


Pliska Stud. Math. Bulgar. 17 (2005), 155–169
STUDIA MATHEMATICA

BULGARICA

NONPARAMETRIC ESTIMATION IN THE CLASS OF

BISEXUAL BRANCHING PROCESSES WITH

POPULATION-SIZE DEPENDENT MATING

Manuel Molina, Manuel Mota, Alfonso Ramos

In this paper the class of bisexual branching processes with population-size
dependent mating is considered. Nonparametric estimators and confidence
intervals for the main parameters involved in such a class of stochastic models
are provided. For the proposed estimators, the main conditional to non-
extinction and unconditional moments are established and some asymptotic
properties are investigated. As illustration, a simulated example is given.

1. Introduction.

Recently, in order to describe the probabilistic evolution of populations where
females and males coexist and form couples (mating units) which reproduce in-
dependently, some branching models have been investigated. In particular, the
bisexual process with population-size dependent mating, introduced by Molina et
al. (2002), allows that the function governing the mating changes in each gener-
ation depending on the total number of mating units in the previous one. Some
results concerning its extinction probability and limiting behaviour has been de-
veloped in Molina et al. (2002, 2004a, 2004b). This paper aims to continue
this research, studying several inferential questions about it. In Section 2, the
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probability model description and some working assumptions are given. Sections
3 is devoted to determining, from a nonparametric setting, maximum likelihood
estimators for the offspring probability distribution, the offspring mean vector
and covariance matrix, and the growth rate. Their main conditional, assuming
non-extinction, and unconditional moments are established and some asymptotic
properties are investigated. Confidence intervals are also obtained and an illus-
trative simulated example is provided. In order to allow a more comprehensible
reading, the proofs are relegated to Section 4.

2. The Probabilistic Model.

The bisexual process with population-size dependent mating (BPSDM) is a two–
type sequence {(Fn,Mn)}n≥1 defined in the form:

Z0 = N, (Fn+1,Mn+1) =

Zn∑

i=1

(fni,mni), Zn+1 = LZn
(Fn+1,Mn+1), n = 0, 1, . . .

where the empty sum is considered to be (0, 0), N is a positive integer, {(fni,mni),
n = 0, 1, . . . ; i = 1, 2, . . . } is a sequence of independent and identically dis-
tributed, non-negative, integer-valued random variables and {Lk}k≥0, with Lk :
R

+ × R
+ → R

+, is a sequence of mating functions assumed to be monotonic
non-decreasing in each component, integer-valued on the integers, and such that
Lk(f, 0) = Lk(0,m) = 0, k, f,m = 0, 1, . . . Intuitively, (fni,mni) represents the
number of females and males produced by the i-th mating unit in the generation
n, their common probability law is called offspring probability distribution. It fol-
lows that (Fn+1,Mn+1) is the total number of females and males in the (n+1)-th
generation, which form Zn+1 mating units according to the mating function LZn

.
It is easy to prove that {(Fn,Mn)}n≥1 and {Zn}n≥0 are homogeneous Markov
chains. When the mating functions Lk are the same for every k, it is obtained as
particular case the bisexual branching process introduced by Daley (1968).

Remark. In two-sex populations it is reasonable to allow an individual’s
mating behaviour to depend on the population size, e.g. it might seem conceivable
that by environmental or social changes, or by another factors, the same number
of females an males gives rise to different number of mating units in different
generations. In this context, the BPSDM could be an appropriate model to
describe such a behaviour.
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Definition 1. Given a BPSDM we define the mean growth rates per mat-
ing unit as

rk := E[Zn+1Z
−1
n | Zn = k] = k−1E[ Lk(

k∑

i=1

(fni,mni) ) ], k = 1, 2, . . .

Note that rk represents the expected growth rate per mating unit when, in
certain generation, there are k mating units.

In what follows we shall consider a BPSDM verifying the working assump-
tions:

(A1): L : Z
+ × R

+ × R
+ → R

+, defined by L(k, x, y) := Lk(x, y), is a superad-
ditive function, namely for ki ∈ Z

+, xi, yi ∈ R
+, i = 1, 2, it verifies

L(k1 + k2, x1 + x2, y1 + y2) ≥ L(k1, x1, y1) + L(k2, x2, y2).

