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A DECOMPOSITION OF INTEGER VECTORS. II

S. CHALADUS, A. SCHINZEL

In this paper we shall consider integer vectors n =  [/z,, n2, . . . ,  nk] and 

write for such vectors: h (n )=m ax | /z,1, L{n)=^n\-\-n\-\- • • • + « * .  One of us 
has recently proved [3] that for every non-zero vector n f Z *  (£ > 1 )  there is 
a decomposition: ∏ =  Hp +  t'q, u ,v iZ ,  where p, q£Z*  are linearly independent and

A ( p ) A ( q ) ≤ 2 A (n )(* - 2>/(*-1).

The exponent (k—2)/(k— l )  cannot be improved (see [2], Remark after Lemma 
1). It is natural to ask for the best value of the coefficient. We chall answer 
this question for k =  3 by proving the following two theorems.

T h e o r e m  1. For every non-zero vector n f Z 3 there exist linearly inde­
pendent vectors p, q ( Z 3, such that n =  ;/p-|-^q, u, v ^ Z  and

h (p) h (q) < ^ - 5 - h (n).

T h e o r e m  2. For every e > 0  there exists a non-zero vector n£Z3, such 
that for all non-zero vectors p , q f Z 3 and all u, fc' fQ n = ^ p  +  ̂ q implies

A ( p ) A ( q ) > y / ( —  e) h (∏)∙

Originally, in the proof of Theorem 1 some computer calculations were used 
which were kindly performed by Dr. T. Reginska. We than}* her for the help.

The proof of Theorem 1 will be based on geometry of numbers. The inner 
product of two vectors n, m will be denoted by niti, their exterior product 
by ∏Xm, the area of a plane domain D by A (D ).

L e m m a  1 . Let. a,∙, 6 , be real numbers (/= 1,2,3)a n d M 3 the three
ci\ (is

minors of order two of the matrix not all equal to 0. The area of
b\ b%

the domain H :  | а^х +  Ь/у |≤1 (/=1, 2, 3) equals 

2 I M xm 2 1+2 I M tM a 1+2 I

ж щ щ . ’
if each of the numbers \Mi\, |Af3|, | Af3 1 is less that the sum of the two 
others, and 4/max{|vW, |, \Л42\, \М3\} otherwise.

P r o o f .  We may assume without loss of generality that

.Mj I =  abs
a\ я 2 

öi b3
> 0 , I |≥| M 2 j =  abs 

I M i  |≥| Af3 | =  abs

Cl2 

ö2 0 3

# 1  Яз 
b\ b3
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∕
The affine transformation a1x + b 1y =  X, a2x-{-b2y ≈  Y transforms the domain 

H into the domain

H ':  | * | ≤ l , m ≤ l ;

If \ М г \-{-\М3\>\ M i , the domain H' is obtained from the square \X\≤\, 
I K | ≤ l  by subtracting two rectangular triangles, symmetric to each other with 
respect to ( 0 , 0 ), with the vertices
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∕  1 i r l2 --  I A lo  X /1  M o  4 ∙

+  ( K  I M.Ä\ ~ S g n ^ ^

—  ^  i M *  I * S g n A f J *

Hence,

A (  Н Ч - 1  ( l ^ l + ’l ^ s l - l ^ i i ) 8
V '  .I M2\\M3\

If \M%\-t-\M3\≤L\Mi\9 then H' coincides with the square \X\≤\, \Y\≤\ and 
Л (Н ' )  =  4. Since А (Н) =  Л (H ') ∕j |, the lemma follows.

L e m m a  2. If 0 ≤ a ^ b < l y  then the domain

D: I x \ ≤ \ ,  \ y \ ≤ l ,  \ a x  +  b y \ ≤ > \ t x 2-\-y2-\-(ax-\ -by)2 ∙<L

contains an ellipse E with

(1) A (E )> n y J -^ ∙

P r o o f .  We take

E: f ( x ,  y ) =  x a +  c ( - f 0 T .x + y ) ° ≤  1.

where

( 2 ) с ≈  max { - f - ( 6 a +  vl),

In order to see that |jc|≤1, I j ' l ≤ l  for (x, y ) (E ,  we notice that by (2)

( 3 ) min/ (x, у ) = х я, min/ (x, y ) =  —
C-P + T  +  1

Moreover, for (л:, у) £ E we have by (2)

(4) * + У + ( a x + b y ) ' ≤ ± -  ( ^ - a2% + r l-  x *

+  -| - ( 0 » +  l ) ( - ^ T x + ^ ) a)≤ - | -/ (x ,  y ) ≤ - 1 - . ∙

If for (л:, .y∏E we had \ax-\-by\>\, it would follow

(5) x*+y*< -7 f- » 

hence, by Cauchy-Schwarz inequality

( 6 ) (ax +  b y f  ≤  (aa +  b*)(x*+ y*) <  2 . -±- =  1 ,
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a contradiction. Thus, for (x, y) £ E we have 
(7) \ax-\-by |≤1.

