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O N  LINEA R O P E R A T O R S  A C T IN G  IN S P A C E S  O F  A NA LY TIC 
F U N C T IO N S  AND C O M M U T IN G  W ITH E U L E R ’S O P E R A T O R

I. RAICHINOV, R. I. RAICHINOV

In memory o f our teacher Y. A. Tagahilitzki

1. Preliminary notes. Let G be a bounded domain in the complex plane С 
and A(G) denote the space of functions ∕  (z) which are analytic in G∙ Let us 
denote the space of polynomials in С by 5  and assume that A(G) is endowed 
with the topology of uniform convergence on the compacts of G∙

In paper [1] the general form of the operators L :  S—*S commuting with 
the operator of differentiation Qi≈dldz  was found, and in [2] A. V. Bratishchev 
and Yu. F. Korobeinik proved that it is the same as for the linear operators 
L : A (G )—+A(G) continuous in some weak sense and commuting with the ope­
rator (They suppose that the domain G is simply-connected.)

In the present paper a similar result is obtained for operators in A (G) 
commuting with the Euler operator E —a^zQ)-\-axU where а0фО and ax are 
complex constants and I  is the identity in A (G). This result generalizes 
the results of [3] in the same sense in which Bratishchev and Korobeinik ge­
neralized the results of [1]. With its help the question of the minimal commu­
tativity of the Euler operator in the algebra of the linear operators L : A(G)—► 
A(G ) is settled.

The results of the present paper were annouced in [4]. Here the same re­
sults are given in detail and complete proofs.

v2 . D e s c r i p t i o n  o f  t h e  s t r u c t u r e s  a n d  t w o  d e f in i t i o n s .  Let M  be a C- 
linear set (for instance in A (G)) and A and В be linear operators acting from 
M  to M. We denote by F  (M) the algebra whose elements are all linear ope­
rators L : M —+M. The algebraic operations in F (M )  are the usual ones with
operators (AB )у A (By) and so on. Let a convergence k* be introduced in

h* h* 
a subalgebra Z ^ F ( M )  in such a way that Bn— ► В implies PBn— ► PB  and

h*
BnQ — ► BQ for arbitrary operators P  and Q of the algebra Z. Obviously, in
such a case, if the operators Bn commute with a given operator Л, i. e. BnA

h*
=  AB„ and Bn— ► B, then the limit operator В commutes with A too, i. e. 
B A ≈A B .  In addition, in this case every operator of the type

(1) B =  (h*) ∑ rk(A )%
A—0

where A ^ Z  and rk(A ), 6 =  0, 1, 2, . . . , are polynomials of Л, commutes with 
the operator A. Indeed, every operator В of type (1) is Ä*-limit of the partial

∏ h*
sums Sn=  ∑ rk(A ), i. e. Sn— *B  and BA =  AB follows immediately from the

*=o
obvious relation =  ∙,

The operators of type (1) are polynomially generated by A . The operators 
of a given algebra Z  whose commutants are composed' by their corresponding 
PLISKA Studia mathematica bulgarica. Vol. 11, 1991, p . 71-77.



7 2 I. Raichinov, R. Raichinov

polynomially-generated operators only are of a special interest. We introduce 
the following

D e f i n i t i o n  1. An operator A ^ Z  is called a minimally commuting 
element of the algebra Z, i f  its comnutant in Z  includes operators of type
(1) only.

Before giving the next definition, let us denote by h the convergence generated 
by the topology of the space A (G ); we will write y — (h— lim) yn or yn— *y, if the

n—*∞
sequence {y„}%Lv yn£A (G )  is A-convergent to the function y i  A (G), i. e. if 
this sequence is uniformly convergent to у on every compact K ^ G .  We will 
denote by [5]л (G) the set of functions y£ A (G ),  which are А-limits of sequences 
of polynomials in A(G). According to the Runge approximation theorem (c. f. 
[5]), if G is a simply connected domain in С, [5]л (о> =  A (G) holds. This circum­
stance explains the great interest in the space [<£]л(о>.