(A2): r := lim
k→∞

rk > 1, N is such that P (Zn → ∞ | Z0 = N) > 0, and {Zn →

∞} = {W > 0} where W denotes the almost sure limit of {r−nZn}n≥0.

Remark. Assumption A1 extends the classical superadditivity condition
usually imposed to the mating function in the Daley’s bisexual branching process
literature (see for example Hull (1982)) and expresses the intuitive fact that if
the females and males originated by k1 + k2 mating units coexist together then,
the number of matings produced will be greater than that one obtained from
the females and males originated by k1 and by k2 mating units living separately.
Under A1, it was proved in Molina et al. (2002) the existence of the growth rate r.
Assumption A2 is considered in order to investigate asymptotic properties for the
proposed estimators. Under A1 and A2, some necessary and sufficient conditions
which guarantee the almost sure and L1 convergence of {r−nZn}n≥0, {r

−nFn}n≥1

and {r−nMn}n≥1 to non-degenerate random variables have been established in
Molina et al.(2004b).

Given an event A, we shall consider, when necessary, the simplified notation
PA(·) := P (·|A), EA[·] := E[· | A], V arA[·] := V ar[· | A], CovA[·] := Cov[· | A].

3. Maximum likelihood Estimation.

3.1. Estimation of the offspring probability distribution

Let us denote by p := (pk,l, (k, l) ∈ S), S ⊆ Z
+ ×Z

+, the offspring probability
distribution. We will assume the observation of the entire family tree up to the
current n-th generation, namely

{(fij ,mij) , i = 0, . . . , n ; j = 1, . . . , Zi}.
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For (k, l) ∈ S, let Zi;k,l :=
Zi∑

j=1
1{(fij ,mij)=(k,l)} and Yn;k,l :=

n∑
i=0

Zi;k,l. It is clear

that
Zi =

∑

(k,l)∈S

Zi;k,l and (Fi+1,Mi+1) =
∑

(k,l)∈S

(k, l)Zi;k,l

and it is deduced the log-likelihood function

`n(p) =
n∑

i=0

log( Zi! (
∏

(k,l)∈S

Zi;k,l! )−1 ) +
∑

(k,l)∈S

Yn;k,l log(pk,l).

Hence, it is derived the maximum likelihood estimator for p:

p̂n = Y ∗
n
−1Yn where Y ∗

n :=
∑

(k,l)∈S

Yn;k,l =
n∑

i=0
Zi and Yn := (Yn;k,l, (k, l) ∈

S).
Consequently,

(1) p̂n;k,l = Y ∗
n
−1Yn;k,l, (k, l) ∈ S.

Next results provide some moments and asymptotic properties for p̂n.

Theorem 1. Let us denote by Qn := {Zn > 0}, then:

(i) EQn
[ p̂n ] = EQn

[ Y ∗
n
−1Zn ]p + EQn

[ Y ∗
n
−1Yn−1 ],

(ii) CovQn
[ p̂n ] = EQn

[ Y ∗
n
−2Zn ](J − ptp) + CovQn

[ Y ∗
n
−1( Yn−1 + Znp ) ],

(iii) E[ p̂n ] = E[ Y ∗
n
−1Zn ]p + E[ Y ∗

n
−1Yn−1 ],

(iv) Cov[ p̂n ] = E[ Y ∗
n
−2Zn ](J − ptp) + Cov[ Y ∗

n
−1( Yn−1 + Znp ) ],

where J := ( J(k,l),(u,v) )(k,l),(u,v)∈S, J(k,l),(u,v) := pk,lδ(k,l),(u,v), with δa,b being
the kronecker delta, and pt denotes the transpose vector of p.

Theorem 2. Let Q := {Zn → ∞}, then for (k, l) ∈ S:

(i) On Q, p̂n;k,l is a strongly consistent estimator for pk,l.

