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SOME INEQUALITIES OF THE UNIFORM ERGODICITY

AND STRONG STABILITY OF HOMOGENEOUS MARKOV

CHAINS

Zahir Mouhoubi, Djamil Aiissani

In this paper we have established some uniform ergodicity and strong stabil-
ity estimates for homogeneous Markov chains under mixing conditions. As a
general rule, the initial parameters values of the most complex systems has
approximately known (they are defined on basis statistics methods), which
involve errors for the calculus of research characteristics for each studied
system. For this, the stability inequalities obtained in this paper allow us
to use them in order to estimate numerically the error of definition for con-
cerned characteristics, for a small perturbations of system’s parameters. As
an example of application, we are interesting about the well known waiting
process where we consider the perturbation for the characteristics of the
system when we apply a small perturbation for the control sequence.

1. Introduction

In this paper, we have investigated some uniform ergodicity and strong stability
estimate. In moreover of continuity qualitative affirmation, we obtain quantita-
tive uniform ergodicity and strong stability estimates for homogeneous general
Markov chains.

We must be precise that in the difference of the method proposed by Kalash-
nikov in [9] at the chapter 5 and Zolotarev in [14], we suppose that the pertur-
bation of the corresponding transition kernel of the Markov chain is small with
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respect to some operators norm. This condition, more stringent than other usual
conditions, enable us to obtain more better approximation for the perturbed sta-
tionary distributions. Furthermore, the strong stability method give us an exactly
calculus of constants which we allowed us to test the power of the results.

As a general rule, the initial parameters values of systems has approximately
known (they are defined on basis statistics methods), which drives about errors
for the calculus of research characteristics for each studied system. For this, the
uniform ergodicity and stability inequalities obtained in this paper give us the
possibilities to use them in order to estimate numerically the error of definition
for concerned characteristics, for a small perturbations of system’s parameters.
As an example of application we can study the M/G/1 system (see. D. Aı̈ssani
and V.V. Kartashov [2]).

In the second section, we give some definitions and recall some results ob-
tained by Aissani and Kartashov [1]. In the third section, we expose some in-
termediate results. The main results of this paper are exposed in sections 4 and
5.

The last section concerns an application of those results for a Markov chain
X which taking values in R+, generated by the recursive equality Xn+1 = (Xn +
ξn+1)

+, n ≥ 0 where (ξn)n≥0 is a sequence of independent random variables
identically distributed with a common distribution function. This process can be
represent the time waiting G/G/1 queuing model.

2. Preliminaries

Let X = (Xn, n ∈ N) be a homogenous Markov chain taking values in a measur-
able space (E, E) with a countably generated σ-algebra E and having a regular
transition kernel P (x,A), x ∈ E, A ∈ E . The unique invariant probability
measure π of the kernel P is finite, π(E) = 1.

We consider mE (mE+), a space of finite measures on E (nonnegatives) and
J (J+) a space of the measurable bounded functions (nonnegatives). The cor-
responding transition kernel P of the chain X acting on µ ∈ mE and f ∈ J as
follows:

µP (A) =

∫

E

P (x,A)µ(dx)∀A ∈ E and Pf(x) =

∫

E

P (x, dy)f(y)∀x ∈ E

The symbol µf denotes the integral µf =
∫

E

µ(dx)f(x). The product of two
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transition kernels P and Q is the kernel defined by

P.Q(x,A) =

∫

E

P (x, dy)Q(y,A)∀x ∈ E, ∀A ∈ E

We provide the space mE with some norm ‖.‖ = ‖.‖v , defined by

(1) ‖µ‖v =

∫

E

v(x)|µ|(dx)

where |µ| is a variation of the measure µ and v is an arbitrary bounded positive
measurable function v : E −→ R∗

+ which satisfies the following assertions

1) sup[v(x)−1, x ∈ E] = % > 0.

2) v is E-measurable.

The endowed norm on the space J is

‖f‖v = sup

(

|f(x)|

v(x)
, x ∈ E

)

It bring to the fore in class of endomorphism on mE a space B of bounded linear
operators, with norm

‖P‖v = sup







∫

E

v(y)|P (x, dy)|

v(x)
, x ∈ E







It is easy to verify that those endowed norms satisfy the following inequalities
∀µ ∈ mE , ∀ f ∈ J , ∀P ∈ B, we get

a) ‖µP‖v ≤ ‖µ‖v ‖P‖v .

b) |µf | ≤ ‖µ‖v ‖f‖v.

c) ‖f ◦ µ‖v ≤ ‖f‖v ‖µ‖v, where “◦” is the tensoriel product of the measure µ
and a function f .

d) ‖Pf‖v ≤ ‖P‖v ‖f‖v.

e) ‖1‖v = sup[v(x)−1, x ∈ E] = %, where 1 is the function equals to the unit,
1 ∈ J .
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f) ‖PQ‖v ≤ ‖P‖v ‖Q‖v .

g) |µ|(A) ≤ % ‖µ‖v , where A ∈ E .