D e f i n i t i o n  2. An operator L i F ( M ) ,  M≡>S is called continuous in
the sense of Bratishchev and Korobeinik or m-continuous operator, if  the 
equality
(2) (Ly)(z) =  \im(Lyn)(z), z£G,

П—>оэ

holds f o r  every function у t [S ]A{G) and f o r  every sequence {у „ }% = 19 y∏^Ssuch 
that y ≈ ( h —lim )yn.

∏ —*o o

3. A p r o p e r t y  o f  t h e  o p e r a t o r s  L : S—*S c o m m u t i n g  w i t h  t h e  E u l e r  
o p e r a t o r  a n d  h a v i n g  / м - c o n t i n u o u s  e x t e n s i o n  in  t h e  s p a c e  A(G). We have 
proved in [3] that an operator L : S—+S commutes with the Euler operator, if 
it admits a representation of the type

(3) (Ly )(z )=  ∑ btz*yi*> (z), v z tC ,  \/y£S,

where {bk}∞^Q is a sequence of complex constants.
We shall establish here that if an operator of type (3) admits a m-conti­

nuous extension in the space A (G), then its corresponding sequence is con­
vergent of some order to zero.

T h e o r e m  1. Let G be a bounded, domain in С and 0<£conv(G). I f
L : A (G)—>A (G) is a m-continuous linear operator, which acts in S according
to the formula

(4) (L y ) ( t )≈  ∑ dktky ^ (t\  v * f  O, УУA=0

where {dk}~L 0 is  a sequence of complex constants, then the asymptotic 
equality " * л -
(5) k—»oo,

holds (conv (G) is the closed convex hull o f  G).
L e m m a  1. Let G be a bounded domain in С and 0 ф conv (G). Then

fo r  every complex number сфО there exists a point tc such that t°£G and
(c-h 1) tc ф conv (G).

P r o o f .  Suppose the opposite holds: there exists a number£ =  с0фО such 
that (c0-b 1) G S  conv (G). Then conv [(c0+ 1) G ]≤con^[conv (G)], i. e.

(6) (c0 +  1) conv (G )£conv (G).



Applying (6) n— times, we obtain the inclusion

(7) (c0-b l ) "c o n v (G )g con v (G ),  n^N.

Now, because of (7), for лгбсопу(О) is fulfiled (c0-{- ! ) ”* (: conv (G). If | c0-\-l | 
< 1 ,  letting n—+ oo, we obtain the contradiction Of conv (G). Similarly, if |c0-f 1 j 
>1, letting n—>oo, we find that G is not bounded, which is another contradic­
tion. If |f0- f l | = l ,  by using the assumption O^conv(G), we obtain the con­
tradiction c0 =  0. Thus Lemma 1 is proved.

P r o o f  o f  T h e o r e m  1. We denote by U ( p ;  q) the disc of centre p 
and radius q. Now, if z0£G (z0+ 0 ) , le t  us consider the disc U  (z0\ 0 | z0 |), where 
the positive number 0 is such that Gc=£/ (z0; 0 | z0 |). Then | z/z0— 1 | <0 , y z iG

  oo
and the series у (z) =  ∑ 1 /(z*6*)(z — z0)k is А-convergent in the disc U (z 0;

A≈O
e f I), i. e.

у (z) =  (h— lim) P n (z), P n (z) =  ∑ 1/ (0 *г* )(г -го)* 6
л—»oo A= 0

Hence, since the operator L is Art-continuous, it follows

(8) (Z,j/)(z) =  lim (LPn){z), y z iG .
tl—»oo

From (8), according to (4), we have

(Ly)(z0) =  lim ∑ d ^ P ^ { z 0)
/Z-) oo k —  0

=  lim ∑ d ^ k l / ^ z ^ ≈  lim ∑ dMkl/Ok.
11—>oo k—0 n—»oo k=0

OO _
Consequently, the series ∑ dkk\jQk converges to (Ly)(z0) and the inequality

(9) Йт I dkk\ |1/A≤ 0
k—*oo

oo
holds. Because of the inequality (9), the series ∑ dkk\lz^ + 1 determines a func-

k= 0
tion

(10) B ( z ) ≈ ∑  dkk\!zk+\
k≈O

which is analytic in the domain {z: 0<| z |< oo}. We shall prove that it is pos­
sible to extend this function analytically in the Fdomain {z: 0<|^|≤oo }.  It is 
sufficient to establish that for every C, O <|c|≤0  there exist numbers a 
and r and a function TC(Z )  such that the following propositions hold:

a) Tc (z) is analytic in the domain { z : \z—a | > r } ;
b) \c—a | > r ;
c) T c (z) =  B(z), if \z\ is sufficiently large.
Indeed, let с be a fixed number such that O<|c|<;0. According to Lemma

