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SPLIT-ARCH

Biljana Č. Popović, Vladica S. Stojanović 1

We supplied the GARCH Zoo with the new model and introduce it in this
paper. We named it Split–ARCH. It was empirically motivated by means
of the real data set on soybean meal price on the Product exchange. Split–
ARCH is the superstructure of the previously known models of GARCH
type. We defined volatility exchange to follow sudden and great changes
of the price, and volatility also. As far as the log returns of the price are
defined as Xn = σnεn, we set the volatility to be

σ2

n = α0 +

p∑

j=1

αjX
2

n−j +

q∑

k=1

fk(σ2

n−k)I
(
ε2n−k > c

)
, n ≥ 0

with the threshold c > 0. Under the stationarity conditions and specified f ,
we discus the possibilities of estimating parameters in this paper also.

1. Introduction. Conditional Heteroscedasticity

The stochastic analysis of financial sequences is commonly based on the time
series modelling of data set which will be able to describe the distribution or
behavior of a real data. It has been shown empirically that the most of finan-
cial series exhibit nonlinear changes in the dynamics which obviously will imply
nonlinearity of the corresponding stochastic models.
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Further on, we shall suppose that there exists the probability space (Ω,F , P )
and a filter of nondecreasing σ-algebras F = (Fn),

Fn ⊆ Fm ⊆ F , ∀n ≤ m

which consists of all the information available to any trader on the market in a
certain moment of time.

Further on we shall use the well known representation of the financial series
(Xn) described by the quasi–Gaussian distribution:

(1) Xn = σnεn, n ∈ D

where (σn) is a sequence of Fn−1 – measurable random variables (the volatility
sequence), and (εn) is the sequence of independent Fn – measurable random
variables with N (0, 1) distribution (so called ’white noise’). If the filter (Fn) is
generated by ε1, . . . , εn, then according to (1), the sequence (Xn) is the sequence
of uncorrelated random variables with the unconditional mean and variance

E (Xn) = E [E(Xn|Fn−1)] = 0,

V ar(Xn) = E
(
X2

n

)
= E

[
E(X2

n|Fn−1)
]

= E
(
σ2

n

)

respectively.
Robert Engle [5] introduced the recursive representation of the volatility in

1982. He named it autoregressive conditional heteroscedastic (ARCH) model. Tim
Bolerslev [1] spread this idea in 1986. He introduced generalized autoregressive
conditional heteroscedastic (GARCH) model where the volatility sequence was
described by

(2) σ2
n = α0 +

p∑

i=1

αiX
2
n−i +

q∑

j=1

βjσ
2
n−j.

These two models were able to explain a number of the properties of financial
indexes (first of all heavy tails and clustering). Meanwhile, the lack of information
about the increasing or decreasing direction of changes in the volatility sequence
(σn) in both of these two models is evident. Many of the empirical data sets
indicate outstanding nonlinearity of the empirical volatility:

(3) σ̂n =

√√√√ 1

n− 1

n∑

k=0

(
Xk −Xk

)2
,
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which can be manifested in the various manners. (We illustrate one of such
situations in Fig.1, where the sharp growth of the price occurs in a relatively
short time interval, and, consequently, empirical volatility growths extremely
sharp.)

Figure 1: Empirical volatility of oil price. (Sorce: WTI Posted, Wall Street
Journal )

In order to solve these problems, many generalizations of standard ARCH
and GARCH models were done. So, Zakoian [9], following some linear models,
defined some threshold (TGARCH) models. From the other side, Fornari and
Mele [6] introduced so called switching ARCH-model following the increasing or
decreasing volatility value by the sign of the elements of the sequence (Xn), or
the same, the elements of the sequence (εn).

These models describe the asymmetric reaction of the conditional variance
caused by sudden changes of price. But, they can not determine the values which
will properly correspond to the changes of values of (Xn) and, also, the volatility
sequence (σ2

n). That’s why the application to the real data set can cause the
significant distinction between the empirical and the modelled values.

In this paper, we followed the idea of designing the new model of the con-
ditional heteroscedasticity. The volatility sequence of this model will follow the
magnitude of changes in (Xn). Our model will follow ARCH regime for the
’small’ absolute values of white noise and GARCH regime for the others. The
precise definition will be given in the next section. We will show that our model
will response better to the sudden and unexpected ’jumps’ in volatility sequence
than ARCH, for instance. Because of its splitting reaction, we named the model
Split–ARCH.
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2. Definition and Main Properties

We introduce Split–ARCH subject to the experimental investigation some of
which we shall display below. We shall specially point out one ’small sample’
experiment – soybean meal price data from Product Exchange Novi Sad and a
’large sample’ one – oil price data according to the Wall Street Journal source.
Our model describes nonlinear behavior of volatility caused by the great fluctua-
tion of price. The fluctuation of price implies market reaction that produces great
oscillation in the volatility sequence. Split–ARCH will follow such oscillation.