Finally, A (E ) =  n/\/c and since by (2) c < 4/3, (1) follows.
L e m m a  3. Let n£Z 3\ { [ 0 , 0, 0 ]}. The lattice of integer vectors. m £Z 3 such 

that nm =  0  has a basis a ~ [a it a2, a3], b = [£ lt 6 2> з̂]> such that

(8)
a i “ 2 a 2 a 3 /Zi .

Ь г b% ( « 1,  n2, n3) ’ &2 Ьз (∏ l ,  n2, /23) ’

Cls
b3 Ьг

n2
(∏1, /z2 ,/z8)

P r o o f .  Since na =  nb =  0 and a, b are linearly independent, we have
n =  c (a X b )

for a certain c (Q .  However, the numbers
ax a2 
Ьг b2

Cl% (I3 

b2 b3
and

a3 ax 
b3 b± are rela­

tively prime (see ê  g. [1, p. 53]); hence, the formulae ( 8 ) hold with ±  sign 
on the right-hand side. Changing if necessary tfie order of a, b, we get the 
lemma. -

L e m m a  4. For every vector n £ Z3 different from [0 ,0 , 0] and 
[ ± 1 > ± 1 , ± 1 ] for any choice of signs, there exists a vector m £Z 3 such that
(9) * mn =  0,

( 10)

and
d o

0 < h  (m) <  h (n)

I (m)<\/2 A(∏).
P r o o f .  Without loss of generality we may assume that 

( 1 2 ) 0 ≤ n 1≤ n 3≤,n3>0.
If n2= n 3 we take

[ 1 , 0 , 0 ] if n1 =  0,
1 ] if ЯхфО,

and we find (9 ) - ( l l )  satisfied, unless n1 =  tio =  n3=\. Therefore, we may assume 
besides ( 1 2 ) that n2< n 3. (

In virtue of Lemma 2  the domain

m
_ m ,  o, 

1 1 0 . 1 ,

D: |A|≤1, \V\≤\, и X + ^ - Y | ≤ 1 , X * + r 2+ { ^ r  X + - ^ - Y ^ ≤ ^ -% пз лз rii ^
contains an ellipse E with А (Е)>тг \/3/4.

Let a, b be a basis, the existence of which is asserted by Lemma 3. The 
substitution

X —aix + b*y 
' 4 

3 Пз

V =
a2x + b 2y

v:
transforms D into the domain 

D': \a ,x+b ,y\≤^4j- n3 (/ =  1 ,2 ,3 ) , ∑ (a tx + bi _y)a≤ 2 tf3.
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Hence, D' contains an ellipse E' with

A (  E ' ) = - | - « 8
a \

d n  b n

—1
A ( Е ) > т с (nv nit n3) ≥ n

by ( 8 ). Since the packing constant for ellipses is я/v 12, it follows that E' and, 
hence, D' contains in its interior a point (лг0, y0)^ Z 2 different from (0, 0). 
Putting ш =  х 0а-Нз;0Ь, we get the assertion of the Lemma.

L e m m a  5. If O ≤ a ≤ l ,  0 ≤ 6 ≤ 1  and a-\-b> 1, the area of the hexagon 
I jcI<  1 ∙ \y |≤1, \ax-\-by\≤\ is greater than [24/(a2 4-6a4- 1)]1/2.

P r o o f .  In virtue of Lemma 1 the area in question equals
(2ab 4 - 2a -h 2b—a2—b2— 1 )/a b,

thus, it remains to prove that for ( a, b) in the domain
G: O ≤ a ≤ l ,  O ≤ b ≤  1 , a +  b >  1

the following inequality holds
/(a, b) =  (2ab  +  2a 4- 2£ -  a2 -  6 2 - 1)2(a2 4 - b2-j- 1 ) - 24a2b2>0 .

