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LIMIT THEOREMS FOR MAXIMA OF HEAVY–TAILED
TERMS WITH RANDOM DEPENDENT WEIGHTS

Stilian Stoev Murad S. Taqqu 1

Let Uj , j ∈ N be independent identically distributed random variables with
heavy, regularly varying tails. The theory about the limit behavior of the
maxima ∨n

j=1Uj , as n → ∞ is well developed. Here, we consider a sequence
of non–negative weights Wj , j ∈ N and focus on the weighted maxima

Mn(t) :=







∨[nt]
j=1 WjUj , if 1/n ≤ t,

W1U1 , if 0 ≤ t < 1/n,

where the sequences {Uj}j∈N and {Wj}j∈N are independent. We study the
general case when the weights Wj , j ∈ N can be dependent and in particular
long–range dependent. Under mild tail and convergence conditions on the
weights Wjs, we establish limit theorems for scaled versions of the process
{Mn(t)}t≥0, as n → ∞. The limit processes are mixtures of extremal Fréchet
processes. The results are valid when the laws of the Uj ’s belong to the
normal domain of attraction of a Fréchet distribution or to a sub–class of
the general domain of attraction of a Fréchet law.
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1. Introduction

Consider a sequence of independent and identically distributed random variables
Uj , j ∈ N and let

Mn(t) =











∨[nt]
j=1 Uj , 1/n ≤ t

U1 , 0 ≤ t < 1/n

where a ∨ b denotes max{a, b} and [x] denotes the integer part of x ∈ R. The
theory on the limit behavior of the cumulative maxima process {Mn(t), t ≥ 0},
under appropriate centering and normalization, is well–developed (see, Fréchet
[6], Fisher and Tippett [5], Gnedenko [8] and e.g. the monographs Cramer and
Leadbetter [4], Galambos [7], and Resnick [10]).

A stochastic process E = {E(t)}t≥0 is said to have independent max–increments,
if for all 0 = t0 < t1 < · · · < tk, k ∈ N,

{E(tj)}
k
j=1

d
=

{

j
∨

i=1

E(ti−1, ti)
}k

j=1
,(1)

where E(tj−1, tj), j = 1, . . . , k are independent random variables, and where
d
=

denotes equality in distribution. The random variables E(s, t), 0 ≤ s < t can
be viewed as the max–increments of the process E . When the max–increments
E(s, t) are also homogeneous, that is, they have cumulative distribution functions
(c.d.f.) P{E(s, t) ≤ x} = G(x)t−s, for some c.d.f. G(x), x ∈ R, then the process
E becomes an extremal process with distribution function G. It is also called
G−extremal process (see, e.g. Ch. 4.3 in Resnick [11] and the references therein).
The extremal processes can be viewed as a counterpart to the processes with
independent and stationary increments, when the addition is operation replaced
by the maximum.

Consider now the maxima:

Mn(t) =











∨[nt]
j=1 WjUj , 1/n ≤ t

W1U1 , 0 ≤ t ≤ 1/n,

(2)

where the random variables Uj satisfy the condition:

P{U1 > x} = (c + o(1))L(x)x−α, as x → ∞, α, c > 0.(3)
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We suppose that the random variables Wj ≥ 0, j ∈ N, are non–negative and
view them as random weights. Our goal is to establish sufficient conditions for
the convergence of the maxima Mn(t), as n → ∞, to a non–trivial stochastic
process, under appropriate normalization.

Chuprunov [3], addresses the case of weighted maxima with random and
independent weights. Here, we focus on the situation when the weights Wj, j ∈ N

can have a general dependence structure, in particular, long–range dependence.
Our framework is similar to that of Stoev and Taqqu [13] which studied the

behavior of weighted sums
[nt]
∑

j=1
Wj(Uj − µ).

We suppose that the sequence {Wj} is independent of the sequence {Uj}. To
be able to view the Wj ’s in Relation (2) as random weights to the Uj ’s and not
vice versa, we impose the following conditions on {Wj}. A uniform negligibility
condition:

max
1≤j≤n

Wα
j

n

P
−→0(4)

and a convergence condition of the type:

1

n

n
∑

j=1

Wα
j

P
−→ξα, as n → ∞,(5)

where ξα denotes a non–degenerate random variable or a constant.

For convenience, we formulate next a simple result, which follows from Theorem
9.1 in Gnedenko and Kolmogorov [9]. It shows that the above conditions are in
fact quite mild.