1, there exists a point tc such that tc i G  and (c-\-1) tc $ conv (G). Let us consi­
der a disc U  (a ; X) such that

(11) G i t / ( a ;  X), c ö n 7 (G )£ ^ ö T 'Ä ) ,  (c-f 1) tc ф U  (a; X).
Now we put a — ajtc— 1, r^Xj\tc \
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Tc (z )=  ∑ bk/ ( z - a)*+i, 
k=0

where the right-hand side is Laurent’s series of the function В (z) in the do­
main {z: 0-f-1 a \<\z— a |<co } (it is not difficult to prove that this series doesn’t 
contain non-negative powers of z —a). The proposition c) is obvious, whereas 
the proposition b) is equivalent to the inequality |(c-j-\)tc—a which is true 
according to (11).

In order to prove a), let us take /?>|a|-f-0 and calculate i
bk =  1 l(2ni) f  В (z)(z— a)kdz.

! « - *  l=*
According to (10), we obtain

b„=  l/(2*0 ∕  ( ∑ v! rfv/z-+'X ∑ ( * ) г* ( - « ) * - " ) dz
1 I a—z |==/? v=0 s=≈0

=  ∑ ∑ vWv( * ) (-а )* -Ч / (2л/ ) ∕  zs/zv+'dz.
v =  0 s = 0  5 I a —z  \ = R

Thus, because of

f  z '/ z '+ 'd z^ I2* 1, V=S>
|а-г|=Я ( 0, Уф5,

we obtain the equality

(12) 6A =  v∑ov!rfv ( - a ) * - v (  J ).

On the other hand, because of (4)

(L \ M z - i n e  (  * ) ( - » ) * - - - ] ) « ) _  - i y / t ∙ (  * ) ( -< ■ )* -■ ] « ,

- i d S i * !/«•)( 1  ) ( - « ) — “ £ ,  *■ "  ( J ) < - « ) * - •

From this and (12) for t =  tc we obtain
bk= {L  [ ( ( z - n / t ‘ - a ) * \ m  =  (L [<z/tc- 1 —(аЦе— 1 ))*])(*').

(13) b, =  (H ( ( z - a )/ t r ] ) ( n -
Now having (13) and the fact that L is m-continuous, we prove that the 

series

(14) ∑ V ^  =  l/r  ∑ ( L [ ( ( z - a ) / ( r n m t e) k=0 k—0

is convergent. In fact, the /z-th partial sum of the series (14) is

∑ (L [ ( ( г - а ) К г П Ш П  = ( iL [ { { z ~ a W n Y ) ) { n  = {L\ ∑ ((z-a)/(rf  ))*})«<)■
k≈O k≈O k≈o

The inequality | (z— a)/(r∩  | c l  holds in the disc£/(a; X) and, consequently, in
n

the domain G. The sequence of the polynomials yn(z )=  ∑ ((z —a)/(rtc))k is h-
k≈n

OO I

convergent to the function ф(г)= ∑ ({z—a)/(rtc))*. As the operator L is m-
*=o
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continuous, the limit lira (Lyn)(z) =  (L(p)(z), у z^G% exists and the series (14) is
∏.—> oo

convergent. So a) is proved too. So we have proved that the series (10) can
be analytically extended in the domain (0<| z |<£ oo}. Consequently, the equality
(15) lim (\dk\k\yik≈Q

holds.
From (15), applying Stirlings formula k\≈(2nkyr2(k/e)kee / l2  0£(O,1) we obtain 

the equality (5). Theorem 1 is proved.
The following theorem will be of further use.
T h e o r e m  2. I f  a sequence {dk} ^ v dk^C satisfies the condition (5),

then the series ∑ dkzky(k) (z) is convergent fo r  every z^G  and every function v 
k ≈o  %