We have ∂G ≈L x  U La U L3, where
Lx =  {(a, 1): O ≤ a ≤ l } ,  L 2 =  { ( L  b): O ≤ b ≤ l } ,  L 3 = { (a ,  1—a): O ≤ a ≤ l } .

We find /(a, l )  =  a2 (a — l ) 3(a —5)4-3a2, but for a ≤  1 a » (a — l)? (a— 5 )≥0 , hence 
/(a, l ) ≥ 3 a 2≥ 0 .  In view of symmetry between a and b, /(1, b)>3b2≥ 0 .  
Moreover,/(a, 1 —a) =  8 a2 (1 —a ) 2 (2a— 1)2≥ 0 .  Hence, for (a, 6 ) £∂G we have 
/ (a, b) ≥ 0 with the equality attained only if (а,Ь)ф G It suffices to show that 
in the interior of G the function /(a, b) has no local extremum.

Indeed, putting g (a , b) =  2ab-{-2a—a2 — b2 — 1, we find

=  2ag3 +  2 (26 +  2 — 2a)(a2 H- 6 9 +  1) g  —  48aöa, ч ,да

OL
∂b =  2Ö£ 2 н- 2 (2a +  2 -2 b ) (a 2 +  b2 +  1) g — 48 a2b,

hence,

a ^ - b ^  =  2 .(a -b ){(a  +  b )g + (a 2 +  b2+ l  ) ( 2  -  2 a -  26)],

b § f —a-%-—4(b—ä) [(a-t-ö+ 1 )(a2 +  b2 + 1 ) 1 2 aö (a +  6 )].

The. equations ∂f/∂a =  ∂fl∂b =  0 imply a = 6  or
(13) (a b) g-\- (a2 b2 1 ) (2 — 2 a —2 ö) =  0 ,

( a 4-^4-1 )(a 2 4- £ 2 4- 1) g — 12ab (a +  b)=0.
Eliminating g from the above equations we obtain

(14) 2 (a2 4- 6 2 4-1 ) [ (# 4 - 6 ) 2 —-1 ] — 12ab (a 4- b)2≈  0. *
The left-hand sides of the equations (13) and (14) are symmetric functions

of a, b. Expressing them in terms of s=a-\-b and p =  aby then eliminating /?,
we get

s (s— 1 )(2s- 1 )(4 s* -  s 4 - 1) =  0.

For s =  x + y > l  this is clearly impossible, there remains the possibility a ≈b .  
However, in that case
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- g j=  16a3—24a2-f- 18a— 4 =  2 ( 2 a — l ) 3 + 3 (2 a  — 1 ) +  1 >  1.

L e m m a  6 . For every nonzero vector n ≈ [nly n2y /z3]£ Z 3 there exist lineary 
independent vectors p, q £ Z3 such that pn =  qn =  Ö, and

h (p) h (q )< ^ -| -1  (∏). if each of the numbers \nx |, | |, j /z3 1 is less
than the sum of the two others ; 4

x /г (p )^ (q )≤ ^ (n ) ,  otherwise.
P r o o f .  We may assume without loss of generality that 0≤/z1 ≤ « 2 ≤ ^ 3 >0 . 
In virtue of Lemmata 1 and 5 the area A (K ) of the domain

K:. l A ' I ≤ l ,  |K|≤1, \— X —- 2-Y \ ≤ \
1 1  1 1  1 ∏s лз

satisfies

(15)

∕  24Л ( К ) > 4 /—---- 2----- 5 n3, if пх +  п%> п а,
Q\ +  n2 +  n3

A (K) =  4, otherwise.

Let a, b be a basis, the existence of which is asserted in Lemma 3. The affine 
transformation X = a lx-^b1y y Y = a 2x-\-b2y  transforms the domain К into the 
domain

K ':  \atx + b ty  |≤1 ( t ≈ h  2 , 3)
satisfying

(16) ∙ Л ( К ' ) = Л ( Ю  (” l∙ ”2' " з) ∙
Л3

In virtue of Minkowski's sccond theorem there exist two linearly independent 
integer vectors [x l9 y x] and [x2, y2] such that
(17) I (XiXj 4- bt yj I ≤  Xj (/= 1, 2, 3; j — 1, 2) 
and
(18) X1?ia/1 (K ')≤4.
Putting p =  ax1~{-by1, q =  ax2 +  b y2, we infer that p, q are linearly independent, 
satisfy p∏^qn =  0  and in virtue of (15), (18)

A ( p ) A ( q ) ≤ V * ;
| < ^/-§-/(n), if n1-}-n2> n 3,

( ≤ n 3, otherwise.
P r o o f  o f  T h e o r e m  1. If n =  [slt e2, s3], where ez∙£ {l ,  -r-1}, it suffices to 

take p≈=[elf s2, OJ, q = [0 , 0, e3]. If n4 =[elf e2, e3] for every choice of elf e2, s3, 
then by Lemma 4 there exists a vector m ^ Z 3 satisfying the conditions
(19) mn =  0,

( 2 0 ) 0 </ (m )<v/ 2 A(n).