Remark 1. See for example Kartashov [6] and Revuz [14] for the construc-
tion of the test function for different class of Markov chains.

We denote the stationary projector of the transition kernel P by Π = 1 ◦ π.

Definition 1. The chain X is said to be uniformly ergodic with respect to
the norm ‖.‖ if it has a unique invariant measure π and

lim
t→+∞

‖t−1
t

∑

n=1

P n − Π‖ = 0

Definition 2. The chain X is said to be strongly stable with respect to the
norm ‖.‖ if

1) ‖P‖ <∞

2) Each transition kernel Q in some neighborhood {Q : ‖Q − P‖ < ε}, has a
unique invariant measure ν = ν(Q).

3) There is a constant C = C(P ), such that

‖ν − π‖ ≤ C‖P −Q‖

Definition 3. The Markov chain X strongly stable with respect to the norm
‖.‖v is said strongly v-stable.

The aim of this paper is to obtain the quantitative estimates of the rate of con-
vergence and of the strong v-stability of the Markov chain X. Let us suppose
that X is strongly v-stable. From the theorem of Kartashov [1], this is equivalent
to impose the following conditions for the kernel P :

A) ‖P‖v <∞.

B) P = T + h ◦ α, where T is a nonnegative kernel, h ∈ J +, α ∈ mE+ such
that ‖α‖v <∞ and ‖h‖v <∞.

C) ∃ ρ ∈ ]0, 1], ∃ c > 0 such that ‖T n‖ ≤ cρn for any n ∈ N.

In this paper, we suppose a condition A) holds, implicitly, in ever results which
presented and we omit the index v in the writing of the norm.

Remark 2. For v ≡ 1, the conditons of the mentioned theorem are equivalent
to the Doblin conditions (quasi-compacity of the kernel P (see Neveu [11] at
chapter 5).
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3. Preliminary results

In order to obtain the limit theorems which established for ergodicity and stability
estimates, presented in section 4 and 5, we need some intermediate results.

Lemma 1. The function f =
+∞
∑

i=0
T ih is constant and verifies:

f ≡
1

α1
and αf = 1

P r o o f. The series f =
∞
∑

i=0
T ih converges in norm, therefore the function f is

well defined. But, P1 = 1 which implies

1− T1 = 1 − (P − h ◦ α)1 = α1h.

This implies that f ≡ 1/α1 and αf = 1. The proof is achieved. �

Lemma 2. The measure µ =
+∞
∑

i=0
αT i is constant and verifies

µ =
π

πh

P r o o f. The series
+∞
∑

i=0
αT i converges in norm, therefore the measure is well

defined. But, from the previous lemma 1, we have:

µP =
+∞
∑

i=0

αT i(T + h ◦ α) =
+∞
∑

i=0

αT i+1 + α
+∞
∑

i=0

αT ih = µ.

Moreover,
π − πT = π − π(P − h ◦ α) = πhα

hence the result is established. �

Theorem 1. Setting pn = αT n−1h, n ≥ 1 and we consider the sequence λ(n)
which satisfies the renewal equation below

(2)











λ(n) =
n−1
∑

k=1

λ(k)pn−k if n ≥ 2,

λ(1) = 1, λ(n) = 0 if n ≤ 0

Then, we have
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1) For all n ≥ 1, pn is a probability distribution and |pn| ≤ H . ρn−1, where
H = ‖h‖ . ‖α‖ c.

2) For all n ≥ 1,

P n = T n +
∑

i,j≥0
i+j≤n−1

λn
ijT

ih ◦ αT j

Where λn
ij = λ(n− i− j) and a sequence λ(n) satisfies (2).

P r o o f.

1) Since, T, h and α are positives, consequently

pn = αT n−1h ≥ 0 For all n ≥ 1

From the two lemma 1 and 2, we have,

∑

n≥1

pn =
∑

n≥1

αT n−1h = 1

Moreover, |pn| = |αT n−1h| ≤ ‖α‖ ‖h‖ c ρn−1

2) Noting that (T ih ◦ αT j) (h ◦ α) = pj+1T
ih ◦ α, the result is obvious when

we use the recurrence.