у (z) from A (G). In this case the operator A : A (G)-+A (G), acting according 
to the formula

(16) (Ay)(z) =  ∑ d^zky ^  (z), у У £ A (G), у z £ G.
Ar=0 с

is (h, h)-continuous extension o f the operator (3).
P r o o f .  Let y (z )  be an arbitrary function from A (G) and z0fG. Let us 

consider the circumference Г  with centre z0 and small enough radius b. Applying 
Cauchy’s integral formula and denoting by /=1,2, large enough constants, 
we obtain the estimate

I dkzn y {k) (^o) |iS| dk\\z0 \h\k'I(2 ni)fy (t ) ∕ ( t — z 0) k + 1  dx \
Г

≤-\dk\\z0 \kk\/(2 n) max |у (z) |/6*+12∏&≤ | dh \

which proves the first part of Theorem 2, because with the help of Stirling's 
formula we can easily obtain that

lim (I dk I k\ УИ*)‘/* =  lim (| dh \'/k/k~1) k - i(2nk)'^/')kle
к—>00 £—> OO

In order to prove that the operator (16) is (h, A)-continuous, let us
choose an arbitrary sequence {y n)n≈v Уп f A (G), which is А-convergent to a 
function y(;A (G ). Fixing some compact K Z G ,  consider the sequence
(17) Хя=  max | (Ay„)(z)—(Ay)(z) |.

It is enough to prove that lim X„ ≈Oi f  K ^ G .  Fixing some other compact
о rz—>oo

Ki such that KczK\, K\CzG and applying Cauchy’s integral formula to the
function y n (z)—y (г), we obtain the estimate
(18) max \y{Z)(z )—y<k) (г) \≤k\/bkA max\yn(z)—y (z)\,

z ( К z ( A'l
where A and b are constants independent on n and К

From (17) and (16), according to estimate (18), we obtain

(19) X„ =  max | ∑ d&k ( y ^  ( z ) - y ^  (z)) |≤max ( ∑ | dk \\z |*\y(n*> (z )— y<*> (z) |)
Jt i  К  k ≈ O  z  ( К  k ≈ O

≤  ∑ \dk\r *m ax\y(k)(z )—y ^  (z) |≤ ∑ | dk \rk(k\A)lbk max\yn(z )— у (z) \
k≈≈O z  { К  f * = 0  z  { Ki

< A  max\y„(z)—у (z)| ∑ I dh | k\ (r/b)* (/-=sup | z |, 6 =  -4-dist (Л", ∂KJ).
z  £ R t k ≈ o  G ∆

On linear operators acting in spaces of analytic functions 7 5
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When proving the first part of this theorem, it became clear that this
last series is absolutely convergent. Denoting its sum by a, from (19) we
obtain the estimate
(20) Xn< A o  max | y n (z )—y (z) f.

г ( /Ct
Now, from (20) we obtain lim ^„ =  0; because the /г-convergency yn—*y implies

n—i∞
that lim max | yn (z )~ у (z) | =  0 for every compact K\^G. Theorem 2 is proved.

/ i —*o o  г  {  K x

C o r o l l a r y  1. Under the assumptions o f Theorem 2  the spaces S and
[S ]a (G) are invariant sub spaces o f  the operator A.

The invariance of the space 5  is obvious, and the invariance of the space 
I S ]A (G) is directly implied by the (h, &)-continuity ° f  the operator Л.

4. G e n e r a l  f o r m u l a  o f  t h e  m - c o n t i n u o u s  l i n e a r  o p e r a t o r s  a c t i n g  f r o m
[5]л (в) t o  A (G) a n d  c o m m u t i n g  w i t h  t h e  E u l e r  o p e r a t o r .  Let Q be again a 
bounded domain in С and O^conv(G). Let us consider the Euler operator E : 
A (G)—+A (G), which acts according to the formula
(21) (Ey)(t) =  a0ty  (t) +  axy ( t ) 9 vydA (G ), Wt£G,
where я0фО and ax are arbitrary complex numbers.

