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AN A P P L IC A T IO N  O F  T H E  P R IN C IP L E  

O F  T O P O L O G I C A L  INDU CTION T O  T H E  

E X T R E M E  P O IN T S  T H E O R E M

OGNYAN KOUNCHEV

The K-convexity introduced in this paper uses all translations of a convex 
set V  in a linear topological space L, instead of all half-spaces in the usual 
convexity. The notion of a 1/-extreme point is introduced and a Krein-Milman 
type theorem is proved using the general Principle of Topological Induction of 
Y. Tagamlitzki.

Let L be a linear locally convex topological space and V  be a closed 
convex neighbourhood of the origin [1 ].

For the set M a L  we define the hull

(M )=  ∩ { x + V ;  x i L ,  x ^ -V zdM },

where the right-hand side denotes I ,  if no x  in L satisfies x -\-VzdM.
D e f i n i t i o n  1. The point x { M  is called V-extteme, i f  fo r  every two 

different points a, b ^ M  holds x${{a, b})\{a, b}.
о

We denote by V  the interior of V.
D e f i n i t i o n  2. We say that the convex neighbourhood of 0 does not 

contain infinite points, if  there is no such y^L  that ly ^ V  for every / ≥ 0 .
T h e o r e m  1. Let M  be a compact subset of L and V be a convex 

closed neighbourhood of 0. Let the boundary ∂V  of V  does not contain line 
segments and V  does not contain infinite points.

∕  ∙ о
I f  there exists a point x 0 (;L, such that x0-\- VzdM, then the set E  o f  V-ex- 

treme points of M  is not empty and the equality (£ )  =  (M ) is true.
The proof consist of an application of the Principle of Topological Induc

tion {2, 3J, which we present as one theorem:
T h e o r e m  2. (Principle of Topological Induction), 1. Let X  and Y be 

topological spaces. Let on X  a quasi-order ( ≥ )  be given, i. e. a transitive 
and reflexive relation, and every monotonic ally increasing generalized sequen
ce XgtX , g (;G , in it be convergent (here G is a segment o f  ordinals, see 
[4, Ch. 2 ] fo r  the notion o f  generalized sequences). Let Y be compact.

2. A multivalued map f : X —+Y is given, which is monotonic, i. e. x x̂ ≥x2 

implies f  (xx) b / ( * 2).
With the symbol С we denote the complement to a set.
For every subset SczY  we define the parenthesis (S)czY  in the following 

way:

(S) =  { 3/£ К ; (i) for every x ^ X f ( x ) z iS  implies y tf (x ) .

(ii) if for some x ^ X  we have /‘(a:1)∩ 5 4=  0  and С/(х1) П 5 ф 0 ,  then 
there is an x 2 ( :X t x 2 ≥ x v such that y ( : f (x 2) and C/(x2) ∩ 5 # = 0 } .
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In the space Y we define a relation (< ; ) :  for y lty2t Y, y x^ y 2, if and only 
if there exists a set SczY  such that y x(:S and _y2 £(*£)•

It is proved that this relation is a quasi-order [2].
The quasi-order in X  and the map ∕  are supposed to satisfy the following 

properties :
3. The sets {x i X \ x > a }  are closed for every a^X.
4. For every x ^ X  and every y ^ Y  the sets f (x )  and f ~ l{y) are open.
The basic statement of the theorem is that the set of minimal elements

Ex of the ordered space Y is not empty, and has the following properties:
1. If p t  Ex, then y≤*p implies y≈p> i. e. for every х ^ Х  у £ f(x), if and 

only if p t f (x ) .
2. The inclusion f ( x )≡>Ex implies /(x ) zdY.
P r o o f  o f  T h e o r e m  1. According to the assumptions of the theorem,

о
we fix the point x 0 with the property x 0 +V.zdM. To  apply Theorem 2, we 
define the space X  to be the topological space L itself.

The order (≤*) in X  is defined in the following way: for x v x 2£ X  we 
say that x x≤ .x2> if and only if x 2 —x 0 — s(xx — л:0) for some number s:0 < s < \ .  
It is evident that a monotonically increasing sequence x g^X y g£Gy is conver
gent since it lies on a ray I with endpoint x 0, which is maximal element in /. 

The space Y is defined as the set M  with the topology induced by L.
о

The multivalent function ∕  is defined as follows: f (x )  =  (x  +  V) ∩ M  for every 
x ( X .

It is evident that the sets f ix )  and f ~ x(y) are open for every x£ X  and 
у t Y. Let us check up the rest of the conditions of Theorem 2. The set { x £ X ;  
x ^ a }  for a given a £ X  is closed since it is in fact the line segment with 
endpoints x 0 and a.

For the proof of Theorem 1 we need the following lemmas :
L e m m a  1 . F o r  every closed set SczY it is true that

{S )≈  ∩ {x-\- V ; x+V ≡>S , x^ L ).