Finally, the proof is achieved. �

Let d = GCD{n ≥ 1, pn > 0} ≥ 1. For d = 1, the behaviour of the sequence
λ(n), when n→ ∞, was studied by Karlin [5] at chapter 3.

Lemma 3. λ(n) = 0, for n � 1[d] and it exist β ∈ [0, 1[,
∧

≥ 0 such that

|λ(kd+ 1) − dλ| ≤
∧

βkd if n ≡ 1[d]

where

lim
k→+∞

λ(kd+ 1) = λ =
1

+∞
∑

n=1
npn

P r o o f. We consider the generating functions:

f(z) =
∑

n≥1

pnz
n and ψ(z) =

∑

n≥1

λ(n)zn



Some Inequalities of the Uniform Ergodicity and . . . 177

From the renewal equation, we get ψ(z) = f(z)ψ(z) + z. Hence,

ψ(z) =
z

1 − f(z)

The condition d ≥ 1 minds that f(z) = f1(z
d) =

∑

s≥1
psdz

sd. The function f1(z1)

is analytic for |z1| < ρ−d, we get

|f1(z1)| < 1, ∀ |z1| < 1

Therefore

ψ1(z1) =
ψ(z)

z
=

1

1 − f1(z1)

is analytic for all |z1| < 1. It admits a simple pole on z1 = 1.

From the definition of d, ψ1(z1) has not other singular points on the circum-
ference S1, |z1| = 1. Since the circle disk is compact, it exists necessary a disk Γ
such that:

|z1| < β−d < ρ−d, β ∈ [0, 1[

where, the function ψ1(z1) have only one singular point z1 = 1. Therefore, from
the residus theorem, we have

Resz1=1[ψ1(z1)] = −d λ

where Res(z) is the real part of the a complex number z. Consequently,

ψ1(z1) =
dλ

1 − z1
+ Φ(z1)

where, Φ(z1) is analytic on Γ. Hence,

ψ(z) =
dλz

1 − zd
+ zΦ(zd)

which achieves the proof. �

4. Estimates of the uniform ergodicity

The results established in this section have the advantage that the constants
appeared in the inequality depend only on the norm of the kernel T , the measure
α and the function h which implicitly known.
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Theorem 2. Let X be a Markov chain satisfies the conditions A), B), C) of
section 1 (i.e X is strongly v-stable). Then,

(3) ‖P nd+s − Πs‖ ≤ κn2βnd

where κ is, independent of n, finite positive constant and can be computed exactly,
and

Πs = dλ
∑

i,j≥0
i+j≡s−1[d]

T ih ◦ αT j

P r o o f. From the lemma (3),

P nd+s = T nd+s +
∑

i,j≥0
i+j≤nd+s−1
i+j≡s−1[d]

λ(nd+ s− i− j)T ih ◦ αT j

and
P nd+s − Πs =

T nd+s +
∑

i,j≥0
i+j≤nd+s−1
i+j≡s−1[d]

(λ(nd+ s− i− j)− dλ)T ih ◦αT j − dλ
∑

i,j≥0
i+j>nd+s−1
i+j≡s−1[d]

T ih ◦αT j

Consequently,

‖P nd+s − Πs‖ << ρnd +

n
∑

k=0

(kd+ s)βd(n−k)ρkd +

+∞
∑

k=n+1

(kd+ s)ρkd

But ρ ≤ β and
n
∑

k=0

(kd+ s)ad(n−k)bkd << n2(max(a, b))nd, for 0 ≤ a ≤ 1, 0 ≤ b ≤

1, the theorem is proved. �

Corollary 1. Under the conditions of the theorem (2), P nd+s −→ Πs when
n −→ +∞ with respect to the endowed norm. s = 1, 2, . . . , d.

Theorem 3. Let X be a Markov chain satisfies the previous conditions A),
B), C) of section 1. Then, this chain is uniformly ergodic with respect to the
endowed norm, and

lim
t→+∞

‖t−1
t

∑

n=1

P n − Π‖ = 0
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where Π = d−1
d
∑

s=1
Πs = λ

∑

i≥0

∑

j≥0
T ih◦αT j = 1◦π, with π is the unique invariant

measure of the kernel P .

P r o o f.