(ii) If P ∗ is a probability absolutely continuous with respect to PQ (i.e. P ∗ <<
PQ) then, for x ∈ R:

(a) lim
n→∞

P ∗
(

(pk,l(1 − pk,l) )−
1

2 Y ∗
n

1

2 (p̂n;k,l − pk,l) ≤ x
)

=φ(x),

(b) lim
n→∞

P ∗
(
(pk,l(1 − pk,l)(r − 1))−

1

2 (rn+1 − 1)
1

2 (p̂n;k,l − pk,l) ≤ x
)

=φ∗(x),
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where:

φ(x) = (2π)−1/2

x∫

−∞

e−t2/2dt, φ∗(x) =

∞∫

0

φ(xw1/2)dFQ(w), FQ(ω)=PQ(W ≤ ω),

and we recall that W is the almost sure limit of {r−nZn}n≥0.

Notice that, by Lemma 2.3 in Guttorp (1991), we can replace P ∗ by PQn

in Theorem 2 and we deduce that ( p̂n;k,l ± λα( p̂n;k,l(1 − p̂n;k,l )Y ∗
n
−1 )1/2 )

is a (1 − α)-level asymptotic confidence interval for pk,l, where λα is such that
φ(λα) = 1−α/2, α ∈ (0, 1). Its length depends on the order of magnitude of Y ∗

n

(see Molina et al. (2004a) for details about the rate of growth of {Y ∗
n }n≥0).

3.2. Estimation of the offspring mean vector.

We now consider the estimation of µ = (µ1, µ2) := E[(f01,m01)]. Taking into
account (1) and Zehna theorem, it is deduced that the maximum likelihood es-
timator of µ based on the entire family tree up to the current n-th generation
is:

(2) µ̂n = (µ̂n;1, µ̂n;2) :=
∑

(k,l)∈S

(k, l)p̂n;k,l = Y ∗
n
−1

n∑

i=0

(Fi+1,Mi+1).

Remark. It can be proved (see Jagers (1975), p. 24) that (2) is also the
maximum likelihood estimator for µ based on the sample {Z0, (Fk,Mk), k =
1, . . . , n + 1}.

Next result provides some conditional and unconditional moments of µ̂n. Let
us denote by Σ = (σij)i,j=1,2 := Cov[(f01,m01)], i.e. the offspring covariance

matrix, and by simplicity, let Ψn = (Ψn;1,Ψn;2) :=
n∑

i=0
(Fi+1,Mi+1).

Theorem 3. Let Qn := {Zn > 0}, then:

(i) EQn
[ µ̂n ] = EQn

[ Y ∗
n
−1Ψn−1 ] + EQn

[ Y ∗
n
−1Zn ]µ,

(ii) CovQn
[ µ̂n ] = EQn

[ Y ∗
n
−2Zn ]Σ + CovQn

[ Y ∗
n
−1( Ψn−1 + Znµ ) ],

(iii) E[ µ̂n ] = E[ Y ∗
n
−1Ψn−1 ] + E[ Y ∗

n
−1Zn ]µ,

(iv) Cov[ µ̂n ] = E[ Y ∗
n
−2Zn ]Σ + Cov[ Y ∗

n
−1( Ψn−1 + Znµ ) ].
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The next theorem establishes some asymptotic properties.

Theorem 4. Let Q := {Zn → ∞}, then for i = 1, 2, if is verified:

(i) On Q, µ̂n;i is a strongly consistent estimator of µi,

(ii) If P ∗ << PQ then, for x ∈ R:

(a) lim
n→∞

P ∗
(

( σ−1
ii Y ∗

n )1/2(µ̂n;i − µi) ≤ x
)

= φ(x),

(b) lim
n→∞

P ∗
(

( σ−1
ii (rn+1 − 1)(r − 1)−1 )1/2(µ̂n;i − µi) ≤ x

)
= φ∗(x),

where φ and φ∗ are the distribution functions introduced in Theorem 2.

