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A DECOMPOSITION OF INTEGER VECTORS. Il

S. CHALADUS, A. SCHINZEL

In this paper we shall consider integer vectors n= [/z, n2 ..., nK and

write for such vectors: h(n)=max |/z1 L{n)="n\-\-N\-\- e ee+«*.  One of us

has recently proved [3] that for every non-zero vector nfz* (£>1) there is
a decomposition: = Hp+ t'q, u,viZ, where p, gEZ* are linearly independent and

A(p)A(d)s2A(n)(*-2>/(*1).

The exponent (k—2)/(k—1) cannot be improved (see [2], Remark after Lemma
1). It is natural to ask for the best value of the coefficient. We chall answer
this question for k= 3 by proving the following two theorems.

Theorem 1 For every non-zero vector nfZs there exist linearly inde-
pendent vectors p, q(Z 3 such that n=;/p-]-~q, u, v~Z and

h(p) h(a)<™-s-h(n).

Theorem 2. For every e>0 there exists a non-zero vector n£Z3, such
that for all non-zero vectors p,qfZs and all u, fc'fQ n="~p + ~q implies

A(pP)A(a)>y/(— e) h(m):

Originally, in the proof of Theorem 1some computer calculations were used
which were kindly performed by Dr. T. Reginska. We than}* her for the help.
The proof of Theorem 1 will be based on geometry of numbers. The inner
product of two vectors n, m will be denoted by niti, their exterior product
by [1Xm, the area of a plane domain D by A(D).
Lemma 1. Let.a- 6, be real numbers (/=1,2,3)a n d M3 the three
a\ (is
minors of order two of the matrix N not all equal to 0. The area of
0
the domain H: |a™+ by |<1 (/=1, 2, 3) equals

2I1Mxm21+2 IMtMal1+2 |

KUy Ly . '
if each of the numbers \Mi\, |Af3} |Afs1is less that the sum of the two
others, and 4/max{]vW, |, V¥2\ \M3\ otherwise.
Proof. We may assume without loss of generality that

a\s 2 az
.Mj I= ab >0, | =] M2j= ab
! as('jibS 0 121 : as()zos
IMi Af b s
> =
PIZLATs [F abs 0 q
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/
The affine transformation alx + b 1y = X, ax-{-b2y = Y transforms the domain
H into the domain

H: ]1*]<sl,m¢«<l;

If WMr\-{-\M3\>\Mi , the domain H' is obtained from the square \X\<\,
IK | <l by subtracting two rectangular triangles, symmetric to each other with
respect to (o, o), with the vertices

/1 irl2 — 1Alo X /1 Mo 4 -
+ (K I MAA\ ~ Sgn~ A
— " iM* | * SgnAfl*
Hence,
AHY-1 INT+ AN -2
(e 1 oy T
If \M%\-t-\M3\<L\Mi\9 then H' coincides with the square \X\<\, \Y\<\ and
N(H"Y= 4. Since A(H)=1 (H"Yj } the lemma follows.
Lemma 2 If 0Osa”b<ly then the domain
D: Ix\s\, \y\<l, \ax+ by\s>\t x2-\-y2-\-(ax-\-by)2-<L
contains an ellipse E with
(1) A(E)>nyJ-n-
Proof. We take
E: f(x, y)=xatc(-fOT .x+y)°< 1

where

(2) c= max {-f-(sa+ V),

In order to see that |jc|<1, Ij'I<l for (X, Y)(E, we notice that by (2)

(3) min/(X, y)=x5s min/(x, y)=—
C-P+T+1

Moreover, for (n, y) £EE we have by (2)

(4) *+ Y +(ax+by)'st- (M-a% +rk x*

F el (AT X+ M) @S-/ (X, y)S1-

If for (n, .y[JE we had \ax-\-by\>\, it would follow
(5) X*+y*<-7f-»

hence, by Cauchy-Schwarz inequality

(6) (ax+ byf< (aa+ b*)(x*+ y*)< 2 .-x-= 1,
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a contradiction. Thus, for (X, y) £EE we have
(7) \ax-\-by |<1.
Finally, A(E)=n/\c and since by (2) c<4/3, (1) follows.