‖
1

t

t
∑

k=1

P k − Π‖ =
1

t
‖

∑

1≤s≤d
1≤k≤t
k≡s[d]

(P k − Πs)‖ +O(
1

t
)

But,

‖
∑

1≤s≤d
1≤k≤t
k≡s[d]

(P k − Πs)‖ �

t
∑

k=1

k2βk <<

∞
∑

k=1

k2βk << 1

Therefore,

‖
1

t

t
∑

k=1

P k − Π‖ <<
1

n

The proof is achieved. �

Theorem 4. Let X be a Markov chain satisfies the previous conditions A),

B) and C) of section 1, and d = 1. Then
∞
∑

n=0
‖P n − Π‖ ≤M , where

M =
c

1 − ρ
+

∧

Hβc

(1 − β)(1 − ρ)2
+
λH(1 + ρ)c

(1 − ρ)3

P r o o f. The proof is established by using the inequalities, ‖T n‖ ≤ cρn and
|λ(n) − λ| ≤

∧

βn ∀n ≥ 0. �

5. Estimates of the strong stability

We consider, in the sequel of this section, an other homogeneous Markov chains
Y = (Yn, n ∈ N) with a transition kernel Q admitting an invariant probability
measure ν. In order to establish the main results in this section we need the
following lemmas.

Lemma 4. Let X be a strongly v-stable Markov chain, which verifies the
conditions d = 1, ‖T‖ = ρ < 1, and let Y be a Markov chain having a transition
kernel Q such that ε = ‖P −Q‖ = ∆ < 1 − ρ, then, we have the inequality

sup
i≥0

‖αQi‖ ≤
‖α‖

1 − ρ− ε
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P r o o f. Let us prove firstly that |αQih| ≤ 1, for all i.
Effectively, αQih is positive, and αQih =

∫

E

∫

E

α(dx)Qi(x, dy)h(y). But,

P (y,A) ≥ h(y)α(A)∀A ∈ E because T ≥ 0. Therefore

P (x,E) = 1 ≥ h(y)α(E)

which implies that h(y) ≤ 1/α(E) and |αQih| ≤ 1 for all i.
Secondly, we remark that αQi = αQi−1(∆ + T ) + (αQi−1h)α for i ≥ 2, then

‖αQi‖ ≤ ‖αQi−1‖ (ε+ ρ) + ‖α‖ i ≥ 2

By the recursive procedure, we obtain,

‖αQi‖ ≤ ‖α‖
(

1 + (ε+ ρ) + . . . + (ε+ ρ)i
)

≤
‖α‖

1 − ρ− ε

The proof is achieved. �

Lemma 5. Under conditions of the lemma (4), we have the inequality

sup
i≥1

‖Qi‖ ≤ 1 +
Υ

(1 − ε− ρ)2

where Υ = ‖α‖ . ‖h‖.

P r o o f. Qi = (∆ + T )Qi−1 + h ◦ αQi−1, i ≥ 2, then

‖Qi‖ ≤ (ρ+ ε)‖Qi−1‖ +
Υ

1 − ρ− ε
for i ≥ 2

By induction, we obtain ‖Q‖ ≤ (ρ+ ε) + Υ and

‖Qi‖ ≤ (ρ+ ε)i +
Υ

(1 − ρ− ε)2
for i ≥ 2

The result is established. �

Theorem 5. Let X be a strongly v-stable Markov chain, which verifies the
conditions d = 1, ‖T‖ = ρ < 1, and let Y be a Markov chain having a transition
kernel Q such that ε = ‖P −Q‖ = ∆ < 1 − ρ, then

(4) sup
t≥0

‖Qt − P t‖ ≤M

(

1 +
Υ

(1 − ρ− ε)2

)

‖Q− P‖

where M is a constant introduced in theorem (4).
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P r o o f. We set ∆t = Qt − P t, t ≥ 0. We have

∆t = Q(Qt−1 − P t−1) + (Q− P )P t−1 = Q∆t−1 + ∆1P
t−1.

But,
∆Π = (Q− P )Π = (Q− P )(1 ◦ π) = ((Q− P )1) π = 0

because Q(x,E) − P (x,E) = 0. Therefore,

∆t = Q∆t−1 + ∆(P t−1 − Π)

= ∆(P t−1 − Π) +Q
(

Q(Qt−2 − P t−2) + (Q− P )P t−2
)

= ∆(P t−1 − Π) +Q∆(P t−2 − Π) +Q2∆t−2

By induction, we obtain,

∆t = ∆(P t−1 − Π) + . . .+Qt−2∆(P −Q) +Qt−1∆

This implies that

‖∆t‖ ≤ ‖∆‖ sup
i≥1

‖Qi‖

∞
∑

i=0

‖P i − Π‖

From the lemma (5) and the theorem (4), the theorem is proved. �

6. Application for the waiting process

Those results are applied for a random walk process described by a chain (Xn)n≥0

defined by Xn+1 = (Xn + ξn+1)
+, n ≥ 0 which taking values in R+. where

(ξn)n≥0 is a sequence of independent random variables identically distributed
with a common distribution function F . This exemple was studied by N.V.
Kartashov in [6].

