardy-Weinberg equilibrium. Statistically HWE means
that the alleles for the next generation for any given individual are chosen inde-
pendently. Consider the simplest case of a single locus with two alleles A and a
with allele frequencies of p and q, respectively. HWE predicts that the genotypic
frequencies for the AA homozygote to be p2, the Aa heterozygote to be 2pq, and
the other aa homozygote to be q2.

Scenario 1. Four different two-locus epistasis models in which the functional
loci are single-nucleotide polymorphisms (SNPs) as in [11]. The four models
were generated using the epistasis model discovery method in [17], using allele
frequencies of p = 0.25 and q = 0.75 for models 1 and 2, Tables 3 and 4 and allele
frequencies of p = 0.1 and q = 0.9 for models 3 and 4, for details see Tables 5 and
6. For the four models the combination of genotypes formed using the 2 SNPs
exhibiting interaction in the absence of independent main effects.

BB Bb bb

AA 0.08 0.07 0.05

Aa 0.10 0 0.10

aa 0.03 0.10 0.04

Table 3: Model 1, Penetrance values, p=0.25, q=0.75 minor and major allele
frequencies.

For example consider model 1 with penetrance functions given in Table 3, to
show that there is no single main effect of each locus we need to show that
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BB Bb bb

AA 0 0.01 0.09

Aa 0.04 0.01 0.08

aa 0.07 0.09 0.03

Table 4: Model 2, Penetrance values, p=0.25, q=0.75 minor and major allele
frequencies.

BB Bb bb

AA 0.07 0.05 0.02

Aa 0.05 0.09 0.01

aa 0.02 0.01 0.03

Table 5: Model 3, Penetrance values, p=0.1, q=0.9 minor and major allele fre-
quencies.

BB Bb bb

AA 0.09 0.001 0.02

Aa 0.08 0.07 0.005

aa 0.003 0.007 0.02

Table 6: Model 4, Penetrance values, p=0.1, q=0.9 minor and major allele fre-
quencies.
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fAA = fAa = faa or fAA ≈ fAa ≈ faa(4)

and

fBB = fBb = fbb or fBB ≈ fBb ≈ fbb

To obtain fAA = P (D/AA), the probability of being diseased given the geno-
type AA at the locus with possible alleles A, a. Using the conditional and total
probability formulas and the fact that the loci are independent, probability of

fAA = fAA,BB p2
B + 2fAA,Bb pB pb + fAA,bb p2

b = 0.0593

Similarly can be obtained fAa = 0.0624and faa = 0.0618. The close marginal
penetrance functions indicate that there is no effect of the locus A alone. In a
similar way one can check that the locus B has no main effect alone.

For each of the four epistasis model we simulated 100 datasets. Each dataset
consisted of 200 cases and 200 controls, for each individual genotype at 10 inde-
pendent SNP loci were simulated. The first two SNPs 1, 2 were the functional
ones. Each SNP had two alleles with the common allele having a frequency of
0.75,or 0.9, as described above. To evaluate the method performance under dif-
ferent sample sizes we generate 100 data sets with 100 cases and 100 controls and
100 data sets with 50 cases and 50 controls.

Scenario 2. One three-locus epistasis model generated using the epistasis
model discovery method in [17]. Genotypes at 10 independent SNP loci were
simulated, the first three SNPs 1, 2, 3 functional. Each SNP had two alleles
with the common allele having a frequency of 0.5.The penetrance functions are
given in Table 7. Similar to derivation of marginal penetrance function for the
two-locus model one can obtain the marginal penetrance for each locus, e.g.
fAA, fAa, faa for locus A. The independent main effect of the AA genotype is
fAA = P (D/AA) = 0.475. However, the probability of disease given the geno-
type combination AAbbCC is 0.1 while the probability of disease given genotype
AABBcc is 1.0. Hence it is clear that the effect of the genotype AA is dependent
on the genotypes at the other two loci. The independent main effects for all three
loci are given below.
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fAA = 0.475, fAa = 0.487, faa = 0.475

fBB = 0.475, fBb = 0.481, fbb = 0.487

fCC = 0.475, fCc = 0.487, fcc = 0.475

To evaluate the methods performance under different sample sizes we generate
100 data sets with 200 cases and 200 controls, 100 data sets with 100 cases and
100 controls and 100 data sets with 50 cases and 50 controls.