The general definition of Split–ARCH will follow equation (1) and the follow-
ing one:

(4) σ2
n = α0 +

p∑

i=1

αiX
2
n−i +

q∑

j=1

fj(σ
2
n−j)I

(
ε2n−j > c

)
, n ∈ D .

The order (p, q) of this model is analogues to the standard GARCH model.

The coefficients of the model satisfy the conditions α0 > 0 and αi ≥ 0, while
fj = fj(u), u ≥ 0 is a nonnegative Fn−j– measurable function of the volatility
sequence which will specify the reaction on the extremely large values in (εn).
Obviously, it will be difficult to discuss the model and its properties, specially its
application in the general case of fj. So, further on, we shall investigate just the
class of linear functions:

(5) fj(u) = β
(j)
0 + β

(j)
1 u, j = 1, ..., q ,

where β
(j)
0 , β

(j)
1 ≥ 0.

The constant c > 0 will be chosen as a proper critical value for the reaction,
i.e. it will be the level which will determine which value of the noise will be
statistically significant to let the inclusion of the previous value of the volatility
in the autoregression sum of (4).

As it is well known, according to the χ2
1 distribution for the elements of (ε2

n), it
will be easily verified that the level c and the significant level mc will be connected
in the following way

(6) mc = P (ε2n > c) =
1√
2π

∫
∞

c
x−1/2e−x/2dx .

So, if we set the significant level α : 0 < α < 1, the level for the reaction will
be determined as

mc = α
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and vice versa.
We shall set now some properties which will be used in estimating parameters

of Split–ARCH. In order to prove the stationarity of the model, we shall follow
the methodology used for standard GARCH model (see, for instance, [8]). The
stochastic difference equation of order one:

(7) Yn+1 = AnYn +Bn

will represent Split–ARCH iff

Yn =
(
σ2

n, . . . , σ
2
n−q+1, X

2
n−1, . . . , X

2
n−p+1

)′
,

An =




α1 ε
2
n + β

(1)
1 ψn(c) β

(2)
1 ψn−1(c) . . . β

(q)
1 ψn−q+1(c) α2 . . . αp−1 αp

1 0 . . . 0 0 . . . 0 0

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 0

ε2n 0 . . . 0 0 . . . 0 0

0 0 . . . 0 1 . . . 0 0

...
...

...
...

...
...

0 0 . . . 0 0 . . . 1 0




,

Bn =


α0 +

q∑

j=1

β
(j)
0 ψn−k+1(c), 0, . . . , 0




′

, ψn(c) = I
(
ε2n > c

)
,

where n ≥ max{p, q}.
Next, we shall set the conditions for the wide sense stationarity of the model.

Theorem 2.1. Let the model, Split–ARCH, be defined by the equations (1),
(4) and (5). Then, the following conditions are equivalent:
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• (i) The polynomial

P (λ) = λM −
M∑

j=1

γj λ
M−j,

where

M = max{p, q}, γj =





αj +mcβ
(j)
1 , 1 ≤ j ≤ min{p, q}

αj, q < p ∧ q < j ≤ p

mcβ
(j)
1 , p < q ∧ p < j ≤ q

,

has the roots λ1, ..., λM which satisfy the condition

(8) |λj | < 1, ∀j = 1, ...,M.

• (ii) The time series (X2
n) is wide sense stationary with mean value:

(9) E
(
X2

n

)
=


α0 +mc

q∑

j=1

β
(j)
0





1 −

p∑

i=1

αi −mc

q∑

j=1

β
(j)
1




−1

and correlation function ρ(h) = Corr
(
X2

n, X
2
n+h

)
, h ≥ 0 which satisfies

the equation:

(10) ρ(h) =

M∑

j=1

γj ρ(h− j), h ≥M

with the initial conditions:

ρ(0) = 1, ρ(h) −
M∑

j=1

γj ρ(h− j) = 0, 0 < h < M.

• (iii)
M∑

j=1
γj =

p∑
i=1

αi +mc

q∑
j=1

β
(j)
1 < 1.