Lemma 3. Let n£2Z3\{[0,0,0]}. The lattice of integer vectors. m£Z3 such
that nm=o0 has a basis a~[ait a2 a3, b=[£It §2> 3> such that

3 ai-“2 azas zi .
( ) br b% («1, N2, N3)" %2 b3 M, n2, /zn)"
ds n2

b3br (M /2./28
Proof. Since na= nb=0 and a, b are linearly independent, we have
n= c(aXb)

axa2 @%(ls a3ax

i . la-
for a certain c(Q. However, the numbers br b2 b2 b3 and b3 b are rela

tively prime (see e g. [1, p. 53]); hence, the formulae (s) hold with * sign
on the right-hand side. Changing if necessary tfie order of a, b, we get the
lemma. -

Lemma 4. For every vector n£Zs3 different from [o 0, O] and
[+ 1>% 1, £ 1] for any choice of signs, there exists a vector m£Zs3 such that

(9) * mn = 0,
(10) O0<h (m)< h (n)
and
do I (m)<\72 A(T).
Proof. Without loss of generality we may assume that
(12) 0<nl<n 3<,n30.

If n2=2n3 we take
_n’[J’, 0, o] if n1=0,
m 110. 1, 1] if AxpO,

and we find (9)-(lIl) satisfied, unless nl= tio= n3=\. Therefore, we may assume
besides (12) that n2<n3 (
In virtue of Lemma 2 the domain

D:  JALSL, \VAS\, g X+ A-Y [s1, X ¥4 r20{Ar X +-A-Y A <hg

contains an ellipse E with A (E)>Tr VV3/4.
Let a, b be a basis, the existence of which is asserted by Lemma 3. The
substitution

X —aix+bty - ax+bzy
"4

3 b V.

transforms D into the domain

D" \a,x+b,y\<™j-n3 (/=1,2,3), > (atx + bi_y)a< 2tf3
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Hence, D' contains an ellipse E' with
—1

2 A(E )> T c (nv nit n3=n

A(E')=-|-«s8

dn bn

by (8). Since the packing constant for ellipses is a/v12, it follows that E' and,
hence, D' contains in its interior a point (w0, yO~zZ2 different from (0, 0).
Putting w = xoa-H3;0b, we get the assertion of the Lemma.

Lemma 5 If O<ac<l, 0<6<1 and a-\-b>1, the area of the hexagon
licl< 1 \y |1, \ax-\-by\<\ is greater than [24/(a2 4-6a4- 1)]12

Proof. In virtue of Lemma 1 the area in question equals

(2ab 4-2a-h2b—a2—b2—1)/ab,
thus, it remains to prove that for (a, b) in the domain
G: O=<asl, O<bs<i1,at+b>:
the following inequality holds
/(a, b)=(2ab+ 2a4-2£- az- 62- 1)2(az4-b2--1)-24a202>0.
We have 0G=Lx ULaUL3 where
Lx={(a, 1): O<ac<l}, L2={(L b): O<b<l}, Ls={(a, 1—a): O<acsl}.

We find /(a, |)=az2(a—1)3(a—5)4-3a2 but fora< 1 a»(a—1)?(a—5)=0, hence
/(a, 1)23a220. In view of symmetry between a and b, 7(1, b)>3b2>0.
Moreover,/(a, 1—a)=saz2(l—a)2(2a—1)2=20. Hence, for (a, 6)£0G we have
/(a, b)= 0 with the equality attained only if (a,b)p G It suffices to show that
in the interior of G the function /(a, b) has no local extremum.

Indeed, putting g(a, b)= 2ab-{-2a—a2—b2—1, we find

P 2ag3+ 2(26+ 2—2a)(azHs9+ 1) g— 48ada, u o,

6bOL= 20e 212 (2a+ 2-2b)(a2+ b2+ 1)g—48ad,

hence,
a”N-b”N =2.(a-b){(a+b)g+(a2+ b2+ 1)i2- 2a- 26)],

b§f—a-%-—4(b—4a) [(a-t-0+ 1)(az+ b2+ 1) 12a0 (a+ 6)].

