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ON LINEAR OPERATORS ACTING IN SPACES OF ANALYTIC
FUNCTIONS AND COMMUTING WITH EULER’S OPERATOR

I. RAICHINOV, R. I. RAICHINOV
In memory of our teacher Y. A. Tagabhilitzki

1. Preliminary notes. Let G be a bounded domain in the complex plane C
and A(G) denote the space of functions/ (z) which are analytic in G Let us
denote the space of polynomials in C by 5 and assume that A(G) is endowed
with the topology of uniform convergence on the compacts of G

In paper [1] the general form of the operators L: S—*S commuting with
the operator of differentiation Qi=dldz was found, and in [2] A. V. Bratishchev
and Yu. F. Korobeinik proved that it is the same as for the linear operators
L: A(G)—A(G) continuous in some weak sense and commuting with the ope-
rator (They suppose that the domain G is simply-connected.)

In the present paper a similar result is obtained for operators in A (G)
commuting with the Euler operator E —a”zQ)-\-axXU where a0OpO and ax are
complex constants and | is the identity in A (G). This result generalizes
the results of [3] in the same sense in which Bratishchev and Korobeinik ge-
neralized the results of [1]. With its help the question of the minimal commu-
tativity of the Euler operator in the algebra of the linear operators L : A(G)—»
A(G) is settled.

The results of the present paper were annouced in [4]. Here the same re-
sults are given in detail and complete proofs.

v2. Description of the structures and two definitions. Let M be a C-
linear set (for instance in A (G)) and A and B be linear operators acting from
M to M. We denote by F (M) the algebra whose elements are all linear ope-
rators L : M—M. The algebraic operations in F(M) are the usual ones with
operators (AB)y A (By) and so on. Let a convergence k* be introduced in

a subalgebra Z~"F (M) in such a way that Bn— »B implies PBn— »PB and

BnQ — »BQ for arbitrary operators P and Q of the algebra Z. Obviously, in
such a case, if trle operators Bn commute with a given operator /1, i. e. BnA

= AB,, and Bn— »B, then the Ilimit operator B commutes with A too, i. e
BA=AB. In addition, in this case every operator of the type

(1) B = (h*) g_ork(A)%

where A~Z and rk(A), 6=0, 1, 2, ..., are polynomials of /I, commutes with

the operator_A. Indeed, everyh*operator B of type (1) is A*-limit of the partial

sums Sn= 2 rk(A), i. e. Sn— *B and BA = AB follows immediately from the
=0

obvious relation = Y

The operators of type (1) are polynomially generated by A. The operators
of a given algebra Z whose commutants are composed' by their corresponding
PLISKA Studia mathematica bulgarica. Vol. 11, 1991, p. 71-77.
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polynomially-generated operators only are of a special interest. We introduce

the following
Definition 1 An operator A”Z is called a minimally commuting

element of the algebra Z, if its comnutant in Z includes operators of type
(1) only.
Before giving the next definition, let us denote by h the convergence generated
by the topology of the space A (G); we will writey —(h—Ilim)yn or yn— *y, if the
n—*oo

sequence {y,}%Lv YNnEA(G) is A-convergent to the function yi A (G), i. e. if
this sequence is uniformly convergent to y on every compact K~"G. We will
denote by [5]n (Q the set of functions YEA(G), which are A-limits of sequences
of polynomials in A(G). According to the Runge approximation theorem (c. f.
[5]), if G is a simply connected domain in C, [5]n (c>= A (G) holds. This circum-

stance explains the great interest in the space [<E]n(o>.
Definition 2. An operator LiF(M), M=>S iscalledcontinuous in

the sense of Bratishchev and Korobeinik or m-continuous operator, if the
equality
2 (Ly)(2)=r}im(Lyn)(2), Z£G,

>03

holds for every function y t[S]A{G and for every sequence {y,}»=19 y[]*Ssuch
that y=(h—lim)yn

3. 70\ property of the operators L: S—S commuting with the Euler
operator and having /i-continuous extension in the space A(G). We have
proved in [3] that an operator L : S—S commutes with the Euler operator, if

it admits a representation of the type
(3) (Ly)(z)= Y btz*yi*>(z), vztC, \/YES,

where {bK}o*Qis a sequence of complex constants.