Proof. See the Appendix.�
Further investigation and the application will concern only the simplest case,

p = q = 1. The best explanation for this choice is the goodness of fit of the model
to the real data.
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Let f1(u) = β0 +β1u, i.e. let f1(σ
2
n) be the linear function of volatility, which

will define the volatility sequence as the following threshold model

(11) σ2
n = α0 + α1X

2
n−1 +

(
β0 + β1σ

2
n−1

)
ψn−1(c),

where ψn−1(c) is the threshold function:

ψn−1(c) =

{
0 , ε2n−1 ≤ c ,
1 , ε2n−1 > c .

It means that

(12) σ2
n =





α0 + α1X
2
n−1, ε2n−1 ≤ c ,

α0 + β0 + α1X
2
n−1 + β1σ

2
n−1, ε2n−1 > c .

Let us remark that the equation (12) enables us to apply the standard ARCH
or GARCH procedure to solve the volatility sequence subject to the value of the
noise (ε2n). This fact will make us easier the investigation of main stochastic
properties of the sequence (X2

n). According to the Theorem 2.1, the sequence
(X2

n) is stationary iff α1 +mcβ1 < 1, and

(13) E(X2
n) =

α0 + β0mc

1 − α1 − β1mc
.

Also, using the fact that

E(X4
n) = 3E(σ4

n) =
3
(
α2

0 + β2
0m

2
c

)
(1 + α1 + β1mc)

(1 − α1 − β1mc)
(
1 − 3α2

1 − β2
1m

2
c − 2α1β1mc

) ,

we can compute the stationarity value of Kurtosis:

K =
E(X4

n)

(E(X2
n))2

=
3
(
1 − (α1 + β1mc)

2
)

1 − 3α2
1 − β2

1m
2
c − 2α1β1mc

≥ 3

which indicates peaky density functions for the elements of the sequence (Xn).
This is the same with ARCH. Also, K = 3 iff α1 = 0 and that is just the case
when the Split–ARCH reduces to the white noise.

The correlation function ρ(h) can be determined almost in the same way as
it was done with ARCH/GARCH models. It is easy to verify that

(14)





ρ(1) = α1

(
1 − α1β1mc − β2

1m
2
c

) (
1 − 2α1β1mc − β2

1m
2
c

)
−1

ρ(h) = (α1 + β1mc)
h−1 ρ(1), h > 1
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and it is obvious that the correlation function decreases with geometric rate to
0, like it was with ARCH/GARCH type models.

Finally, we shall set the theorem which is the implication of some well known
results (see, for instance, [8]) concerning necessary and sufficient conditions for
strong stationarity of the GARCH type models. In the case of Split–ARCH(1, 1)
the following proposition is valid:

Theorem 2.2. Let the model Split–ARCH be defined by the equations (1)
and (11). The stochastic difference equation (7) has unique, strong stationary
and ergodic solution of the form

(15) Yn = Bn +

∞∑

k=1

An−1 . . . An−kBn−k−1, n ∈ D

iff E
(
ln(α1ε

2
n + β1ψn(c))

)
< 0.

Proof. See the Appendix.�

3. Estimation of Parameters. Application of the Model

We shall generate now Split–ARCH(1, 1) subject to the data set.
The sequence (Xn) may represents the log–returns of any financial index

(price) (Pn) and is defined as

Xn = ln

(
Pn

Pn−1

)
, n > 0 .

According to the previous results, we can use the part of only one realization of
the log–return process:

(16) Xt = xt , t = 1, . . . , N (x0 = 0) .

Suppose also that the unknown parameter θ = (α0, α1, β0, β1)
′ ∈ R

4 belongs to
the set

Θ = {θ |α1 + β1mc < 1}
which is the available set of parameters subject to the stationarity condition
(Theorem2.1) of Split–ARCH.

As the estimation procedure, we shall use the conditional least squares method
and minimize the sum

(17) SN =

N∑

t=1

[
X2

t −E
(
X2

t |Ft−1

)]2
.
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First of all, we shall stratify the sample (16) according to the fact that our
model performs in two regimes:

AN, c =
{
Xt | ε2t−1 ≤ c

}
, BN, c =

{
Xt | ε2t−1 > c

}
.

Further on, we shall use the notation

(18) a = (α0, α1)
′, Θ1 = {a |0 < α1 < 1}

(19) b = (α0 + β0, α1 + β1)
′, Θ2 = {b |0 < α1 + β1 < 1} .