The. equations df/da = 0flob=0 imply a=s or
(13) (@ b)yg\(a2 b2 1)(2—2a—0)=o,
(a4-"4-1)(az24-£24- 1) g— 12ab (a+ b)=0.
Eliminating g from the above equations we obtain
(14) 2(a24-624-1)[(#4-6)2—1]—12ab (a4-b)2= 0. *

The left-hand sides of the equations (13) and (14) are symmetricfunctions
ofa, b. Expressing them in terms of s=a-\-b and p= aby theneliminating /2,
we get

s(s—1)(2s- 1(4s*- sa- 1)= 0.

For s=x+y>1 this is clearly impossible, there remains the possibility a=b.
However, in that case
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-gj= 16a3—24a2+18a—4= 2(2a—1)3+3(2a—1)+ 1> 1

Lemma 6. For every nonzero vector n =[nly n% /3£ Zs there exist lineary
independent vectors p, q £2Z3 such that pn= gqn= O, and

h(p) h(g)<™-]-1 (7). if each of the numbers \nx} | | j/81 is less
than the sum of the two others ; 4

X A(p)™(g)sn™(n), otherwise.

Proof. We may assume without loss of generality that 0</z1< « 27 3>0.

In virtue of Lemmata 1 and 5 the area A (K) of the domain

Kio IA'I<I, JK]S1, M= X— 2Y\<\
11 1 1B n3

satisfies
J1(K)>4//—-———2‘z1 ————— sn3 if nx+ n%na
(15) A+ n2+ n3

A (K)= 4, otherwise.

Let a, b be a basis, the existence of which is asserted in Lemma 3. The affine
transformation X =alx-"blyy Y=a2x-\-b2y transforms the domain K into the
domain

K': \atx+bty |1 (t=h 2, 3)

satisfying

(16) - N(KH=n(o (1 3)

ny
n3
In virtue of Minkowski's sccond theorem there exist two linearly independent
integer vectors [x19yX and [x2 y2 such that

17) IXiX4-btyjls Xj (/=1 2, 3; j—1, 2
and
(18) X1%ia/1(K')<4.

Putting p= axl1~{-byl, q= ax2+ by2 we infer that p, g are linearly independent,
satisfy p[]*gn =0 and in virtue of (15), (18)

I< ~/-8-/(n), if n1-}-n2>n 3

A(pP)A(q)sV*; _
(£n3 otherwise.

Proof of Theorem 1 If n= [slt e2, s3, where ez£{l, -r-1}, it suffices to
take p==[elf s2, Q) gq=[0, O, e3. If na=[elf e2 e3d for every choice of elf e2 s3
then by Lemma 4 there exists a vector m~Zs satisfying the conditions

(19) mn= 0,
(20) 0o </(m)<v/2A(n).

Now, by Lemma s applied with n replaced by m there exist vectors p, qfZ3
such that

(21) pm=gm=o0, dim(p, q)=2
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and
(22) h(p) h (g)< max A(m)» h (m)}.
-The equations (20) and (22) imply that n= //ps-~q; Wu, while the inequa-

lities (20) and (22) imply that h(p) h(q)< [(4/3) h (n)]12
It follows that the number co(3) defined in [5] by the formula
k—2

co (B) = sup inf h(p)h(gq)h(Ny-1
ntZk J) q(Z*
[14=0 im =

/r= ap+vq M VEQ

satisfies ¢0(3)<,\J4/3 and if cO(3)= \j4/3y the supremum occurring in the defi-
nition of cO(&) is not attained. By Theorem 2 of [5] there exist vectors pO,
go £Z3 linearly independent and such that n = «oPo+-~0qo» VO£Z, and A(po)A(q0
<[(4/3)/r(n)]12 The proof *of Theorem 1 is complete.

The proof of Theorem 2 is again based on several lemmata”™ We shall set
for t= 1, 2, 3,

= [(2t24- 2t)(fit2s -4t—1), (2<2+ 2t)(6t2%-6t- 1),
(4+24-402- (2°2 1)(2<24-2<— 1)),

and for vectors m, p,... we shall denote the v-th coordinate by myv, pv respec"
tively.
Lemma 7. If[|/[li= 0, m£Z3 O0<h(m)<8t2+ 8t—2ythen we have m==m/
for an /<6, where v
mi= [0 -f6*-1, —(6thh4-4<—1), 0], M2= [2/24-2/—1, —(4"4-4Q, 2t22t]y

me=[4<+ 4/, -(27--1), —{2t2\20)]y [u= [2<2+ 2/4-1, 2%84-4%*+|. -(4*?4-.4%)],
m6= [2,6<24-8<4-1, _(6*2+ 6%)] (<4=1), mO0= [6f24-6<4-1, 474-2, -(6" + 601-

Pro of. The vectors LWW/(1</ ™ 6) all satisfy the equationnr[]i=O. Since the
vectors mland m2 are linearly independent, every vector m (Z3 satisfying
nm=o is of the form umx-\-vma n, viQ.