Lemma 1. (a) If the sequence {Wj}j∈N is strictly stationary and EW α
1 < ∞,

then Conditions (4) and (5) hold.

(b) Condition (4) holds, if supj∈N Eϕ(W α
j ) < ∞, for some positive, non–

decreasing function ϕ(x), x ≥ 0, such that x = o(ϕ(x)), x → ∞.

Example. If supj∈N EW
α(1+δ)
j < ∞, for some δ > 0, then Condition (4) holds.

This follows from Lemma 1 (b) with ϕ(x) := x1+δ, δ > 0.

The paper is structured as follows. In Section 2., we consider the case when
the Uj’s belong to the normal domain of max–attraction, that is, when L(·) ≡ 1.
We show that, as n → ∞, the process {n−1/αMn(t)}t≥0 converges weakly in
the Skorokhod J1−topology to a non–trivial limit, which is a scale mixture of
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extremal Fréchet processes (Theorem 1). Section 3. covers the case when the
Uj ’s belong to the domain of max–attraction. We show that (Theorem 2) a
similar limit result holds, under certain conditions relating the tail behavior of
the weights Wj and the slowly varying function L(·) in (3).

2. Convergence of weighted maxima

Let D[0,∞) denote the space of right–continuous functions with limits to the left,
defined on the unbounded interval [0,∞). The classical Skorokhod [12] topologies
can be extended to functions defined on unbounded intervals (see e.g. Bingham
[1] and Whitt [14, 15]). We denote by ⇒J1 the weak convergence for processes
with paths in D[0,∞), with respect to the Skorokhod J1−topology.

We need the following key result of Bingham [1], which we state here for conve-
nience.

Theorem 3 in Bingham [1]: Let {Xn : n ∈ N} be a sequence of stochastic
processes whose path–functions lie in D[0,∞). If

i) The finite–dimensional distributions of Xn converge as n → ∞ to those of
X∞.

ii) The process X∞ is continuous in probability.

iii) The processes Xn have monotone path–functions,

then Xn⇒
J1X∞, as n → ∞.

Theorem 1. Assume that (3) holds with L(·) ≡ 1. Then the conditions (4)
and (5) imply that

{ 1

n1/α
Mn(t)

}

t≥0

J1=⇒{ξEα(t)}t≥0, as n → ∞,(6)

where ξ is the random variable in (5) and Eα = {Eα(t)}t≥0, is an independent of
ξ extremal process with Fréchet distributions. That is, Eα(0) := 0 and, for all
t > 0,

P{Eα(t) ≤ x} = Φα(x)t = Φα(x/t1/α) :=

{

exp{−tc1x
−α} , x ≥ 0,

0 , x < 0.
(7)

P r o o f. In view of Bingham’s Theorem above, since the processes {Mn(t)}t≥0

have non–decreasing paths, it is enough to prove that the limit in (6) holds in
the sense of the finite–dimensional distributions.
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We will first prove the convergence of the marginal distributions. It suffices
to show that, for all t > 0 and x ∈ R, x 6= 0,

lim
n→∞

P

{ 1

n1/α
Mn(t) ≤ x

}

= EΦα(x/ξ)t =

{

E exp{−tξαcx−α} , x > 0
0 , x < 0

(8)

(see Lemma 2). Here Φα(x/ξ)t is interpreted as 1 = Φα(∞)t when ξ = 0 and
x ≥ 0 and as 0 = Φα(−∞)t, when ξ = 0 and x < 0.

Let first x < 0 and observe that

P

{ 1

n1/α
Mn(t) ≤ x

}

≤ P

(

[nt]
⋂

j=1

{Uj < 0}
)

≤ F (0)[nt] −→ 0,(9)

as n → ∞, since P{U1 ≤ 0} = F (0) < 1 and because max1≤j≤[nt] WjUj < 0 only
if, Uj < 0, for all j = 1, . . . , [nt] (recall that Wj ≥ 0). This implies (8).

Let now x > 0 be arbitrary. By the independence of the sequences {Wj}j∈N

and {Uj}j∈N,

P

{

[nt]
∨

j=1

WjUj

n1/α
≤ x

}

= E

[nt]
∏

j=1

P

{

WjUj ≤ xn1/α
∣

∣

∣
FW

}

= E

(

[nt]
∏

j=1

(1 − F (xn1/α/Wj))
)

=: Eηn,(10)

where F (y) := 1 − F (y) = P{U1 > y}, y ∈ R, FW = σ{Wj , j ∈ N} is the
σ−algebra generated by the random variables Wj and where the term F (xn1/α/Wj)
is interpreted as F (∞) = 0, if Wj = 0. Observe that if Wj = 0, P{WjUj ≤
xn1/α} = 1, because x > 0.