We shall establish here that if an operator of type (3)admits am-conti-
nuous extension in the space A (G), then its corresponding sequence is con-
vergent of some order to zero.

Theorem 1 Let G be a bounded, domain in C and O<£conv(G). If
L: A(G)—A(G) is a m-continuous linear operator, which actsin S according
to the formula

(4) (Ly)(t);kzg diktky A (t\ v *f O, YY
where {dK}~LO is a sequence of complex constants, then the asymptotic
equality "o* n -
(5) k—00,

holds (conv (G) is the closed convex hull of G).
Lemma 1 Let G bea bounded domain in C and 0d¢ conv (G). Then
for every complex number cdpO there exists a point tc suchthat t°£G and

(c-h 1) tcpconv (G).
Proof. Suppose the opposite holds: there exists a number£= cOpO such

that (cO-b1)G S conv (G). Then conv [(cO+ 1) G]scon”[conv (G)], i. e.
®) (co+ 1)conv (G)Econv (G).
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Applying (6) n—times, we obtain the inclusion
(7) (cO-bh)"conv(G)gconv(G), n”~N.

Now, because of (7), for nr6cony(O) is fulfiled (cO{-!)"* (conv (G). If [JcO-\-l |
<1, letting n—o00, we obtain the contradiction Of conv (G). Similarly, if |cO-f 1]
>1, letting n—o00, we find that G is not bounded, which is another contradic-
tion. If JfO-fl] =1, by using the assumption O”~conv(G), we obtain the con-
tradiction cO= 0. Thus Lemma 1 is proved.

Proof of Theorem 1 We denote by U(p; q) the disc of centre p
and radius g. Now, if zZOEG (z0+0),let us consider the disc U (zO\O Jzo |), where
the positive number O is such that Gc=£/ (zO, O |zo |). Then |z/z20—1 |<0, yziG

0))
and the series y (z) = %01/(2*6*)(2—sz is A-convergent in the disc U (zO0;
ef ), i e

Yy (z) = (h—Ilim) Pn(z), Pn(z)= %1/(0*r*)(r—ro)*6
=0

N—00

Hence, since the operator L is Art-continuous, it follows
(8) ZiN@) = lim (LP1){z), yziG.
tl»o0

From (8), according to (4), we have

(Ly)(zQ =lim 5 d~P~{z0

/z-)o0 k-0
= lim drkl/NzM= lim 5 dMK/Ok
1— K0 n-a0 k=0

@ _
Consequently, the series Y dKQ\JQk converges to (Ly)(zO and the inequality

9) M1 1dKA /A0
k—%0

®
holds. Because of the inequality (9), the series kz_ dkk\Iz~ +1 determines a func-
=0
tion
(10) B(z)= E:Odkk\!zk+\

which is analytic in the domain {z: 0<] z |<o00}. We shall prove that it is pos-
sible to extend this function analytically in the Fdomain {z: O<|~]<oo0}. It is
sufficient to establish that for every C, O<|]c]<0 there exist numbers a
and r and a function TC(Z) such that the following propositions hold:

a) Tc(z) is analytic in the domain {z: \z—a|]>r};

b) \c—al]>r;

c) Tc(z)=B(z), if \2\ is sufficiently large.

Indeed, let c be afixed number such that O<]c|<;0. According to Lemma
1, there exists a point tc such that tciG and (c-\-1) tc$conv (G). Let us consi-
der a disc U (a; X) such that

(11) Git/(a; X), c6n7(G)ENST'A), (c-f 1) tcdhU (a; X).
Now we put a—ajtc—1, r*Xj\tc\



74 I- Raichinov, R. Raichinov

= k;Obk/(z-a)*+i,

where the right-hand side is Laurent’'s series of the function B (z) in the do-
main {z: 0-fla\<\z—a |<co} (it is not difficult to prove that this series doesn’t
contain non-negative powers of z—a). The proposition c) is obvious, whereas
the proposition b) is equivalent to the inequality [(c-j-\)tc—a which is true
according to (11).

In order to prove a), let us take /?>]a]-f-O and calculate i

bk= 1l(2ni) B (2)(z—a)kdz.