P r o o f .  Let us denote the set defined in the right-hand side of (1) with 
T. We shall prove that T zd(S). Let us suppose that there is с ( Z, such that

о
c£ (S )  but сф Т . This means that there is an x x 6 L for which x x-\-V zdS  and

о
с фхх+ V .  Since S is a compact set, it follows that there is a sufficiently small 
positive number 5  such that с ф x l +  s(xi — c )+  V  and —c) +  V  id S. This
contradicts c£(S).

Let us prove that Tcz{S>. If there exists c^ L  such that c ^ T  but c$ (S ),  
it follows that there is х г f L for which x ^ + V id S  and. сф х 1 -\-У. One of the

о
conditions of Theorem 1 is that for some x 0 £L, x 0 +  V  ̂ >MzdS. Since V  is a 
closed convex set, it follows that for a sufficiently small positive number 5  we have

о
Xj -j~s(x0—.хгj ) —b~ V zdS  and сф x 1 -\-s(x0 —х г) -Ь V.

The proof is finished.
L e m m a  2. I f  a, b £ x Q-\-Vy then the parenthesis defined in the text o f  

Theorem 2 is represented as fo l low s : ({a, 6 }) =  <{a, 6 }> \ {a ,  b).
P r o o f .  Let a tf (u )  but Ьф^и) for some u^X. Let us consider the set

A ≈ x 0 +  s(u—x 0) +  Vy where s== max{/; (x 0 -bt(u—x0) +  K)=>{a, 6 }, O ≤ t ≤  1 }.
о

Since V is convex, a f  f(u) and a £ x 0 + V t it follows that a £ A.
о

j∏deed, a£f(u) implies a~u-\-z\ for some v l ^ V t and a =  x 0 -\-v2 for some
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О

V. This gives a =  x0+s(M—A:0) +  ̂ 'a+∙s(t'i —®a)∙ This proves that a ( A  Evi
dently, we have b i d  A.

We shall prove that ({a, b}) ∩ ∂A =  {b}. Let us suppose that there is 
z(:({a,b}){\∂A.  To get a contradiction, consider the plane Lx incident with the 
points a ,b , z  and let Al =  A [ \ L l. Since dAj does not contain line segments 
(∂V is such!), there exist exactly two points such that p + a , p  +  b,
q-\-a, q +  b i ∂ A v

Consider the arcs arc (p +  a, p + b ) c z ∂ A 1 and arc ( q + a , q + b ) c . ∂ A v Then 
the set {{a, b}) ∩ Lx is contained in the figure surrounded by the following 
translations of these arcs: arc (p +  a,p-\-b)—p  and arc (q+a,  q + b ) —q. Now, 
recalling again that ∂AX does not contain line segments and that z ^ ∂ A it we 
get г ф 0  (({a,b})∩L,).

This contradiction proves that ({a, b}) ∩ ∂A =  {6}.
If 2  is a point such that z i  ({a, b } ) \ { a ,  b}, then the above implies that the 

point x  =  x 0-t-s(u—x0) is greater than the point « like an element of X, z£f(x)  
and C/(*)∩{a,6} =  { & } # 0 .

This proves that ({a, 6 } )n ({a ,6 })\{a , b}.
The inverse inclusion follows easily from the definition of the parenthesis 

of a set and Lemma 1.
О

L e m ma  3. If  the points a , b £ x 0-\-V and афЬ, then there is some
О

x ^ L  for  which a i x x +  V but b $ x i + V .
Pr o o f .  Since V  is a convex_set and does not contain infinite points, 

there exists a number s > 0  such that (ß-j-6)/2£ (x0+ s ( a —b)+∂V).  Then, the
О

relations я£(х0-М(я—b)+ V) and b $ ( x 0+ s ( a —b)+ V) hold, which proves the 
lemma.

Now, let us continue the proof of Theorem l t<
Theorem 2 states that Ex is a nonempty set. We shall prove that every

point p i  Ex is l/-extreme, i. t . p ^ E .  Suppose that the opposite is true: /j(Ex, 
but for some different points a, b i M ,  holds/? (({a ,6 }) \{a , b}. The last, accor
ding to Letnma 2, means that p i { { a ,  6}), i. e . a ≤ p ,  b≤.p.  Theorem 2 implies
that a ≈ p ≈ b .  This means that for every x £ X ,  a^f{x)  implies b£f(x).  This 
contradicts the separation Lemma 3.

V Finally, let us prove the basic statement of Theorem 1. According to 
\  ' 0 . 0  

Lemma 1, it suffices to prove that, if for some x £ L  x +  VzdE, thenx-b V^dM. 
We proved that Exc:E∙ Theorem 2 may be applied now to x k X ,  which com
pletes the proof of Theorem 1.

A k n o w l e d g e m e n t .  The present work was done in 1978 and was an 
answer to the question asked by the late Ivan Prodanov as to whether it is 
possible to prove Theorem 1 through the general principle of topological in
duction.

In the original version of the paper the construction of the space X  in the 
proof of Theorem 1 was rather heavy. The present construction was proposed 
to the author by Dimiter Skordev, for which the author would like to thank him.
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