Since the random variables ηn =
∏[nt]

j=1(1−F (xn1/α/Wj)) ∈ [0, 1], in (10) are
uniformly bounded in n ∈ N, the convergence

ηn
P

−→η, as n → ∞,(11)

implies the convergence Eηn → Eη, n → ∞. We will show that (11) holds with
η = exp{−tξαcx−α}, where ξ is as in (5).

We will first argue that the convergence in (11) follows from the convergence

[nt]
∑

j=1

F (xn1/α/Wj)
d

−→ζ, as n → ∞,(12)
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where η = exp{−ζ}, and then we will establish that ζ = tξαcx−α. Suppose then
that (12) holds and let

µn := max
1≤j≤[nt]

F
(xn1/α

Wj

)

and Bn := {ω : µn(ω) ≤ 1/2}.

For all ω ∈ Bn, we have that F (xn1/α/Wj(ω)) ≤ µn(ω) ≤ 1/2, and therefore
ln(1 − F (xn1/α/Wj(ω))) is well–defined. Thus, in view of (10), by taking a log
and by applying the inequality | ln(1 − y) + y| ≤ Cy2, |y| ≤ 1/2, valid for some
C > 0, we obtain, for all ω ∈ Bn,

∣

∣

∣
ln(ηn(ω)) +

[nt]
∑

j=1

F
( xn1/α

Wj(ω)

)
∣

∣

∣
≤ C

[nt]
∑

j=1

F
( xn1/α

Wj(ω)

)2
(13)

≤ Cµn(ω)

[nt]
∑

j=1

F
( xn1/α

Wj(ω)

)

.

By (4), and the fact that F (y) ↓ 0, y → ∞, it follows that µn→
P0 and

consequently P{µn ≤ 1/2} = P(Bn) → 1, as n → ∞. These facts and Relation
(12) imply that the left–hand side of (13) converges to 0 in probability over the
event Bn and hence ln(ηn)1Bn

→P − ζ, as n → ∞, because of (13). By the
continuity of the function z 7→ exp(z), z ∈ R, the last relation implies that

exp{ln(ηn)1Bn
} = ηn + (1 − ηn)1Bc

n

P
−→ exp{−ζ}, as n → ∞.

However, since P(Bc
n) → 0, n → ∞, we have that (1− ηn)1Bc

n
→P0, n → ∞, and

therefore, the last relation implies (11). We have thus shown that (11) follows
from (12).

We shall now obtain (12) with ζ = tξαcx−α. Relation (3) with L(·) ≡ 1
implies that for all y > 0,

|F (y) − cy−α| ≤ g(y)cy−α,

where g(y) := supz≥y |F (z)/cz−α − 1| → 0, as y → ∞. The triangle inequality
and the monotonicity of the function g, imply

∣

∣

∣

[nt]
∑

j=1

F
(xn1/α

Wj

)

−

[nt]
∑

j=1

cx−αWα
j

n

∣

∣

∣
≤

[nt]
∑

j=1

cg
(xn1/α

Wj

)(xn1/α

Wj

)−α

≤ g
(

x min
1≤j≤[nt]

n1/α

Wj

)

[nt]
∑

j=1

cx−αWα
j

n
.(14)
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However, since g(y) ↓ 0, y → ∞, by (4) and (5), we have

g
(

x min
1≤j≤[nt]

n1/α

Wj

)

P
−→0, and

[nt]
∑

j=1

cx−αWα
j

n

d
−→tξαcx−α,

as n → ∞. This, in view of Relation (14), implies that (12) holds with ζ =
tξαcx−α and consequently (11) holds with η = exp{−tξαcx−α}, which completes
the proof of the convergence of the marginal distributions.