T h e o r e m  3. Let L : [S\a (o> —► A (G) be a т-continuous Linear operator 
and ELy =  LEy, yy(:S. Then there exists a sequence {dk}∞≈0, dk£C such that 
the equality (5) and the representation

(Ly)(t) — ∑ dktkyM (t), v y t lS U io ]
k =  0

hold.
P r o o f .  First we shall prove that 5  is an invariant subspace of the ope­

rator L. It is enough to establish that cp* ( z ) : ≡  (Lzk)(z) £ S, \/k==0, 1, 2, * . . .  
The equality ELzk — LEzk implies at once that cpk(z) satisfies the differential 
equation

k<$k (z) =  zq>'/t (z), k =  0 , 1, 2, ... , 

which we can rewrite as follows

(22) (<P* (*)/**)' =  0, k≈O, 1, 2,
From (22), because of the fact that the domain G is connected, we obtain 

(f)k(z) =  ckzkf с k =  const, & =  0, 1, 2, . . . .  Consequently, L (S )^ S .  So, considering 
the operator L over 5  only, we can claim that a linear operator acts from S 
into S  and commutes with the Euler operator. According to Theorem 1 from 
our paper [3] the operator L acts over 5  according to the formula (4), in which 
{dk} is a sequence of complex numbers. From here, in view of the fact that 
the operator L is /n-continuous and applying Theorem 1 (from the present 
paper), we obtain the asymptotic equality (5).

According to (5) and Theorem 2, we conclude that Л  : A (G) A {G)
(see (16)) is (h, Ä)-continuous and the equality
(23) (Ly)(z) =  (Ay)(z), vz$G, v y t S  x
holds. Now we have still to prove that (23) holds for ,у(:[5]л<0) too.

Let y i  [5]л (G) and the sequence {y n}n≈v be ^-convergent to y.
Applying the w-continuity of the operator L, equality (23) and (h> Ä)-continuity 
of the operator A, we obtain

(Ly )(z )≈  lim (Lyn)(z) =  li∏i (Ay„)(z) =  (Ay)(z), \/z{G.
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Theorem 3 is proved.
The following theorem is inverse to Theorem 3 in some sense.
T h e o r e m  4. Let G be a domain in C, M  a subspace o f  the space 

A (G), fo r  example M =  [*S]„ (О), M== A (G). Let E~l (M ) =  { y i A  (G): Ey £M},  
where Е=--а0№ +  ах1 is the Euler operator. I f  the operator L : M —>A (G) is 
defined by the equality

(24) (Ly)(z) =  ∑ d.0 ky *  (z), vz  i  G , v y t M ,  | dh |1/A= 0  (k~l)y k -+∞ ,
k =  0

then LEy =  ELy , yy 6 : — M f ]  E~x (M).
P r o o f .  In view of the above conditions we conclude that we may dif­

ferentiate series (24) for every y i M  (even for \/y£A(G)). So we end the 
proof by a direct comparison of the representations of LEy and ELy.

Let us now assume that E^Z ,  where Z  is a certain algebra of /n-conti- 
nuous linear operators L : [^]л (G) —► [^]л (g> such that L (S )^ S .  Further we in­
troduce A*-convergency of a sequence {Z^J^c∑ Z ; such a sequence we call h*- 
convergent to an operator L ( Z ,  if Ly =  {h—\\m)(Lny)t yy £ [S ]a (g>.

/7—)oo
T h e o r e m  5. Let the hypotheses o f Theorem 3 hold fo r  a domain G* 

Then the Euler operator E  is a h*-minimally commuting element of the 
algebra Z.

The proof immediately follows from the proposition that the operators 
Ek : [S\a (G) —* [S]a (G) (Eky)(t) =  tkŷ k)(t), t( :G , A≥O, are polynomials of the ope­
rator E. We obtain the last fact from the equalities ^A+i-— E\Ek kEk, k — 1,
2, . .  ∙ ' . .
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