3.3. Estimation of the offspring covariance matrix.

¿From p̂n and µ̂n we derive the maximum likelihood estimator for Σ:

Σ̂n = ∆n − µ̂
t
nµ̂n

where
∆n = (∆n;i,j)i,j=1,2, ∆n;i,j =

∑

(k,l)∈S

aij(k, l)p̂n;k,l,

being a11(k, l) = k2, a22(k, l) = l2, a12(k, l) = a21 = kl.
Thus,

(3) σ̂n;ij =
∑

(k,l)∈S

aij(k, l)p̂n;k,l − µ̂n;iµ̂n;j, i, j = 1, 2.

Note that, from Theorems 1 and 3, it can be derived the corresponding con-
ditional to non-extinction and unconditional moments of σ̂n;ij. On the other
hand, applying a similar reasoning to that one used in Theorems 2 and 4, we can
establish the following asymptotic properties:

Theorem 5. For i, j = 1, 2,

(i) On Q, σ̂n;ij is a strongly consistent estimator for σij,

(ii) If P ∗ << PQ, then for x ∈ R:

(a) lim
n→∞

P ∗

(
τ
− 1

2

ij Y ∗
n

1

2 ( σ̂n;ij − σij ) ≤ x

)
= φ(x),

(b) lim
n→∞

P ∗
(

( τij(r − 1) )−
1

2 ( rn+1 − 1 )
1

2 ( σ̂n;ij − σij ) ≤ x
)

= φ∗(x),
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where τij := E[(ξi
01 − µi)

2(ξj
01 − µj)

2] − σ2
ij, i, j = 1, 2, with ξ

(1)
01 := f01

and ξ
(2)
01 := m01, being φ and φ∗ the functions introduced in Theorem 2.

Using again Lemma 2.3 in Guttorp (1991), P ∗ can be replaced by PQn
in

Theorems 4 and 5, and we deduce the (1−α)-level asymptotic confidence intervals
for µi and σij , respectively:

(
µ̂n,i ± λα( σ̂n;iiY

∗
n
−1 )1/2

)
, i = 1, 2,

(
σ̂n,ij ± λα( τ̂n;ijY

∗
n
−1 )1/2

)
, i, j = 1, 2,

where
τ̂n;ij =

∑

(k,l)∈S

(bi − µ̂n;i)
2(bj − µ̂n;j)

2p̂n;k,l − σ̂2
n;ij,

being b1 = k, b2 = l, and λα such that φ(λα) = 1 − α/2, α ∈ (0, 1), with φ
being the standard Normal distribution function.

3.4. Estimation of the growth rate.

Using the fact that the growth rate r can be obtained as r = ϕ(µ) where
ϕ(x, y) := limk→∞ Lk(kx, ky), (see Molina et al. (2002)), from µ̂n we derive
the following estimator for r based in the observation of the entire family tree up
to the current n-th generation:

(4) r̂n = ϕ(µ̂n).

Taking into account that ϕ is a continue function and considering that, on Q, µ̂n

is a strongly consistent estimator for µ, we can establish the following result:

Theorem 6. On Q, r̂n is a strongly consistent estimator for r.

3.5. Illustrative example.

As illustration, we have considered a bisexual model with population-size depen-
dent mating with the offspring trinomial probability distribution:

P (f01=k,m01=l)=
2

k! l! (2 − k − l)!
0.55k0.20l0.252−k−l, k, l = 0, 1, 2; k + l ≤ 2

and we have assumed that the mating between females and males is governed
through the sequence of mating functions {Lk}k≥0 where
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Lk(x, y) = min{x, b3ky(1 + k)−1c}, k = 0, 1, . . .

with bzc denoting the integer part of z.

Under these conditions, S = { (0, 0), (0, 1), (0, 2), (1, 1), (1, 0), (2, 0) } and
it is matter of some straightforward calculations to obtain that

p0,0 = 0.0625, p0,1 = 0.1, p0,2 = 0.04, p1,0 = 0.275, p1,1 = 0.22, p2,0 = 0.3025,

µ1 = 1.1, µ2 = 0.4, σ11 = 0.495, σ12 = −0.22, σ22 = 0.32, r = 1.1.