We now prove the convergence of the finite–dimensional distributions. Let
0 = t0 < t1 < t2 < · · · < tk, and xj ∈ R, xj 6= 0, j = 1, . . . , k, k ∈ N. Introduce
the random variables,

Mn(t, s) := max
[nt]+1≤j≤[ns]

WjUj, 0 ≤ t < s,

where max over an empty set is interpreted as −∞. Observe that

{Mn(tj)}
k
j=1 =

{

j
∨

i=1

Mn(ti−1, ti)
}k

j=1
.(15)

We will establish that
{ 1

n1/α
Mn(tj−1, tj)

}k

j=1

d
−→{ξEα(tj−1, tj)}

k
j=1,(16)

where ξ and Eα(tj−1, tj), j = 1, . . . , k are independent random variables, such
that Eα(t, s), 0 ≤ t < s has a c.d.f. Φα(x/(s−t)1/α) = Φα(x)s−t (see (7)). In view
of (1) and (15), Relation (16) would imply {n−1/αMn(tj)}

k
j=1→

d{ξEα(tj)}
k
j=1, n →

∞, which would complete the proof of the finite–dimensional distributions.
By the independence of the sequences {Wj}j∈N and {Uj}j∈N, we have

P

{ 1

n1/α
Mn(tj−1, tj) ≤ xj , j = 1, . . . , k

}

= E

k
∏

j=1

[ntj ]
∏

i=[ntj−1]+1

P{WiUi ≤ xjn
1/α|FW }

=: E

k
∏

j=1

ηn,j,(17)

where ηn,j :=
∏[ntj ]

i=[ntj−1]+1(1 − F (xjn
1/α/Wi)), j = 1, . . . , n. As in the proof of

the convergence of the marginal distributions, we have that ηn,j→
P exp{−(tj −



368 S. Stoev, M. S. Taqqu

tj−1)ξ
αcx−α

j }, xj > 0, and ηn,j→
P0, xj < 0, as n → ∞. This, since the rv’s

ηn,j ∈ [0, 1], n ∈ N, j = 1, . . . , k are uniformly bounded, implies

E

k
∏

j=1

ηn,j −→ E

(

k
∏

j=1

Φα(xj/ξ)
tj−tj−1

)

, as n → ∞,

where Φα(xj/ξ)
tj−tj−1 is interpreted as 1 if ξ = 0 and xj > 0 and as 0, if ξ = 0

and xj < 0. By the last convergence and Relation (17), we obtain (16), which
completes the proof of the theorem. �

Remarks

1. The limit laws in (6) are scale–mixtures of Fréchet distributions. The
case of independent and identically distributed (iid) weights was studied
by Chuprunov [3]. This was done in the more general setting of triangular
arrays, that is, when the distributions of the weights Wj depend also on
n. In that case, the limits of the weighted maxima can have other limit
distributions.

2. The proof of the convergence of the marginal distributions in (6) remains
valid if in Condition (5) one requires the weaker mode of convergence

n−1
n
∑

j=1
Wα

j →
dξα, as n → ∞. The stronger mode of convergence appear-

ing in (5) is used in the proof of the convergence of the finite–dimensional
distributions in (6).

The following lemma is used in the proof of Theorem 1.

Lemma 2. Let X and Xn be rv’s with c.d.f.’s F and Fn, n ∈ N, respectively.
Let C(F ) denote the set of continuity points of the function F (x), x ∈ R. Let also
D ⊂ C(F ) be an everywhere dense subset of R. If, for all x ∈ D, Fn(x) → F (x),
as n → ∞, then Xn→

dX, as n → ∞.

P r o o f. We need to show that Fn(x) → F (x), n → ∞, for any x ∈ C(F ).
Let x ∈ C(F ). Since the set D is dense in R, for all ε > 0, there exist x1(ε) ∈
D ∩ (x − ε, x) and x2(ε) ∈ D ∩ (x, x + ε). Thus,

F (x1(ε)) = lim
n→∞

Fn(x1(ε)) ≤ lim
n→∞

Fn(x2(ε)) = F (x2(ε)).

Since x1(ε) < x < x2(ε), we have that Fn(x1(ε)) ≤ Fn(x) ≤ Fn(x2(ε)), n ∈ N

and thus
F (x1(ε)) ≤ lim inf

n→∞
Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ F (x2(ε)).(18)
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However, by using the continuity of the function F at x, we obtain F (x1(ε)) →
F (x) and F (x2(ε)) → F (x), as ε → 0. Therefore, by letting ε → 0 in (18), we
obtain that limn→∞ Fn(x) = F (x). �

When the sequence of weights {Wj}j∈N has some additional structure, the
assumptions of Theorem 1 can be simplified. Indeed, suppose that {Wj}j∈N is
a strictly stationary sequence. If EW α

j < ∞, then Lemma 1 (a) implies the
Conditions (4) and (5).

