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ON THE LOGARITHM OF THE DIFFERENTIAL OPERATOR

JAN MIKUSIrtSKI

To the memory o f my late 
friend Y. A. Tagamlitzki

Two different proofs are given of the fact that In s =  — s {In t +  C}, where С  is Euler’s 
constant.

Introduction. In Operational Calculus, the exponential function x (\ )—exw 
(w operator) is defined as the solution of the differential equation x'(K) =  wx(k) 
such that x (0 )  =  l. In particular, we have x ( l )  =  ew so that the operator w can 
be considered as the logarithm of the operator ew, i. e. w =lne 'w.

The exponential function satisfies the functional equation ex,w.ex*w — eiX +Xl)w. 
A  similar equation is satisfied by the power sx of the differential operator s, 
sx'.sx* =  sx'+xi. This suggests that sx can be considered as an exponential func­
tion sx =  eXu’, where w is the logarithm of s, i. е. ■го =  In s. Then (sx)' =w sx. 
Hence, we can find w — (sx) f /sx, provided the fraction does not actually depend 
on X. Indeed, we shall show that the following equation holds for all real A.

—~X— = —5 { ln ^ + C }  (C —  Eu le r’s constant),

so that we may write In 5 =  — 5  {In t +  C}. To prove this equation is the aim of 
this note. W e are going to do it in two different ways.

1. Taking into account that s =  l/l with / =  {1}, we first make the following 
transformation

Now we have for X > 0
A—1 / A — 1 1 ^

^  =  ̂  Г  (X)  ̂ =  ( r W  ln t  ∏ X j  Г  (X)

where Г  (к) is the Euler gamma function. Hence,/for 0<A .<1 ,

;i—x nxy ≈  r r T* .* ]n I ___ . ∑L( Мл
V  r ( i - X ) , ^  r (J i )  Г(51) r (Л.) j ■

Substituting i ≈ t a ,  we get

/1_" </X>' =  { /  -ТТГ̂ (ТТ>У On ∕  + ln О) -  da}

=  {1∏* + }  r ( 7 - l T r  w  l n }*
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because
В (1 -X .  X) _  j
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Г (1  —А.) Г  (A.)

To the remaining integral we apply the general formula

/a*’-1 (1 — ct)?—1 In ado =  В (/?, ( p > ° ' 4 > 0 ) '

which is easily obtained by differentiating the formula

with respect to p. So we obtain
‘  ( l - e f V - 1 Г ' (X) r ' ( l )

∕  Г ( 1 —Х )Г (Х ) lnada  Г  (А) Г (1 )

and, taking account of Г ' (1 )  =  — С,
/i-х  (Л)' =  {ln < - Г '  (1 ) } = {ln / + С}.

This proves the required formula.
One may remark that formula (1) holds for every real number X. Indeed, 

given any X, one always can find such a A.0 that 0 < X 0-t-X<l. Letting 
H =  X0+>., we have w=(s»y/sw according to the result already obtained.

2. It is interesting that the following formula holds
s“ - 1

lns =  lim ------->'
a->0 a

where a is а real variable and the limit is meant in the operational sense. In 
fact, we have

, , »2—a « —
sa_ l  /-/“+1 1 a

“  a/u a/a+1

Since the denominator in the last fraction is constant, it suffices to deter­
mine the limit of the numerator. We have

∕ ___ / 0 + 1  / 1 —  U  I /И

12 “  ' a Г (2 —a) Г  (1 + a )

If each factor of a convolution converges almost uniformly, then also the 
convolution converges almost uniformly to the convolution of the limits. Evi-

^1— a £
dently, the first factor converges almost uniformly to r . To find
the limit of the second factor, we write

Г (l + a )  ) =  ^ +  “с Г ^ а  г  (1 + a )  )
*“ - 1  ta Г (  1 + a )— Г  (1)

a +  Г ( 1 + а )  a

Hence,
l∙ 1 /1
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and
.. sa — 1 /2 {- ln f-C } f, . , ,lim ------- =  —----------- -  =  — s{ln /!-fC} =  ln s.
a—*0 a 1

Having this limit, we can show that —s { ln £ }C = ln s .  In fact, using the 
functional equation = lxt+x\ we may write

sx+ a- s x sx (sa- 1) . sa — 1----------- ------------------== s --------
a a a \ ■

and hence,

(sxy =  lim —---- =  sx (— C — 5  {In *}),
' * a—>0 a

which implies — C —s {In £ }= lns, according to the general definition of a loga­
rithm of an operator.
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