Now, by Lemma 6  applied with n replaced by m there exist vectors p, q f Z 3 

such that
(2 1 ) pm =  qm =  0 , dim(p, q ) = 2
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∕
and

( 2 2 ) h (p) h (q )<  max  ̂(m)» h (m)}.

-The equations ( 2 0 ) and (2 2 ) imply that n =  //p4-^q ; и, while the inequa­
lities (20) and (22) imply that h (p) h ( q ) <  [(4/3) h (n)]1/2.

It follows that the number c0(3) defined in [5] by the formula
k—2

c0 (ß) =  sup inf h (p) h (q) h (∏ y -1
n t Z k p, q(Z*
∏4=0 dim (p, q ) =  2

/ r= ap + vq , и, V £ Q

satisfies c0(3)≤,\J4/3 and if c0(3) =  \j4/3y the supremum occurring in the defi­
nition of c0(&) is not attained. By Theorem 2 of [5] there exist vectors p0, 
q0 £Z3 linearly independent and such that n = « 0Po+-^oqo» vo£ Z, and Ä(p0)Ä(q0) 
<[(4/3)/г(п)]1'2. The proof *of Theorem 1 is complete.

The proof of Theorem 2 is again based on several lemmata^ We shall set 
for t =  1 , 2, 3, . . .

n, =  [(2t2 4- 2t)(fit2 4 - 4t— 1), (2<2 +  2t)(6t2 4 - 6 t -  1),
(4*2 -j- 402-  (2^2- 1 )(2<2 4-2<— 1)],

and for vectors m, p, . . .  we shall denote the v-th coordinate by mv, pv respec" 
tively.

L e m m a  7. If∏/∏i =  0 , m£Z3, 0 < h (m )≤ 8 t2 +  8t—2y then we have m==m/ 
for an / ≤ 6 , where . ∕

m i=  [o 2̂ -f-6 * - l ,  —(6tf2 4-4<— 1 ), 0 ], m2 =  [2 /2 4 - 2 /— 1 , —(4^4-4Q, 2t2+ 2 t ]y
me= [4 <2 +  4/, - (2 Г - - 1 ) ,  — {2t2-\-2t)]y ∏u =  [2<2 + 2^4-1, 2*8 4-4*+ l. -(4*?4-.4*)j,

m 6 =  [2,6<24-8 < 4 -1, _ ( 6 * 2 +  6*)] (<4=1), m 0 =  [6f24 -6<4-1, 4^4-2, - ( 6 ^  + 601-

P r o  of. The vectors Ш/( l ≤ / ^  6) all satisfy the equationnr∏i≈O. Since the 
vectors m1 and m2 are linearly independent, every vector m (Z 3 satisfying 
nm =  0  is of the form umx-\-vm2i и, v iQ .

Let u =  ajc, v = b jc y a, b, с ( Z, (a, by c ) = 1 , c>0 . It follows from с \'ати +  Ьта1, 
c\am^j+bni2j  that c\(ay b){tnlim2i—m2im\j)y hence, c\mum2j —m2imlj  ( 1  ≤ i  
< j ≤  3).

But (mnm23 —m2lm13f ml2m23—m22m13)== m23(m lly m12)= m 23 and (m23y miu 
т22—т21У rnl2)≈ (m 23y m2V m12)=  1 , hence, c — 1 and we get m ^am ^ötr ia . 
Considering the third coordinate, we find ] b | (2t2 +  2 t )≤8 t2-\-8t — 2, hence, 
1*1=3. .