The following result concerns the case of strictly stationary weights {Wj}j∈N.
It also provides necessary and sufficient conditions for the convergence in (6) to
hold when the sequence of weights is ergodic.

Corollary 1. Let the sequence of weights {Wj}j∈N be strictly stationary.
(a) If EW α

1 < ∞, then (6) holds.
(b) If the sequence {Wj}j∈N is ergodic, then (6) holds if and only if, EW α

1 <
∞.

P r o o f. Lemma 1 (a) and Theorem 1 imply part (a). We now prove part
(b). If EW α

1 < ∞, then the result follows from part (a). Suppose, on the
other hand, that EW α

1 = ∞. We will show that the convergence in (6) is then

impossible. Consider the “truncated” random variables W
(γ)
j = min{γ,Wj} =

Wj1{Wj≤γ} + γ1{Wj>γ}, for some constant γ > 0. Since E(W
(γ)
j )α < ∞ and since

the sequence {W
(γ)
j }j∈N is stationary, by part (a) it follows that the convergence

in (6) holds, when Wj are replaced by W
(γ)
j , for any fixed γ > 0.

If Uj ≥ 0, for some j = 1, . . . , [nt], then UjWj ≥ UjW
(γ)
j and hence Mn(t) ≥

M
(γ)
n (t), for all γ > 0, where M

(γ)
n (t) denotes max1≤j≤n W

(γ)
j Uj . Since, as n → ∞,

P(Uj < 0, j = 1, . . . , n) ≤ F (0)n → 0, we can ignore the event {Uj < 0, j =
1, . . . , n}, as n → ∞, and for all γ > 0, t > 0 and x > 0, we obtain

lim sup
n→∞

P{
1

n1/α
Mn(t) ≤ x} ≤ lim

n→∞
P{

1

n1/α
M (γ)

n (t) ≤ x}(19)

= E exp{−t(ξ(γ))αcx−α},

where (ξ(γ))α = plimn→∞n−1
n
∑

j=1
(W

(γ)
j )α.

By ergodicity, the Birkhoff theorem implies that the random variable ξ (γ) is
constant. More precisely, for all γ > 0,

1

n

n
∑

j=1

(W
(γ)
j )α

a.s.
−→(ξ(γ))α ≡ E(W

(γ)
1 )α,



370 S. Stoev, M. S. Taqqu

as n → ∞. Since EW α
1 = ∞, we have that (ξ(γ))α → ∞, as γ → ∞. Therefore,

the right–hand side of (19) converges to 0, as γ → ∞. Since the left–hand side of
(19) does not depend on γ, it follows that P{n−1/αMn(t) ≤ x} → 0, as n → ∞,
for all x > 0. This shows that the convergence in (6) does not hold. �

The following remarks are similar to those in Stoev and Taqqu [13].

Remarks

1. If Wj ≥ 0, j ∈ N are iid, then the Conditions (4) and (5) are equivalent
to EW α

1 < ∞. Indeed, by Lemma 1 (a), the fact that EW α
1 < ∞ implies

(4) and (5). If EW α
1 = ∞, then by the (converse) Strong Law of Large

Numbers, n−1
n
∑

j=1
Wα

j does not converges in probability (and almost surely).

This fact and Corollary 1 (b) show that in the case when the random weights
Wj ’s are iid Conditions (4) and (5) are, in fact, necessary and sufficient for
the convergence in (6) to hold.

Here our main focus is on the case of dependent weights Wj . The assump-
tions of Theorem 1, namely Conditions (4) and (5), are relatively mild since
they are necessary and sufficient in the case of iid weights.

2. Corollary 1 (b) implies that the convergence in (6) does not hold, when
EW α

1 = ∞. More precisely, as shown in the proof of Corollary 1, under the
normalization used in (6), the weighted maxima Mn(t) converge to infinity,
as n → ∞. Other normalizations of the Mn(t)’s may yield a non–trivial
limit. Suppose, for example that the Wjs are independent and such that
P{Wj > x} ∼ const x−β, for some 0 < β < α. In this case the random
variables Uj and Wj switch roles and the Ujs can be viewed as weights to
the Wjs because they have lighter tails. If Uj ≥ 0, for example, Theorem 1
implies that

{ 1

n1/β
Mn(t)

}

t≥0

J1=⇒{ηEβ(t)}t≥0, as n → ∞,

where Eβ(t) denotes a Fréchet–extremal process with parameter β (see (7))

and where η = (EUβ
1 )1/β .