Let u= ajc,v=bjcya, b,c(Z (a, byc)=1,c>0. It follows from c \aTu+ bTdl,
c\am”j+bnig that c\(ay b}{tnlimZ—m2m\j)y hence, c\mumg—m2imlj (1 <i
<j< 3).

But (mnm2—m2im1¥ mi2m23—m2Zm13=m23(mlly m12=m 23 and (MA/ miu
T2—T2ZY mi2=(m B/ m2V mD= 1, hence, c—1 and we get m~am~”otria.
Considering the third coordinate, we find ]b |(2t2+ 2t)<8t2-\-8t—2, hence,
1*1=3. .

Considering the first coordinate, we get

la(6 <4-6<-1)4-0 (2<M-2<~1) |<8*4-8<-2;
lal(s/2+ 6*— 1)< 8t24-8 t-24-1b |(2124-2t- 1) < 14t24-141 - 15,

hence, la |€1 or a=+2, b= 3. For a= Owe get m:6 [2t2\-2t—1, —(4t2\4t)
2t24-2t]= + m2 For |a [— 1 the inequality for the second coordinate

la (6124- 4t— 1)4-" (4124-4t) E 8t24-8t- 2

gives b= 0 or ab<0. For a=+1, b=0 we get m=i[]if, for a=+1,&==FI
we get m= +m 3; for a==+ 1, b= =f2 we get m=+m4; for a=+x1, £==F3
we get m=+m 5; for a= 2, b=+3 we get m=+tm 6
Lemma 8. If p, gfZs are linearly independent and pm~gm ™0, then
k(p)h(g)>4t2+ 4t.
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Proof. pm~0O implies ~=Omod 6/2+ 4/— |,pa=0 mods /2-f-6 <—I.Hence-
P\=Pb=® or Wzl=6~2+ 6/—J. Similarly, qt=q2=0 or jg2|=6/2+ 6/—1. Since
p, q are linearly independent, A(p)A(q)26/2+ 6"—1>4/2+ 4/.

Lemma 9 If p, g£Z3 are linearly independent and

pms=gmz2=o;
then

k(p)h(g)™4t- + 4t
Proof. The equation
pTa=(2£2+2/—\)px—(4/2+4/)p 3+ (2(r+ 2()p3=0"
gives p~ O mod 2t2+ 2t—1, hence, /2= 0 or \p\\>2t~+2t. The former possi-

bility gives |ps |=22. Similarly, «i=0, |g3>2 or |"x]=22/2+ 2/. Since p, q are
linearly independent, pl=q 1= o is excluded, hence,

h(p)A (gq)zmin {2 (212+ 21), (21-+ 2ff}>4t* + 4/.

Lemma 10. If p, q(Zs3 are linearly independent and pms=qgnis= 0, then
h(p) h(q)z4~+ 41
Proof. The equation

pms= (4/2+4t)P |- (2t2-1 )p2- (2f-+ 2t)p3=0,

gives p2=t0 mod 2/2+ 2/, hence p2= 0 or \p2|=2/2+ 2/. The further proof is
similar to that of Lemma 9.

Lemma 11. If p£Z3 pm4= 0, then either p=0 or /r(p)>2/+l.

Proof. The equation

pm™ = (2t2-\dtX 1) /3 + (2/2+ 4/+ 1) p2—(4i2+ At)/B3= 0
gives
(24)( (2124-2t)(pr+p2—2p3 + px+ (2/+1)p 2= 0.