Considering the first coordinate, we get
|а(6 <2 4 - 6 < - 1 ) 4- 0 (2 <?4 - 2 < ~ 1 ) | ≤ 8 *2 4 - 8 < - 2 ;
I a I ( 6 / 2 +  6 *— 1)≤  8t2 4- 8 t - 2 4 - 1 b | (212 4- 2t- 1 )  ≤  14t2 4-141 - 15,

hence, la |≤1 or a = ± 2 ,  b ≈  3. For a =  0 we get m ≈ 6  [2t2-\-2t— 1, — (4t2-\-4t), 
2t2 4 - 2t] =  ±  m2. For | a [=  1 the inequality for the second coordinate ∙

I а (612 4- 4t— 1)4-^ (412 4- 4t) | ≤  8t2 4- 8t -  2

gives b≈ 0 or ab<0. For a = ± l ,  b =  0 we get m ≈ i ∏ i f ,  for a = ± l , & = = F l  
we get m =  ± m 3; for a== ±  1 , b =  =f2  we get m = ± m 4; for a = ± l ,  £==F3 
we get m = ± m 5; for a =  ±2 , b = + 3  we get m ≈ ± m 6.

L e m m a  8 . If p, q f Z 3 are linearly independent and p m ^ q m ^ O ,  then
k(p)h(q)>4t2 +  4t.



P r o o f .  p m ^ O  implies ^ ≈ O m o d  6 / 2 +  4/— l ,p a= 0  mod 6 /2 -f∙6 <— l.Hence∙ 
Р\=Ръ=®  or |/>2 l ≥ 6 ^ 2 +  6 /— J. Similarly, qt =  q2 =  0 or j q2|≥ 6 / 2 +  6 /— 1. Since 
p, q are linearly independent, A ( p ) A ( q ) ≥ 6 / 2 +  6^— l > 4 / 2 +  4/.

L e m m a  9. If p, q£Z 3 are linearly independent and

pm3 =  qm 2 =  0 ;
then ,

k (p )h (q )^ 4 t -  +  4t.
P r o o f .  The equation

р т а=(2£2+2/— \)px— (4/2+4/ )р 3 +  (2(г +  2 ( )р 3 =  0 ' 
gives p ^ O  mod 2t'2 +  2t— l, hence, /?x =  0 or \p\\>2t~+2t. The former possi­
bility gives |p3 |≥2. Similarly, <7 i =  0, | q3 > 2  or |^x|≥2/ 2 +  2/. Since p, q are 
linearly independent, p1≈ q 1 =  0  is excluded, hence,

h (p)A (q )≥m in  {2 (212 +  21), (21-+ 2ff}>4 t*  +  4/.

L e m m a  10. If p, q ( Z 3 are linearly independent and pm3 ≈ q n i 3 =  0, then
h (p) h ( q ) ≥ 4 ^2 +  41.

P r o o f .  The equation

pm8 =  (4/2+ 4  t ) P l -  (2t2 - 1  )p 2-  (2 f -+ 2t) p3=0,

gives p2≡≡t0 mod 2/ 2 +  2/, hence p2= 0 or \p2 | ≥ 2 / 2 +  2/. The further proof is 
similar to that of Lemma 9.

L e m m a  11. If p£Z3, pm4 =  0, then either p =  0 or / r (p )>2/+ l.
P r o o f .  The equation

pm^ =  (2 t2-\-el t Jr 1) /?i +  (2/ 2 +  4/+ 1) p2—(4/ 2 +  At) /?3= 0

gives

(24)( (2 / 2 4- 2t)( р г+ р 2—2p3) + px +  (2/ +1  )p 2 =  0.

If p l + p 2—2p3 =  0, then p l +  (2t +  l )p 2≈ 0  and either />i =  0 or |/>i|≥2/+l.
If p\+p2—2/?3 ф0, then since by (24) p\≡≡p2 mod 2, we obtain

p L+Pz -2p3=2s, s(:Z\ {0 },  /71 +  (2/+l)/?a= - ( 4 * 2 +4/)s.

Hence, p3+ tp 2=  ~{2t-+2t-\-\)s and

max {| p21. 1 p31} ≥ 2 <2 ^ + 1> 2 .̂

thus / t (p )≥ 2 /4 -l.
L e m m a  12. If p, q £ Z8are linearly independent and pm6 =  qm& =  0, then 

k(p)h(q)>4t2 +  4t (<4=1).
P r o o f .  The equation

pnig =  2/?! -I- (6t2 -h 8t 4- 1) p2—(&t2 +  6t) p3 =  0
gives

2pi 4- (214“ 1) Рч 4~ (612 4- 6>t)(p2—Рз) — 0.