3. The assumption of ergodicity in Corollary 1 (b) is essential. If the sequence
{Wj} is not ergodic, then the convergence in (6) may continue to hold, even
when EW α

1 = ∞. Indeed, suppose for example, that Wj := ξ, j ∈ N, where
ξ is an arbitrary non–constant random variable. The sequence {Wj}j∈N is
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then non–ergodic and it trivially satisfies Conditions (4) and (5). Therefore
Theorem 1 applies and the convergence (6) holds.

3. The case of the general domain of attraction

In this section, we extend the result of Theorem 1 to the case when the Uj’s belong
to a certain sub–class of the domain of max–attraction of a Fréchet distribution.
This class is defined in terms of the tail behavior of the weights Wj, j ∈ N.

Let the Uj’s belong to the domain of max–attraction of a Fréchet law. Namely,
suppose that Relation (3) holds with c > 0 and with some non–trivial slowly
varying function L(x) defined for all x ≥ 0, that is, not asymptotically equivalent
to a constant. For any α > 0, there is a unique, up to asymptotic equivalence,
slowly varying function `(x), such that

`α(x) ∼ L(x1/α`(x)), as x → ∞,(20)

where a(x) ∼ b(x), x → ∞ means a(x)/b(x) → 1, x → ∞. Indeed, for any

slowly varying function L1(x), there is a slowly varying function L#
1 (x), called

its de Bruijn conjugate, such that

L#
1 (x) ∼ L1(xL#

1 (x)), as x → ∞.(21)

The function L#
1 (x) is unique up to asymptotic equivalence (see e.g. Theorem

1.5.13 in Bingham et al. [2]). Relation (21) becomes (20) if we set L1(x) :=

L(x1/α) and `(x) := (L#
1 (x))1/α. The function `(x) in (20) will be used in the

normalizations of the maxima, considered in the sequel.

We now suppose that the Wj’s have moments of order slightly more than α,
through:

Condition 1. Let ϕ(x) be a positive and non–decreasing function such that
x = o(ϕ(x)), x → ∞. Suppose that, for all c > 0,

sup
j∈N

Eϕ(cW α
j ) < ∞.(22)

The next condition concerns the asymptotic behavior of the slowly varying
function L(x) which appears in the distribution of the Uj ’s (see (3)). It makes
use of the representation:

L(x) = c(x) exp
{

x
∫

1

ε(u)

u
du

}

, x > 0(23)
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where c(x) → c0 > 0, x → ∞ and ε(x) → 0, x → ∞ (see e.g. Theorem 1.3.1
in Bingham et al. [2]). Note that since L(x) is a non–trivial slowly varying
function, that is, not asymptotically equivalent to a constant, we have that ε(x) :=
(supy≥x |ε(y)|) > 0, for all x > 0.

The following technical condition relates the slowly varying function L with
the function ϕ in Condition 1.

Condition 2. Let ϕ be a positive and non–decreasing function such that x =
o(ϕ(x)), x → ∞. Suppose also that there exists a sequence Gn → ∞, n → ∞,
such that

n

ϕ(Gα
n)

−→ 0, n → ∞(24)

and

ln(Gn)ε
(n1/α`(n)

Gn

)

−→ 0, n → ∞,(25)

where ε(x) = (supy≥x |ε(y)|), ε(·) is as in (23) and where `(·) is as in (20).

The next result, proved in Stoev and Taqqu [13], provides a practical way to
check the above conditions.

Proposition 1. Conditions 1 and 2 are satisfied with the same function ϕ,
in either one of the following two cases:

(a) If, for some δ > 0,

sup
j∈N

EW α+δ
j < ∞(26)

and the slowly varying function L is such that

ε(x) = o
( 1

ln(x)

)

, as x → ∞,(27)

where ε(x) is as in Condition 2.

(b) If, for some δ > 0, we have that

sup
j∈N

E exp{cW δ
j } < ∞, for all c > 0,(28)

and the slowly varying function L is such that

ε(x) = o
( 1

ln(ln(x))

)

, as x → ∞.(29)
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The following lemmas from Stoev and Taqqu [13] are used in the proof of the
next theorem.