Starting with N = 40 mating units we have simulated a total of 100 generations
for such a BPSDM and from (1), (2), (3) and (4), we have calculated the cor-
responding estimates for pk,l, (k, l) ∈ S, µi, σij, i, j = 1, 2 and r, respectively.
The following graphics, where the horizontal line represents the true value of the
parameter, show the evolution of such estimates:
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4. Proofs.

Proof of Theorem 1.

Taking into account that

Yn;k,l = Yn−1;k,l +

Zn∑

j=1

1{(fnj ,mnj)=(k,l)}, (k, l) ∈ S,

we deduce

E[ p̂n | Yn−1, Zn ] = ( Yn−1 + Znp )Y ∗
n
−1 a.s.

and

E[ p̂t
np̂n | Yn−1, Zn ] = ΦnY ∗

n
−2 a.s,

where

Φn := Yt
n−1Yn−1 + Zn(Zn − 1)ptp + Zn( ptYn−1 + Yt

n−1p + J ),

with J := (J(k,l),(u,v))(k,l),(u,v)∈S , J(k,l),(u,v) := pk,lδ(k,l),(u,v).

Hence, (i) and (ii) are obtained.

On the other hand,

E[ p̂n ] = E[ E[ p̂n | Yn−1, Zn ] ] = E[ ( Yn−1 + Znp )Y ∗
n
−1 ],

so (iii) holds. Finally, using the fact that

Cov[ p̂n ] = E[ Cov[ p̂n | Yn−1, Zn ] ] + Cov[ E[ p̂n | Yn−1, Zn ] ]

and taking into account that

Cov[ p̂n | Yn−1, Zn ] = ZnY ∗
n
−2( J− ptp ) a.s,

we get,

Cov[ p̂n ] = E[ ZnY ∗
n
−2 ]( J − ptp ) + Cov[ Y ∗

n
−1( Yn−1 + Znp ) ].

Therefore, (iv) is proved.
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Proof of Theorem 2

(i) It is clear that

p̂n;k,l = Y ∗
n
−1

n∑

i=0

Zi∑

j=1

1{(fij ,mij)=(k,l)}, (k, l) ∈ S.

Now, given ε > 0, applying Chebyshev conditioned inequality we deduce,

P




∣∣∣∣∣∣
Z−1

n

Zn∑

j=1

1{(fnj ,mnj)=(k,l)} − pk,l

∣∣∣∣∣∣
>ε|Fn


≤ε−2pk,l(1 − pk,l)Z

−1
n a.s,

where Fn := σ(Z0, . . . , Zn), n = 0, 1, . . . Thus, on Q = {Zn → ∞}, it is
derived that

P ( lim
n→∞

Z−1
n

Zn∑

j=1

1{(fnj ,mnj)=(k,l)} = pk,l ) = 1.

By Toeplitz’s lemma, the result is obtained.

(ii) Note that, for each (k, l) ∈ S, the variables p̂n;k,l and Y ∗
n
−1

Y ∗

n∑
j=1

1{(fj ,mj)=(k,l)}

have the same probability distribution, where (fj,mj) are independent and
identically distributed random vectors with the same probability distribu-
tion than (f01,m01). Consequently, for x ∈ R,

P ∗
(
( pk,l(1 − pk,l) )−1/2Y ∗

n
1/2( p̂n;k,l − pk,l ) ≤ x

)
=

P ∗(( pk,l(1 − pk,l)Y
∗
n )−1/2

Y ∗

n∑

j=1

(
1{(fj ,mj)=(k,l)} − pk,l

)
≤ x ).

Applying Theorem A.1(i) (see Appendix) with

an = (rn+1 − 1)(r − 1)−1, νn = Y ∗
n , θ = W
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and

X∗
n(t) = ( pk,l(1 − pk,l)Y

∗
n )−1/2

bY ∗

n tc∑

j=1

( 1{(fj ,mj )=(k,l)} − pk,l ),

and taking into account that {Zn → ∞} = {W > 0}, we deduce (ii)(a).