If we proceed now the above mentioned method of conditional least squares re-
gressing the elements of the sequence (X2

t ) on the volatility values σ2
t = E

(
X2

t |Ft−1

)
,

the result will be as follows.
Split–ARCH will obey the ARCH structure on the data set AN,c. So,

σ2
t = α0 + α1X

2
t−1

and the sum of squares (17) will become

(20) S′

N (α0, α1) =
∑

Xt∈AN,C

(
X2

t − α0 − α1X
2
t−1

)2
.

From here we have the estimates of parameters

(21) âN =




α̂0

α̂1


 =




N1
∑
X2

t−1

∑
X2

t−1

∑
X4

t−1




−1

·




∑
X2

t

∑
X2

t X
2
t−1




and N1 = |AN,c| =
N∑

t=1
I(ε2t−1 ≤ c), where all the summations are subject on t

such that Xt ∈ AN,c.
From the other side, the elements of set BN,c satisfy the relation

σ2
n = α0 + β0 + α1X

2
n−1 + β1σ

2
n−1

meaning that the model is of GARCH type. So, a common way of estimating
parameters is some iterative method, like Newton–Raphson’s procedure, for in-
stance. Meanwhile, instead of that, we can use the maximum likelihood estimator
for the elements of the volatility sequence:

σ̂2
t = X2

t , 1 ≤ t ≤ N
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and, after that, determine the regression coefficients b applying the least squares
optimization procedure on the specified sum

(22) S′′

N (α0 + β0, α1 + β1) =
∑

Xt∈BN,C

[
X2

t − (α0 + β0) − (α1 + β1)X
2
t−1

]2
.

This implies

(23) b̂N =




N2
∑
X2

t−1

∑
X2

t−1

∑
X4

t−1




−1

·




∑
X2

t

∑
X2

t X
2
t−1




and N2 = |BN,c| = N − N1, where the summations are subject on t such that
Xt ∈ BN,c. Finally, (21) and (23) imply




β̂0

β̂1


 = b̂N − âN .

This two–step procedure asserts the asymptotic properties of the estimates
which can be formulated as the following proposition.

Theorem 3.1. Let for some N0 > 0 and all N ≥ N0 the following conditions
be satisfied

âN ∈ Θ1, b̂N ∈ Θ2, θ̂N =
(
âN , b̂N − âN

)
′

∈ Θ .

Then, âN and b̂N are strong consistent and asymptotically normal estimates of
the parameters a and b respectively.

Proof. See the Appendix.�
This estimating procedure can be easily applied to the real data set of some

financial time series. One estimating result of this estimating procedure is given
in the following table:

Model ARCH
Split–ARCH (stratums)

I II

Sample (N) 2500 1853 647

Parameters
0.000548 0.000619 0.000843

0.306 0.0108 0.319

Correlation 98.48% 98.81%
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The sample size is 2 500 elements of the one realization of log–returns of the
market price of oil according to WTI Posted, data base Scotia Group and Wall
Street Journal.

In order to compare the results, first of all, we set the estimating procedure
for the standard ARCH model on the set of data. The result was as follow:





Xn = σnεn,

σ2
n = 5.482 · 10−4 + 0.306 ·X2

n−1 .

The registered correlation between the empirical data series and the one generated
by the model was 98.48%. After that, the real data set was processed in two–step
Split–ARCH modelling scheme. The stratification was done using the estimates

ε̂n = Xn/σ̂n, n = 1, . . . , N ,

where σ̂n was the empirical standard deviation of the sample. The illustration is
given in Figure 2 (up and left). As a critical value for the reaction, we used the
mean value of the χ2

1 distribution and

c = E(ε2n) = 1 .

That was the starting point for the Split–ARCH estimation (and prediction) of
the real data set:




Xn = σnεn,

σ2
n = 6.187 · 10−4 + 0.0108 ·X2

n−1 +
(
2.243 · 10−4 + 0.3082 · σ2

n−1

)
ψn−1(1) .

The correlation coefficient to the real data is somewhat greater (98.81%) for the
last model than the ARCH one. Also, one can see in Figure 2 that the fluctuation
of Split–ARCH values is more likely the real data values than when comparing
ARCH approximation to the same data set.

We got the similar results for the soybean meal real data set of sample size
190.

The empirical variance for this data set is illustrated in Figure 3 and the
estimated ARCH and Split–ARCH models as well as the log–return volatility of
the real data, in Figure 4. The ARCH approximation was





Xn = σnεn,

σ2
n = 1.2835 · 10−3 + 0.6278 ·X2

n−1
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Figure 2: Comparative illustrations for the original oil data series, ARCH and
Split-ARCH model.