CC Cc cc

AA Aa aa AA Aa aa AA Aa aa

BB 0.4 0.9 0.7 0.2 0.2 0.6 1.0 0.4 0.5

Bb 0.9 0.0 0.9 0.9 0.9 0.0 0.3 0.1 0.6

bb 0.1 0.2 0.6 0.6 0.6 0.3 0.3 0.9 1.0

Table 7: Penetrance values for 3-locus genotypes formed using 3 SNPs exhibiting
interaction in the absence of independent main effects, p=0.5 q=0.5 minor and
major allele frequencies.

Scenario 3. One four-locus epistasis model generated according to [17]. Again
10 independent SNPs were simulated to form each individual multilocus geno-
type., the first four SNPs 1, 2, 3, 4 were simulated to be functional. Each SNP
had two alleles with the common allele with frequency of 0.5.The penetrance
functions are given in Table 8.

100 data sets with 200 cases and 200 controls, 100 data sets with 100 cases
and 100 controls and 100 data sets with 50 cases and 50 controls were generated.

4. Results

We ran MAFS with different parameter setting to perform search for each one of
the scenarios described in the previous section. Parameters are set to values that
allow search for high order interaction. Most important factor in determination
of generalization level rmax for each scenario has been the available number of
sampled individuals. Due to the small number of candidate SNPs in scenario
1 − 3, 10, we set the terminating parameter to Λ = 8, which practically leads
to search for the best set among set consisting of 2 − 9 SNPs. The entire set
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CC Cc cc

AA Aa aa AA Aa aa AA Aa aa

DD

BB 0.9 1.0 0.0 0.9 0.1 0.1 1.0 0.9 1.0

Bb 0.9 0.0 0.8 1.0 0.0 1.0 0.1 0.0 0.0

bb 0.1 1.0 0.9 1.0 0.1 0.8 0.9 0.9 1.0

Dd

BB 0.0 0.0 0.8 0.1 1.0 0.1 0.0 1.0 0.1

Bb 1.0 0.1 1.0 0.0 0.8 0.7 0.0 1.0 0.0

bb 0.1 1.0 0.0 1.0 0.3 0.1 0.0 0.0 0.2

dd

BB 0.9 0.1 0.0 1.0 0.0 0.0 0.9 1.0 0.7

Bb 0.9 0.0 0.0 0.0 0.5 1.0 0.0 1.0 1.0

bb 1.0 0.9 1.0 1.0 0.2 0.3 0.9 0.0 0.0

Table 8: Penetrance values for 4-locus genotypes formed using 4 SNPs exhibiting
interaction in the absence of independent main effects, p=0.5 q=0.5 minor and
major allele frequencies.

consisting of 10 SNPs is of no interest. Parameter settings for the first three
scenarios are given in Table 9.

We ran MAFS with these parameters for all scenarios. The best model using
MAFS has been selected among the best models of size 2, 3, . . . , 8. The model
with maximum SED value among is chosen as the best model overall.

The power of MAFS under each model is estimated with the discovery rate,
the number of times when MAFS identified best model containing the functional
SNPs out of each set of 100 datasets.

Under scenarios 1− 3 datasets were analyzed also with MDR method. Using
MDR we conducted an exhaustive search of all possible 2 − 5-locus interactions
for the two-locus models (scenario 1), 2 − 7 locus interaction for the three-locus
model (scenario 2), and 2 − 8 for the four-locus model (scenario 3). We chose to
evaluate interactions up to that order since with a 9-locus model for example every
individual will have a unique genotype and thus the prediction error estimates will
not be that accurate. We applied the MDR algorithm using a cases-to-controls
threshold ratio of 1 : 1 as described in [11]. Each dataset was analyzed using 10-
fold cross-validation. The power of MDR under each model was estimated with
the discovery rate, the number of times MDR identified the functional SNPs out
of each set of 100 datasets.
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Sample Size Parameter Settings

d 9

100(200) rmax 3

b 8

Λ 8

d 9

400 rmax 4

b 8

Λ 8

Table 9: Parameter settings for scenario 1-3 using MAFS. d - number of fea-
tures in the targeted set, r-max- maximal generalization level, b neighborhood
parameter, lambda - number of features added to the best set of features with no
improvement of the criterion function.