HE
According to (10), we obtain

b, |/2*O \;Vler/Z+Xg=£)*)r* - *'")dZ

=5 3 va( * )(-a)*-4/((2n/) / zs/zv+'dz.

v=0s=0 la—z \=R
Thus, because of
f z'/z'+'dzN2* 1, V=S>
la-r|=A (0, Y5,
we obtain the equality
(12) 6A= Vyov!rfv(-a)*-v( J).
On the other hand, because of (4)

(L\NXMz-ine (* )(-»)*---1)«)_ -iy/t(* ) (-<m)*-m]«,

-id S i *ee)( 1 )(-«)— “E,*m" ((J)<-«)*-e

From this and (12) for t= tc we obtain
bk={L [((z-n/t‘-a)*\m = (L [<z/tc- 1—(alle— 1))*])(*").

(13) b,=(H((z-a)/tr])(n-
Now having (13) and the fact that L is m-continuous, we prove that the
series

(14) kZoV N o= Ar kZO(L[((z—a)/(rnmte)
is convergent. In fact, the /z-th partial sum of the series (14) is
oL L CCr-a)krnih =(ik[{{z~aWnY)){n={L\3 ((z-a)/(rf)}P«n

The inequality |(z—a)/Z(rn Jcl holds in the disc£/(a X) and, consequently, in
the domain G. The sequence of the polynomials yn(z)= Z ((z—a)/(rtc)k is h-

convergent to the function ¢ (r)= Cfl({z—a)/(rtc))*. As the operator L is m-
*<0
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continuous, the limit lira (Lyn(z) = (L(p)(z), yz"G%exists and the series (14) is
convergent. So a) is p-roved too. So we have proved that theseries (10) can
be analytically extended in the domain (0<] z |<£oo}. Consequently, theequality
(15) lim (\dk\k\yik=Q
holds.

From (15), applying Stirlings formula k\=(2nkyr(k/e)kee/12 0£(0,1) we obtain
the equality (5). Theorem 1 is proved.

The following theorem will be of further use.
Theorem 2. If a sequence {dkt”v dk~C satisfies the condition (5),

then the series kz dkélg/(k)(z) is convergent for every z~"G and every functionv
0 (]

y (z) from A (G). In this case the operator A : A (G)-+A (G), acting according
to the formula

(16)(Ay)(z)= S d*zky ™ (2), YY £A (G), yz£G.

Ar=0 c

is (h, h)-continuous extension of the operator (3).

Proof. Let y(z) be an arbitrary function from A (G) and zOfG. Let us
consider the circumference ' with centre zo and small enough radius b. Applying
Cauchy’s integral formula and denoting by /=1,2, large enough constants,
we obtain the estimate

Idizny K ("0) 1iS] dk\\a YINK'I(z Ni)fy (o)~ Zojkrs X \
<\dk\\» WMz n) max ly (z) |/64+12[1&s< |dh\

which proves the first part of Theorem 2, because with the help of Stirling's
formula we can easily obtain that

lim (1 dKIRAWVI) /2= lim (| dh\AZK=1) K -i(2n k)~ Akle

In order to prove thatthe operator (16) is (h,A)-continuous, let us
choose an arbitrary sequence {ynn=v Ynf A (G), which is A-convergent to a
function y(;A(G). Fixing some compact KZG, consider the sequence

(17)  Xa= max |(Ay..)(z2)—(Ay)(2) |
It is enough tg prove that lim X,=Oif K~G. Fixing some other compact

Ki  such that KczK\, K\CzG and applying Cauchy’s integral formula to the
function yn(z)—y (r), we obtain the estimate

(18) ;n(af(( \y€)(z)—y<K (r) \<sk\/bkA max>)(%z)—y (2)\,

where A and b are constants independenton n and K
From (17) and (16), according to estimate (18), we obtain

(19) x,= max | 3 d&k(y~ (2)-y~ (2)) Ismax (3 1dk\ [\((2)—y<>(2) D

Jti K k=0

< S \dk\rrmax\y(K)(z)—y " (2) | Y Idk\KK\A)Ibkmax\yn(z)—y (z) \
k=0 z {K f *=0 z { Ki

<A max\y,(z2)—y @] > 1dh]R(r/b)* (/-=sup |z } 6= -4-dist (/T", 0KJ).
z £Rt k=o G A
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When proving the first part of this theorem, it became clear that this
last series is absolutely convergent. Denoting its sum by a, from(19) we
obtain the estimate

(20) Xn<Ao En(a'{llyn(z)—y (2) f.