Finally, by Theorem A.1(ii) with

X ′
n(t) = ( Y ∗

n
−1(r − 1)−1(rn+1 − 1) )1/2X∗

n(t)

and using the fact that {(rn+1−1)−1(r−1)Y ∗
n }n≥1 converges almost surely,

as n → ∞ to W (see Molina et al.(2004a)) we obtain (ii)(b).

Proof of Theorem 3. It can be verified that

E[ µ̂n | Y ∗
n−1, Ψn−1, Zn ] = (Y ∗

n−1 + Zn)−1(Ψn−1 + Znµ) a.s.

and
E[ µ̂

t
nµ̂n | Y ∗

n−1, Ψ̂n−1, Zn ] = (Y ∗
n−1 + Zn)−2Ωn a.s.

where Ωn := Ψt
n−1Ψn−1 + Zn(µtΨn−1 + Ψt

n−1µ + Σ + Znµ
t
µ)

and therefore, since Y ∗
n = Y ∗

n−1 + Zn, (i) and (ii) are deduced.
Expressions (iii) and (iv) are derived using the fact that

E[ µ̂n ] = E [ E[ µ̂n | An ] ] = E[ Y ∗
n
−1(Ψn−1 + Znµ) ]

and
E

[
µ̂

t
nµ̂n

]
= E

[
Y ∗

n
−2

Ωn

]
,

where An := σ{Z0, (F1,M1), . . . , (Fn,Mn)}, n = 1, 2, . . .

Proof of Theorem 4.

(i) On Q, it has been proved (see Molina et al.(2004a)), that {r−nY ∗
n }n≥0 and

{r−(n+1)Ψn}n≥1 are almost surely convergent to r(r − 1)−1W and (r −
1)−1Wµ, respectively. Consequently, considering that

µ̂n = r−(n+1)Ψn ( r−nY ∗
n )−1r

we deduce the result.
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(ii) For i = 1, 2 we have

P ∗
(
(σ−1

ii Y ∗
n )1/2(µ̂n;i − µi) ≤ x

)
= P ∗( ( σiiY

∗
n )−1/2

Y ∗

n∑

l=1

(ξi
0l − µi) ≤ x ).

So, by Theorem A.1(i) with an = (rn+1 − 1)(r − 1)−1, νn = Y ∗
n , θ = W and

X∗
n(t) = (σiiY

∗
n )−1/2

bY ∗

n tc∑

l=1

(ξi
0l − µi),

we derive (ii)(a). In a similar way, considering

X ′
n(t) = ( Y ∗

n
−1(r − 1)−1(rn+1 − 1) )1/2X∗

n(t),

by Theorem A1(ii) we deduce (ii)(b).

Appendix.

On the probability space (Ω,F , P ) we consider:

(i) A sequence {ξn}n≥1 of independent and identically distributed random
variables such that E[ξ1] = 0 and σ2 := E[ξ2

1 ] < ∞.

(ii) For t ∈ [0, 1], the random variables

X∗
n(t) := Xνn

(t) if νn > 0 or 0 otherwise,

and

X ′
n(t) := (anν−1

n )1/2X∗
n(t),

where Xn(t) := σ−1n−1/2Sbntc being Sn :=
∑n

i=1 ξi, n = 1, 2, . . . and
{νn}n≥1 are non-negative random variables.

Theorem A.1 If there exists a sequence of constants {an}n≥1 such that

(a) lim
n→∞

an = ∞,
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(b) {νna−1
n }n≥1 converges in probability to a non-negative random variable θ

with P (θ > 0) > 0,

then, for any P ∗ << PD with D := {θ > 0} and t ∈ [0, 1]

(i) lim
n→∞

P ∗(X∗
n(t) ≤ x) = P ∗(W ∗(t) ≤ x), x ∈ R,

(ii) lim
n→∞

P ∗(X ′
n(t) ≤ x) = P ∗(W ∗(t)θ

−1/2
0 ≤ x), x ∈ R,

where W ∗ denotes the Wiener process, θ0 is P ∗-independent of W ∗ and
P ∗(θ0 ≤ x) = P ∗(θ ≤ x), x ∈ R.

For the proof of this theorem, we refer the reader to Dion (1978).
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