Power Comparison

We compared the power of the proposed search procedure, MAFS, with the
MDR. The results are summarized in Tables 10 and 11.

MDR outperforms MAFS for models for 3 and 4 in the case of sample size
400 individuals, and for model 3 when the sample size is 200.

However the proposed search procedure, overall, is more powerful than MDR
especially for relatively small samples.

MAFS considerably outperformed MDR under scenario 2 and 3.

Model Method

MAFS MDR MAFS MDR MAFS MDR

Sample size 100 200 400

1 0.29 0.18 0.58 0.26 0.73 0.33

2 0.35 0.47 0.53 0.69 0.91 0.73

3 0.18 0.14 0.29 0.36 0.35 0.51

4 0.21 0.20 0.30 0.27 0.37 0.47

Table 10: Power of MAFS and MDR under scenario 1.
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Scenario Method

MAFS MDR MAFS MDR MAFS MDR

Sample size 100 200 400

2 0.29 0.00 0.59 0.23 0.91 0.63

3 0.13 0.00 0.68 0.02 0.94 0.56

Table 11: Power of MAFS and MDR under scenario 2 and 3.

5. Discussion

Common variants with small individual effects might contribute more substan-
tially to disease risk through nonadditive interactions among loci. In situation
like this one should be aware that examining only a single locus at a time, these
effects might be missed. Because only very common variants will be found in
combination at a measurable frequency, the study of gene-gene interactions in
common disease is implicitly most relevant to the second approach of studying
common variants.
Our proposed search procedure target the detection of population-level associa-
tion between interacting genes predisposing to a complex diseases from a case-
control sample. The procedure utilizes uniform criterion function that is designed
to exploit for association, simultaneously, set of independent biallelic markers
(SNPs), typed on the entire genome. The uniformity of the criterion function al-
lows to compare between candidate set of polymorphisms of different cardinality.
The goal is to optimally use the information of combination of polymorphisms.
We evaluated the discovery rate the proposed search procedure through simula-
tions. In our simulation scenarios we used models of interacting susceptibility
loci without significant main effects. The MAFS discovery rate was compared
the one of MDR.
We found that the MAFS with the proposed criterion, especially in the case of
small sample size, is more powerful than MDR. The power decreases with the
number of interacting loci, which is result of poor estimates of the multilocus
genotype frequencies.
Method can be used as a screening tool for genomewide screening by extending
it to finding few best set of polymorphisms.
Similar schemes as the one in [14] can utilize the search procedure as first step of
the analysis of large number of candidate polymorphisms. In many cases under
scenario 2, the three-locus epistasis model and four locus interaction models the
right model has not been selected (second best) but model of two loci, the method
may pick few best models for example the first 3 and then these be analyzed with
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other methods.
However, in our present study, in order to avoid the spurious associations due to
stratification or admixture we assumed that the samples of cases and controls ei-
ther come from a homogeneous population or are properly matched for ethnicity.
MAFS does not assume particular genetic model, that is, no mode of inheritance
needs to be specified. This is important for diseases in which the mode of inher-
itance is unknown and likely very complex.
There are certain disadvantages and limitations of MAFS. First MAFS models
can be difficult to interpret. In contrast with MDR, which classifies the multi-
locus genotypes as high/low risk, MAFS does not provide clear interpretation of
the diseased genotypes or how the selected markers explain the pattern of disease
status. Second, in its current form, MAFS can be applied only to case-control
studies that are balanced (i.e., that have the same number of cases and of con-
trols).
The linux implementation of MAFS is available upon request to the authors.

Figure 1: Summary of 6 steps in the cross validation procedure involved in implementation of the MDR

method: a set of n genetic factors is selected among N factors; then factors and their possible multifactor

classes or cells are represented in n-dimensional space; each multifactor cell in n-dimensional space is

labeled as either “high-risk”or “low-risk”, and the prediction error of each model is estimated. For each

multifactor combination, hypothetical distributions of cases (left bars in boxes) and of controls (right

bars in boxes) are shown.
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Figure 2: Flow chart of ASFFS algorithm.