If pl+p2—2p3=0, then pl+ (2t+ I)p2=0 and either /A= 0 or |/>i]|=2/+].
If p\+p2—2/20, then since by (24) p\==p2 mod 2, we obtain

pL+Pz-2p3=2s, s(:Z\{0}, /a+ (2/+1)/?a=-(4*2+4/)s.
Hence, p3+tp2= ~{2t-+2t-\-\)s and

max {|p21 1p33= 2@~ +1> 27

thus /t(p)=2/4-I.
Lemma 12. If p, qEZ8are linearly independent and pms= gm&= O, then

k(p)h(g)>4t2+ 4t (<4=1).
Proof. The equation
pnig = 2/2 - (6t2-h 8t 4- 1) p2—(&t2+ 6t) p3= 0
gives
2pi 4- (214" 1) Py 4~ (6 124- 65t)(p2—P3) —0.

If p2=ps, we get Px==0 mod 2/4-1, hence, \px\22i+l. If fa®d/>" we Set
(2/4-3) max {I/?! } \p2|}":6/24-6/, hence,

max {I A1, V2 ]}z-0 ~>37/-2
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and A(p)=:3/— 1 Similarly, 2= g3 and \x\>=2t-\-1 or A(q)>3/—1. Since p, q
are linearly independent, pA~—p3 fH= b is excluded and we get for t3=1

h (p) h (q)=min{(274- 1)(3/— 1), (3t—1)3>(2/4- 1)(3/- 1).

Lemma 13. If p, q(Z 3 are linearly independent and pm6= qm6= 0, then
h (p) h (q)=4/24-4/.
Proof. The equation
pm,; = (6t24-6 /2- I)/?iH~ (4 f-2)p2—(6/2F-6/)p3= o
gives
(6/24-6/)(/71—p3J 4-Pi 4-(4/4-2) p2= O.
If px—/73=0, we get Pi==0O mod 4/4-2, hence, \px\=4t+2-
K \P\—Pr |=2, we get
(4/74-3) max {\p\\, \p21}>2 (6/2-f-6/),
hence,

max {\px} Ipa >31
and ~N(p)z23/74-1. If PN\—/73= zb 1. we get /?14-(4/4-2)/72==(6/24-6/), hence either
|/»i]=»4*+2 or ~a=[q:-~+]0-] or pa=[T & ™ §4-]+ 1
The last two formulae give the following possible values for TIA, ~2]:
[, ~\, [t-1, i£i], [~/ —2 [-37/-3,

Hence, either h (p)=3/4-2{//2} or /?—/7Z3=+1 and p2= [(3/4-2)/2]- Similarly,
either h (q)=3/'4-2{//2) or N3=+1 and «2= [(3/4-2)/2]. Since p, q are lin-
early independent it follows that

h (p) h (@)S>(3*+2{-\-}[LL} ?-)>Ne +wu.

Proof of Theorem 2 Since
i 4%2+4; /4
lim V
W («2+ 4)2- (2~ -1X2<2+2/-1) 3

for every e> o there exist t, such that

(2) 4/a-bas/>~/(-]— e) h(n)

and we fix such a value of 7/

If n/=//ps-~q, u, vtQ and p, q(Z3 are linearly dependent, then since
(nt\> nt2» N1/3)=1* we have either p= 0 or p=s[lr s£Z\{0}, thus h(p)>h(ntt
and similarly for q. It follows that for pcO, g4=0

h(p)h(g)zA (n,)2>V (4 '-e)A

If p, g are linearly independent, then pxq4=0 and (pXq) [¥= 0. On the other

hand, either &(p) h (q)=4/24-4/ or h (pXqg)<2A- (p) h (q) :< 2(4/24-4/— 14)

= g/24-8/—2. In the latter case in virtue of Lemma 7 we have pXq=[]b for na

i<e6. Hence, /?m = =0 and from Lemmata 8-13 we obtain h(p)h(q)=:4t2+4t).
In view of (25) the theorem follows.
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Remark. There exist decompositions fy=wp-t-i'qg with A(p)A(q) = 412+ 40

namely
n,= (6 L+4~—1[2t2+ 2t, 0, —(2t2+2" — D]+ (2t2+ 2t)(6t2+6"—1) [0, 1, 2]

or
n,= (2*2+20(6*a+t4<—1)[1, 0,"2]+ (6/2+ 6/ -1)[0o, 222/, 1- 2*2.
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