We set h(x) = P (ξ1 + x ≤ 0) and α(dy) = δ0(dy), where δ0 is Dirac distribu-
tion concentred on origine. We consider the distribution

P (x,A) = P
(

(x+ ξ1)
+ ∈ A

)

= P (X1 ∈ A/X0 = x)

It is easy to observe that

(5) P (x,A) = P (0 < x+ ξ1 ∈ A) + h(x).α(A)

Let us put T (x,A) = P (0 < x+ ξ1 ∈ A) and Choose a test function v defined as
below

(6) v = exp(γx), x ∈ R+

Know we consider a distribution pn = αT n−1h, n ≥ 1.
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Lemma 6. Let τ = inf(n : ξ1 + . . .+ ξn ≤ 0), then P (τ = n) = pn.

P r o o f. We have

pn = αT n−1h =

∫

T n−1(0, dy).h(y)

= P (0 < ξ1, . . . , 0 < ξ1 + . . .+ ξn−1, ξ1 + . . . + ξn ≤ 0)

which achieves a proof. �

The class of norms defined on mE by the relation (1), for the particular
choosing of v, have the following form

‖µ‖γ = ‖µ‖v =

+∞
∫

0

exp(γx)|µ|(dx)

The correspondant norms in the spaces J and B have the forme

‖f‖γ = sup
x≥0

exp(−γx)|f(x)|

and

‖Q‖γ = sup
x≥0

exp(−γx)

+∞
∫

0

|Q|(x, dy) exp(γy)

From this, we deduce that

‖P t − Π‖γ = sup
x≥0

exp(−γx)

+∞
∫

0

|P t(x, dy) − π(dy)| exp(γy)

with P t(x, dy) = P (Xt ∈ dy|X0 = x), for all (x, dy) ∈ E × E .

Theorem 6 (Kartashov [6) ]Let Eξ1 < 0 and ∀ δ ≥ 0, E[exp(δξ1)] < ∞.
Then, for all γ such that ρ(γ) = E[exp(γξ1)] < 1, the Markov chain X is aperiodic
and strongly v-stable, where v was defined in (6).

Under conditions of the previous theorem, we have the following result.

Theorem 7. Under conditions of theorem (6) and d = 1. Then, we have

(7)
∞
∑

n=0

‖P n − Π‖ ≤
1

1 − ρ
+

∧

β

(1 − β)(1 − ρ)2
+

(1 + ρ)π({0})

(1 − ρ)3
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P r o o f.

We have to compute λ. Effectively, we have

λ = (πh)(α1) = 1.

∫

E

π(dx).P (x + ξ1 ≤ 0) = π({0})

The proof follows directly from theorem (4), the values of λ, ‖α‖ and an
estimation of ‖h‖. �

Remark 3. The condition P (ξ1 ≤ 0) > 0 is sufficient in order to have d = 1.

Let us consider, the chain Y with transition kernel Q, then we remark that

(8) ε = ‖Q− P‖γ = sup
x≥0

exp(−γx)

+∞
∫

0

|Q(x, dy) − P (x, dy)| exp(γy)

In the same way, we have

(9) sup
t≥0

‖Qt − P t‖γ = sup
t≥0

sup
x≥0

exp(−γx)

+∞
∫

0

|Qt(x, dy) − P t(x, dy)| exp(γy)

Consequently, we have the following theorem.

Theorem 8. Under the same conditions of theorem (6) and for all Υ < 1
such that ρΥ < 1, we have

sup
t≥0

‖Qt − P t‖γ ≤ ~ ‖Q− P‖γ

where,

~ =

(

1 +
Υ

(1 − ρ− ε)2

)(

1

1 − ρ
+

∧

β

(1 − β)(1 − ρ)2
+

(1 + ρ)π({0})

(1 − ρ)3

)

P r o o f.

The proof follows directly from the inequality (4) of theorem (5), the values of
λ, ‖α‖, an estimation of ‖h‖. Consequently, the result is immediately obtained.
�
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Conclusion

Contrary to others methods, the estimates obtained by strong stability method,
depends only in some constants directly closed for models parameters and with
the possibility of an exact computation of them. As a general rule, the initial
parameters values of systems has approximately known (they are defined on ba-
sis statistics methods), which drives about errors for the calculus of research
characteristics for each studied system. Hence a possibilities to use inequalities
of stability which obtained in this paper to estimate numerically the error of
définition for concerned characteristics, for a small perturbations of system’s pa-
rameters. Some other estimates are obtained and that will a subject for an other
next paper.
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