REFERE NCES

[1] Wright S. The roles of mutation, inbreeding, cross breeding, and selection
in evolution. Proceedings of the 6th International Congress of Genetics 1
(1932), 356–366.



Finding Interacting Genes 211

[2] Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M.

Genomewide scans of complex human diseases: true linkage is hard to find.
Am J Hum Genet 69 (2001), 936–950.

[3] Templeton AR Epistasis and complex traits. In: Wade M, Brodie III
B, Wolf J, eds. Epistasis and the Evolutionary Process. NewYork; Oxford
University Press, 2000, 41–57.

[4] Sing FC, Davignon J. Role of the apolipoprotein E in determining normal
plasma lipid and lipoprotein variation. Am. J. Hum. Jenet. 37 (1985), 268-
285.

[5] Siemiatycki J, Thomas DC Biological models and statistical interactions:
an example from multistage carcinogenesis. Int. J. Epidemiol. 10 (1981),
383–387.

[6] Bolk S. et al. A human model for multigenic inheritance: phenotypic
expression in Hirschsprungdisease requires both the RETgene and a new
9q31 locus. Proc. Natl Acad. Sci. USA 97 (2000), 268–273.

[7] Zetterberg H, Zafiropoulos A, Spandidos DA, Rymo L. &

Blennow K. Gene–gene interaction between fetal MTHFR 677C>T and
transcobalamin 776C>G polymorphisms in human spontaneous abortion.
Hum. Reprod. 18 (2003), 1948–1950.

[8] Butt C. et al. Combined carrier status of prothrombin 20210A and factor
XIII-A Leu34 alleles as astrong risk factor for myocardial infarction: evidence
of a gene–gene interaction. Blood 101 (2003), 3037–3041.

[9] Tiret L. et al. Synergistic effects of angiotensin-converting enzyme and
angiotensin-II type 1 receptorgene polymorphisms on risk of myocardial in-
farction. Lancet 344 (1994), 910–913.

[10] Hoh J, Ott J Scan statistics to scan markers for susceptibility genes. PNAS
97 (2000), 9615–9617.

[11] Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl

FF, Moore JH Multifactor dimensionality reduction reveals high-order in-
teractions among estrogen metabolism genes in sporadic breast cancer. Am
J Hum Genet 69 (2001), 138–147.



212 V. Milanov, R. Nickolov

[12] Foulkes AS, DeGruttola V, Hertogs K Combining genotype groups
and recursive partitioning: An application to HIV-1 genetics data. JRSS C
53 (2004), 311–323.

[13] Marylyn D. Ritchie, Lance W. Hahn, and Jason H. Moore Power of
Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions
in the Presence of genotyping Error, Missing Data, Phenocopy, and Genetic
Heterogeneity. Genetic Epidemiology 24 (2003), 150–157.

[14] Jason H. Moore, Joshua C. Gilbert, Chia-Ti Tsai, Fu-Tien Chi-

ang, Todd Holden, Nate Barney, Bill C. White A flexible computa-
tional frame work for detecting, characterizing, and interpreting statistical
patterns of epistasis in genetic studies of human disease susceptibility Jour-
nal of Theoretical Biology 241 (2006), 252–261.

[15] Jinying Zhao, Eric Boerwinkle, Momiao Xiong An En-
tropy based Statistics for Genomewide Association Studies. Volume I.
Berlin/Heidelberg/New York: Springer-Verlag, 2005.

[16] P. Somol, P. Pudil, J. Novikova, P. Paclik Adaptive floating search
methods in feature selection. Pattern Recognition Letters 15(11) (1999),
1157–1163.

[17] Jason H. Moore, Lance W. Hahn, Marylyn D. Ritchie, Tricia A.

Thornton, Bill C. White Routine discovery of complex genetic models
using genetic algorithms. Applied Soft Computing 4 (2004), 79–86.

Valentin Milanov, Ph.D.

Department of Mathematics and Computer Science

Fayetteville State University

1200 Murchison Road

Fyetteville, NC 28301

e-mail: vmilanov@uncfsu.edu