Figure 3: Empirical volatility of soybean meal price. (Source: Product Exchange
Novi Sad)
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Figure 4: Comparative illustrations for the original soybean meal data series,
ARCH and Split-ARCH model.

and the Split–ARCH one was




Xn = σnεn,

σ2
n = 7.453 · 10−4 + 0.4572 ·X2

n−1 +
(
6.1687 · 10−3 + 0.1215 · σ2

n−1

)
ψn−1(1) .

4. Concluding Remarks

The popularity of nonlinear quasi–Gaussian models can be explained, as we em-
phasized before, mostly by the fact that they gave the explanation to many
different features of financial indexes (as, for instance, clustering and peaky be-
havior of the empirical density function). Meanwhile, there are many phenomena
which can not be explained in this way.

Many of the contemporary researchers criticize Gaussianity assumption for
the data set. So, the practitioners often use models with some non–Gaussian
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distribution (Student distribution, for instance) which they find more convenient
in displaying fluctuation in the data set.

Such type of generalization is also convenient for the Split–ARCH model.
Even more than that, the Gaussianity assumption has been made here just to
simplify the estimating procedure of the residuals (ε̂n), preciously, to determine
the threshold constant c for the purpose of stratifying the realization of the pro-
cess. The provident investigation should include testing concerning white noise
distribution. But, the constructing procedure described in this paper will stay
the same even in the case of non–Gaussianity assumption.

5. Appendix

Proof of Theorem 2.1.

• (i) ⇒ (ii): According to (7), it is valid for any n, k > 0:

(24) E(Yn+k) = (I +A+A+ · · · +Ak−1)B +Ak E(Yn)

where

A = E(An) =




α1 + β
(1)
1 mc β

(2)
1 mc . . . β

(q)
1 mc α2 . . . αp−1 αp

1 0 . . . 0 0 . . . 0 0

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 0

1 0 . . . 0 0 . . . 0 0

0 0 . . . 0 1 . . . 0 0

...
...

...
...

...
...

0 0 . . . 0 0 . . . 1 0




B = E(Bn) =


α0 +mc

q∑

j=1

β
(j)
0 , 0, . . . , 0




′

.
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After some computation it will be seen that

det (A− λI) = (−1)p+q−1


λp+q−1 −

p∑

i=1

αiλ
p+q−i−1 −

q∑

j=1

β
(j)
1 mcλ

p+q−j−1


 ,

and
det (A− λI) = (−1)p+q−1λmP (λ),

where m = min{p−1, q−1}. It means that the matrix A has m trivial eigenvalues

(λ
(t)
1 = · · · = λ

(t)
m = 0), while the rest of them, (λ1, . . . , λM ), are the roots of the

characteristics polynomial P (λ). The convergence then follows according to the
assumption (8):

k−1∑

j=0

Aj → (I −A)−1 , Ak → O , k → ∞ .

The equality (24) then becomes:

E(Yn)=(I −A)−1B=


α0 +mc

q∑

j=1

β
(j)
0





1 −

p∑

i=1

αi −mc

q∑

j=1

β
(j)
1




−1



1
...
1




i.e. (9) is valid.
The relation (10) can be proved in the similar way. The correlation function

ρ(h) will be calculated from the relation

ρ(h) =
R(h) −E(X2

n)2

R(0) −E(X2
n)2

, h ≥ 0 ,

where

R(h) = E(X2
nX

2
n+h) = E(X2

n) +

M∑

j=1

γj R(h− j), R(0) = E(X4
n).

• (ii) ⇒ (iii): As α0 > 0 and β
(j)
0 ≥ 0 , j = 1, . . . , q, according to

E
(
X2

n

)
=


α0 +mc

q∑

j=1

β
(j)
0





1 −

p∑

i=1

αi −mc

q∑

j=1

β
(j)
1




−1

> 0 ,
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it will be

1 −
p∑

i=1

αi −mc

q∑

j=1

β
(j)
1 > 0

and that is obviously (iii).

• (iii) ⇒ (i): Let

Sr(A) = max
j

{λj} ,

the spectral radius of matrix A defined in (i). Then

Sr(A) ≤ ||A||

where we may set

||A|| = max





M∑

j=1

γj , 1



 = 1.