Lemma 3. Let Wj ≥ 0, j ∈ N and let α > 0. Then, for all K > 0, n ∈ N

and r = 1, . . . , n,

Dr,n(K) :=(30)

∣

∣

∣

1

n

r
∑

j=1

Wα
j 1{Wj≤K}`

−α(n)L
( n1/α`(n)

Wj1{Wj≤K}

)

−
1

n

r
∑

j=1

Wα
j 1{Wj≤K}

∣

∣

∣

≤ hn
rKα

n
,

where hn → 0, n → ∞ does not depend neither on r, 1 ≤ r ≤ n, nor on the
Wj’s. Here `(·) and L(·) are as in (20) and the term
Wα

j 1{Wj≤K}`
−α(n)L(n1/α`(n)/Wj1{Wj≤K}) is interpreted as 0 if Wj > K.

Lemma 4. Assume that the sequence Gn, n ∈ N satisfies Condition 2. Then,
for all K > 0,

sup
W∈[K,Gn]

∣

∣

∣
`(n)−αL

(n1/α`(n)

W

)

− 1
∣

∣

∣
−→ 0, as n → ∞.(31)

The next result extends Theorem 1.

Theorem 2. Let α > 0 and assume that (3) holds with c > 0 and some
non–trivial slowly varying function L. Assume that the Wj ’s are non–negative
and satisfy (5).

Then, the convergence

{ 1

n1/α`(n)
Mn(t)

}

t≥0

J1=⇒{ξEα(t)}t≥0, as n → ∞,(32)

follows from either one of the following two conditions:

(a) For some K > 0, supj∈N Wj ≤ K, almost surely.

(b) The Wj’s satisfy Conditions 1 and 2, with the same sequence function ϕ.

Here ξ and Eα = {Eα(t)}t≥0 are as in Theorem 1 and `(·) satisfies (20).
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P r o o f. Again, by Bingham’s Theorem (see Section 2., above), it is enough to
prove convergence of the finite–dimensional distributions.

Following the proof of Theorem 1, we will first prove the convergence of
the marginal distributions in (32), by showing that (8) holds, where now the
normalization n1/α is replaced by n1/α`(n). The case of x < 0 can be dealt with
as in the proof of Theorem 1. Let now x > 0 and observe that as in (10), we have
that

P

{ 1

d(n)

[nt]
∨

j=1

WjUj ≤ x
}

(33)

= E

[nt]
∏

j=1

(1 − F (xd(n)/Wj)) =: Eηn,

where d(n) := n1/α`(n) and where F (y) = P{U1 > y}. To prove the convergence
of the marginal distributions in (32), it suffices to show that (11) holds, where
now the ηn’s are defined in (33). As in the proof of Theorem 1, we will first show
that the convergence ηn→

Pη, n → ∞ follows from the convergence

[nt]
∑

j=1

F (xd(n)/Wj)
d

−→ζ, n → ∞,(34)

with η = exp(−ζ).

In case (a), since the random variables Wj are uniformly bounded by a con-
stant, one can essentially repeat the argument in the proof of Theorem 1 with
n1/α replaced by d(n), where one uses the fact that d(n) = n1/α`(n) → ∞, as
n → ∞.

Consider now case (b) and let

µn := F
(xd(n)

Gn

)

and

Bn := {ω : max
1≤j≤[nt]

Wj(ω) ≤ xGn},

where Gn, n ∈ N is the sequence in Condition 2. Since L is a non–trivial slowly
varying function, the function ε(x), x > 0 involved in (25) is strictly positive.
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Therefore, the fact that ln(Gn) → ∞, n → ∞ and Relation (25) imply that
n1/α`(n)/Gn = d(n)/Gn → ∞, as n → ∞. Thus, since F (y) → 0, y → ∞ and
since d(n)/Gn → ∞, n → ∞, we have that µn → 0, as n → ∞ and as in the
proof of Theorem 1 (see Relation (13)), we have that for all ω ∈ Bn and for all
sufficiently large n,

∣

∣

∣
ln ηn(ω) +

[nt]
∑

j=1

F
( xd(n)

Wj(ω)

)
∣

∣

∣
≤ Cµn

[nt]
∑

j=1

F
( xd(n)

Wj(ω)

)

,(35)

for some constant C > 0.
We have that

1

Gn
max

1≤j≤[nt]
Wj

P
−→0, as n → ∞.(36)

Indeed, for all ε > 0,

P

{ 1

Gn
max

1≤j≤n
Wj > ε

}

(37)

≤

n
∑

j=1

P{ϕ(ε−αWα
j ) ≥ ϕ(Gα

n)} ≤
n

ϕ(Gα
n)

sup
j∈N

Eϕ(ε−αWα
j ),

where in the first inequality above we used the monotonicity of the function ϕ
and in the second, the Markov’s inequality. Relations (22) and (24) imply that
the right–hand side of the last expression converges to 0, as n → ∞, and hence
(36) holds.