If p2= p s, we get Px≡≡O mod 2/4-1, hence, \px\ ≥ 2 i+ l .  If />аФ/>3 ’ we Set 
(2/4-3) max {I/?! |, \p2|}^:6/2 4-6/, hence,

max {I />, I, |/72 |}≥-0 ^ > 3 / - 2

A decomposition of integer vectors. II 2 1



and A(p)≥:3/— 1. Similarly, q2 =  q3 and \qx \≥2t-\-1 or Ä (q )> 3 / — 1. Since p, q 
are linearly independent, p^—p3t Яч =  Яъ is excluded and we get for t =)=1

h (p) h (q)≥min{(2/4- 1)(3/— 1), (3t— l ) 2}≥(2/4- 1)(3/- 1).
L e m m a  13. If p, q ( Z 3 are linearly independent and pm6 =  qm6 =  0, then

h (p) h (q )≥4/24-4/.
P r o o f .  The equation

pm,; =  (6t2 4 - 6 /4 - l)/?iH~ (4∕  -f- 2 ) p2—(6/2 -f- 6/) p3 =  0
gives

(6/2 4- 6/)(/71 — p3) 4- P i  4- (4/ 4- 2) p2 =  0.
If p x—/73=0, we get Pi≡≡O mod 4/4-2, hence, \px \≥4t+2∙
К \Р\—Рг |≥2, we get

(4/4-3) max {\p\\, \p21}≥2 (6/2-f-6/),
hence,

max {\px |, I pa > 3 1

and ^ (p )≥3/4 - l.  If P\—  /73 =  zb 1 ∙ we get /?14-(4/4-2)/72==(6/24-6/), hence either

|/»i|≥»4*+2 or ^a =  [q : - ^ ± | 0 - ]  or p a =  [ T  (6̂ ^ -j- ] +  1.

The last two formulae give the following possible values for T l A ,  ^ 2] :

[3/, ~ \ ,  [ t - 1, i £ i ] ,  [ — ∕  — 2, [ - 3 / - 3 ,

Hence, either h (p)≥3/4-2{//2} or /?i— /?3= ± 1  and p2=  [(3/4-2)/2]∙ Similarly, 
either h (q)≥3/'4-2{//2) or ^3= ± 1  and <72=  [(3/4-2)/2]. Since p, q are lin­
early independent it follows that

h (p) h (q)S>(3*+2‘{-\-})[Щ ?-)>№ +и.

P r o o f  o f  T h e o r e m  2. Since
4*2+4 ; / 4

2 2  S. Chatadus, A. Schinzel

lim v:v/ ( «2 +  4/)2- ( 2 ^ - l X 2 < 2+ 2 / - l )  V  3 

for every e> 0  there exist t, such that

(2 ) 4/a-b4/>^/(-|— e) h (n,)

and we fix such a value of /.
If n/≈//p4-^q, u, v t Q  and p, q ( Z 3 are linearly dependent, then since 

(nt\> nt2 » Л/з)=1* we have either p =  0 or p =  s∏r s £ Z \ {0 } ,  thus h (p )> h (n t)t 
and similarly for q. It follows that for рфО, q4=0

h (p) h (q )≥ A  (n,)2 > V ( 4 ' - e) A

If p, q are linearly independent, then pxq4=0 and (p X q ) ∏/ =  0. On the other 
hand, either &(p) h (q )≥4/ 2 4-4/ or h (p X q )≤ 2 A -  (p) h (q) :< 2(4/24-4/— 14) 
≈  8 /2 4 - 8 /—2. In the latter case in virtue of Lemma 7 we have p X q ≈ ∏ b  for na 
i ≤ 6 . Hence, /?m, =  =  0  and from Lemmata 8-13 we obtain h(p)h(q)≥:4t2+4t).

In view of (25) the theorem follows.
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Re ma r k .  There exist decompositions fy≈wp-t-i'q with A (p )A (q )  =  4/ 2 +  4̂ , 
namely 

n, =  (6 /2 +4^— 1 )[2t2 +  2t, 0 , — (2 t2+2^ — 1)] +  (2t2+ 2t)(6t2+6^ — 1 ) [0 , 1 , 2 ] 

or

n, =  (2*2 + 2 0 (6 *a+4<— 1 ) [1 , 0 , ' 2 ] +  (6 / 2 +  6 / - l ) [ 0 , 2 /2 -f-2 /, 1 - 2 *2].
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