If we suppose that Sr(A) = 1, then for some ϕ ∈ [0, 2π) there exists an
eigenvalue λ′ = eiϕ which satisfies

P (λ′) = eiMϕ −
M∑

j=1

γj e
i(M−j)ϕ = 0 .

After that, according to

∣∣ eiMϕ
∣∣ ≤

M∑

j=1

γj

∣∣∣ ei(M−j)ϕ
∣∣∣ ,

it will be
M∑

j=1
γj ≥ 1, which contradicts (iii). So,

Sr(A) < 1

and according to the above, it is equivalent to (i).�

Proof of Theorem 2.2 As An = α1ε
2
n + β1ψn(c), Bn = α0ε

2
n + β0ψn(c) and

Yn = σ2
n, the proposition follows directly from the theorem 2.4 in [2] and theorem

1 in [7].�
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Proof of Theorem 3.1 If we introduce the sequence

υt = X2
t − σ2

t , t = 1, . . . N

we shall have

E (υt | Ft−1) = E
(
X2

t | Ft−1

)
− σ2

t = 0

i.e. (υt) , as a martingale difference, is the sequence of uncorrelated random
variables. Then

X2
t = σ2

t + υt = α0 + β0ψt−1(c) + (α1 + β1ψt−1(c))X
2
t−1 + υt − β1ψt−1(c)υt−1

is the ARMA linear sequence with random coefficients and non–Gaussian ”noise”
(υt). This representation might be used for computing the spectral density of the
X2

t :

f(ω) =
V ar(υt)

2π
· 1 − 2β1mc cosω + β2

1m
2
c

1 − 2(α1 + β1mc) cosω + (α1 + β1mc)2
,

from here, we have:

f(0) =
V ar(υt)

2π

(
1 − β1mc

1 − α1 − β1mc

)2

.

Because of α1 + β1mc < 1 for all θ ∈ Θ, the function f(ω) is continuous in
ω = 0. Then the sequences (X2

t ) and (υt) are ergodic and stationary .

From the other side, using the representation (21) we have

âN −a =




1 1
N1

∑
X2

t−1

1
N1

∑
X2

t−1
1

N1

∑
X4

t−1




−1

·




1
N1

∑
υt

1
N1

∑
υtX

2
t−1


 , Xt ∈ AN, c.

As

N1
a.s.→ ∞, when N → ∞ ,

we may apply the ergodic theorem on the random sums of sequences (υt) and
(X2

t ) (see, for instance [4]). Then, we shall have, when N → ∞,




1
N1

∑
υt

1
N1

∑
υtX

2
t−1




a.s.→ 0, and




1 1
N1

∑
X2

t−1

1
N1

∑
X2

t−1
1

N1

∑
X4

t−1




−1

a.s.→ Γ−1
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where the random sums include only Xt ∈ AN, c and the second–moment matrix:

Γ = E
(
XtX

′

t

)
, Xt =

(
1, X2

t−1

)′

does not depend on t, for all a from the set of stationarity Θ1.
These two convergences yield

âN − a
a.s.→ 0, N → ∞

i.e. the estimator (âN ) is strictly consistent.
Now, we shell show the asymptotic normality of the sequence (âN ). We can

write: √
N1 (âN − a) = U

−1
N1

VN1

where:

UN1
=

1

N1
·




N1
∑
X2

t−1

∑
X2

t−1

∑
X4

t−1


 , VN1

=
1√
N1

·




∑
υt

∑
υtX

2
t−1


 .

For each v = (v0, v1)
′ ∈ R

2, the random sequence:

√
Nv′

VN =

N∑

t=1

υt(v0 + v1X
2
t−1)

is the martingale and, according to the Billingsley’s central limit theorem for
martingales, we have:

v′
VN

d→ N (0,v′Λv)

where
Λ = E(YtY

′

t
), Yt = υt

(
1, X2

t−1

)′

and Λ does not depend on t. From this, using the Cramer–Wold device, we have:

VN
d→ N (0,Λ).

On the other hand, we have,

N1

N
=

1

N

N∑

t=1

I
(
ε2t−1 ≤ c

) a.s.→ F (c), N → ∞
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where F (c) = P
(
ε2t ≤ c

)
<∞. Now, we can apply the central limit theorem for

random sums. We have

VN1

d→ N (0,Λ)

and, finally, because of A−1
N1

a.s.→ Γ−1, we get,

√
N1 (âN − a)

d→ N (0,Γ−1Λ Γ−1).

In a similar way, it can be proved the strong consistency and asymptotic
normality of the sequence b̂N . �
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Biljana Č. Popović
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