Now, from (20) we obtain lim ~,= 0; because the A-convergency yn—y implies
N—eo
that lim max yn(z)~y (z) | O for every compact K\"G. Theorem 2 is proved.

li—o0 © { Kx

Corollary 1 Under the assumptions of Theorem 2 the spaces S and
[S]a(@ are invariant subspaces of the operator A.

The invariance of the space 5 is obvious, and the invariance of the space
ISJA@ is directly implied by the (h, &)-continuity °f the operator /.

4. General formula of the m-continuous linear operators acting from
[5]n (B) to A (G) and commuting with the Euler operator. Let Q be again a
bounded domain in C and O”conv(G). Let us consider the Euler operator E :
A (G)—+A (G), which acts according to the formula

(21) (Ey)(t) = aQty (t)+ axy(t)s VydA(G), WMEG,

where 40pO and ax are arbitrary complex numbers.
Theorem 3. Let L: [S\a(c>—»A (G) be a T-continuous Linear operator
and ELy = LEy, yy(:S. Then there exists a sequence {dKe=0, dkEC such that

the equality (5 and the representation

(Ly)(t) — 5 dktiyM (1), vytISUio]

hold.
Proof. First we shall prove that 5 is an invariant subspace of the ope-

rator L. It is enough to establish that o¥(z):= (LzK(z) £S, Vk=0, 1, 2, *...
The equality ELzk—LEzk implies at once that gk(z) satisfies the differential
equation

k$k(z) = 2PA(z), k=0, 1, 2, ...,

which we can rewrite as follows

(22) (P (*)/**)' =0, k=0, 1, 2
From (22), because of the fact that the domain G is connected, we obtain
(Hk(z) = ckekf ck= const, &=0, 1, 2, .... Consequently, L(S)~S. So, considering

the operator L over 5 only, we can claim that a linear operator acts from S
into S and commutes with the Euler operator. According to Theorem 1 from
our paper [3] the operator L acts over 5 according to the formula (4), in which
{dk} is a sequence of complex numbers. From here, in view of the fact that
the operator L is /n-continuous and applying Theorem 1 (from the present
paper), we obtain the asymptotic equality (5).

According to (5) and Theorem 2, we conclude that 1 : A (G) A {G)
(see (16)) is (h, A)-continuous and the equality

(23) (Ly)(z) = (Ay)(z), vz$G, vytS X
holds. Now we have still to prove that (23) holds for ,y(:[5]n<0) too.
Let yi [5]n (G and the sequence {ynin=v be ~-convergent to vy.

Applying the w-continuity of the operator L, equality (23) and (h> A)-continuity
of the operator A, we obtain

(Ly)(z)=lim (Lyn(z) = lifT (AY.)(2) = (Ay)(z), \/z{G.
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Theorem 3 is proved.
The following theorem is inverse to Theorem 3 in some sense.
Theorem 4. Let G be a domain in C, M a subspace of the space
A (G), for example M= [*S], (O, M==A (G). Let E~I(M)={yiA (G): Ey £M},
where E=--aONe + axl is the Euler operator. If the operator L: M—A(G) is
defined by the equality

(24) (Ly)(z) = kgodo k* (2, vziG,vytM, JdhpA0 (k~l)yk-+oo,

then LEy=ELY, yy 6 —Mf] E~x(M).

Proof. In view of the above conditions we conclude that we may dif-
ferentiate series (24) for every yiM (even for \/y£A(G)). So we end the
proof by a direct comparison of the representations of LEy and ELy.

Let us now assume that E~Z, where Z is a certain algebra of /n-conti-
nuous linear operators L : [*]n (G —»[*]n (@ such that L(S)~S. Further we in-
troduce A*-convergency of a sequence {Z~J”cYZ; such a sequence we call h*-

convergent to an operator L(Z, if Ly = {h—\\m)(Lny)t yy £[S]a (g>.

Theorem b5 Let the hypotheses of Theorem 3 hold for a domain G*
Then the Euler operator E is a h*-minimally commuting element of the

algebra Z.

The proof immediately follows from the proposition that the operators
Ek :[S\a (G —[S]a (G (Eky)(t) = th/K(t), t(:G, A=O, are polynomials of the ope-
rator E. We obtain the last fact from the equalities ~A+i-—E\Ek KEk, k—1,
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