Relation (36) shows that P(Bn) → 1, as n → ∞. Thus, by (35) and the facts
that µn → 0 and P(Bn) → 1, as n → ∞, as in the proof of Theorem 1, we get
that the convergence ηn→

Pη, n → ∞ follows from the convergence in (34) with
η = exp(−ζ).

Now, we will complete the proof of the convergence of the marginal distri-
butions, by showing that (34) holds with ζ = tξαcx−α. Observe that, since
d(n)/Gn = n1/α`(n)/Gn → ∞, n → ∞, Relations (3) and (20) imply that

F
(xd(n)

W

)

∼
c

n
x−αWα`−α(n)L

(xn1/α`(n)

W

)

, as n → ∞,

uniformly in W ∈ (0, xGn]. Therefore, for all ω ∈ Bn, as n → ∞,

[nt]
∑

j=1

F
( xd(n)

Wj(ω)

)

∼
1

n

[nt]
∑

j=1

cx−αWα
j (ω)`−α(n)L

(xn1/α`(n)

Wj(ω)

)

,(38)
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uniformly in w ∈ Bn. Since P(Bn) → 1, as n → ∞, to prove (34), in view of (38),
it suffices to focus on the right–hand side of (38) in place of the left–hand side of
(34).

In case (a), since 0 ≤ Wj/x ≤ K/x, j ∈ N, Lemma 3 implies that, for all
sufficiently large n,

Dt,n :=

∣

∣

∣

1

n

[nt]
∑

j=1

cx−αWα
j `−α(n)L

(xn1/α`(n)

Wj

)

−
1

n

[nt]
∑

j=1

cx−αWα
j

∣

∣

∣
(39)

≤ hn
[nt]Kα

n
,

where hn → 0, n → ∞ does not depend on t and Wj, j ∈ N. The fact that, the
right–hand side of the last inequality converges to zero, as n → ∞ and the first
convergence in Relation (5) imply that (34) holds with ζ = tξαcx−α.

In case (b), we apply Lemma 3 to the terms in (39), for which Wj/x < K.
Observe that for all ω ∈ Bn, we have Wj(ω)/x ≤ Gn. Therefore, for all ω ∈ Bn,
we apply Lemma 4, to the terms where K ≤ Wj/x, and obtain

Dt,n ≤ hn ×
( [nt]Kα

n
+

1

n

[nt]
∑

j=1

cx−αWα
j 1{K≤Wj/x}

)

,(40)

where hn → 0, n → ∞ does not depend on t and Wj , 1 ≤ j ≤ n.
The convergence in (5) and the fact hn → 0, n → ∞, imply that the right–

hand side of (40) converges to zero in probability. Thus, we can drop the terms
involving slowly varying functions in Relation (38). By using Relation (5) again,
and the fact that P(Bn) → 1, as n → ∞, we obtain (34) where ζ = tξαcx−α.

We have thus completed the proof of the convergence of the marginal distribu-
tions. The convergence of the finite–dimensional distributions can be established
by following the corresponding argument in the proof of Theorem 1. �

Acknowledgments

We thank Professor Elissaveta Pancheva for many helpful remarks and in partic-
ular for for pointing out to us the key result of Theorem 3 in Bingham [1].



Maxima of Heavy–Tailed Terms with Random Dependent Weights 377

REFERE NCES

[1] N.H. Bingham Limit theorems for occupation times of Markov processes.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 (1971), 1–22.

[2] N.H. Bingham, C.M. Goldie, and J.L. Teugels Regular Variation.
Cambridge University Press, 1987.

[3] N. Chuprunov On the convergence in distribution of the maxima of inde-
pendent identically distributed random variables with random coefficients.
Theory of Probability and its Applications, 44(1) (2000), 93–97.

[4] H. Cramér and M.R. Leadbetter Stationary and Related Stochastic
Processes. Wiley, New York, 1967.

[5] R.A. Fisher and L. H.C. Tippett Limiting forms of the frequency dis-
tribution of the largest or smallest member of a sample. Proceedings of the
Cambridge Philosophical Society, 28 (1928), 180.
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