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EXPONENTIAL APPROXIMATION IN THE NORMS AND SEMI-NORMS

PAULINA PYCH-TABERSKA, ROMAN TABERSKI

The deviations of some entire functions of exponential type from real-valued functions
and their derivatives are estimated. As approximation metrics we use the ZAnorms and power
variations on R. Theorems presented here correspond to the Ganelius and Popov results con-
cerning the one-sided trigonometric approximation of periodic functions (see [4, 5 and 8]).
Some related facts were announced in \2, 3, 6 and 7].

1. Notation. Given a number 1, let Lp(a, b) be the space of all com-
plex-valued functions Lebesgue-integrable with /-th power on the interval (a, b).
Denote by Loo(a, b) the space of all measurable functions essentially bounded
on (ia, b). As usually, the norm of the function /£ Lp (a, b) is defined by

(/ f(x)\pdx)llp if p < oo.

a

ess sup |/(at) | if p- oo
X i (a, b)

||/I/I/ﬂa. b) -~

We write Lp instead of Lp (—o00, co). Moreover, by convention, L==L1

Let Lpc be the class of all complex-valued functions belonging to every
space LP (a, b), with finite & b (a<b). Denote by AC™c the class of complex-
valued functions/ having the derivative f(n) absolutely continuous on each
finite interval (a, b).

For any function /fAfoc, the limit

T |11\ P@.b)- I AN\

is finite or infinite. In the case of /£ Lp,
ii/ii,=fi/i"<o -
Consider a (complex-valued) function/ defined on the interval /=(a, b).

Write
m

Vp(f:l)E*Sanp{ 2 \f(xj)—f(x L I\f}4p  (0< p<- o0o),

where the supremum is taken over all finite systems n of the intervals (X0, XX,
(Xxv x2>,. .., (xm v xm (x0=a, xm=Db; m=1,2,...). This quantity is often
called the /;-th power variation of / on /. If/ is defined on R= (— oo, o00), wel
can also introduce the p-ih (power) variation

V(- V¢ R-syp V., (/; 1 (<=Ry
We assume, additionally”™ that

R)- sup. \f(s)-f(t)\.
8ic (s)-f(t)
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As well known, Vp(f)*V g(/), if o< p< q< oo.

Denote by BVP [resp- BVpx] the class of all complex-valued functions P
with finite A-th variation Vp(\ R) [Vp(g> 1) for each finite interval /]. Obvi-
ously, an arbitrary function f "BVp [resp. fAB V™ is bounded on R [on finite

intervals /]» Moreover, any / of class BVmc (0O< p< o00) has one at most enu-

merable set of discontinuity points n; at which the one-sided limits /(n:%o)
exist. The class BVP (/?>1) with non-negative functional Vp(d) is a certain
semi-normed space.

Let Ea be the class of all entire functions of exponential type, of order
a at most. Denote by BaP (o <cr<oc-#Il<p<o00) the set of functions FEEa
which belong to Lp (on R). Write B<j=Ba,o. As well known [10, p. 248],
£a,pczBa,q if 1<p < g<”=o.

Suppose that/ is a fixed function of class Lmc [resp. BVPJ (/7= 1). De.
note by Ha.p(f) [resp. DaP(f)] the set of all functions G£Ea such that
f—GELP [f—G~BVP\ Introduce the quantities

[ ] inf 1/—sj| ifisnotempty
ISC/W/)
00 otherwise
and
( inf Vp(f—S), if Dap{f) is not emptv
Vs (1),-1]
( 0o otherwise.

The first [resp. the second] of them is called the best exponential approxima-
tion of / by entire functions of class Ea, in ZAnorm [in .BK”-semi-norm].

We will write WrBVp for the classconsisting of all functions dp£AC[~cl
such that £ BV P (rE N, p=\). The symbols ck [resp. ct( ...)] (A, | £N)
will mean some positive absolute constants [positive numbers depending only
on the indicated parameters r, ...].

2. Fundamental lemmas.Let us begin with an analogue of the well-
known Bernstein inequality.

Lemma 1. If G™"Ba (0< a< oo), then

(1) Vp(G')<c>Vp (G) for each /7= 1 ,
Froof. Putting

ak—22a1 71 1, x2,.,.),

we have

2 G(t)=3% b3 G(t+ll)
\Y a *

for all real t (see e. g. [10, p. 216]).
Consider an arbitrary partition

{a=x0 xl<---<xml<xm=b}

of a finite interval <a, b). By the identity (2) and Minkowski’s inequality, for
every finite /?>1,
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{/2 IG (xj)-G> (*,_,) N'r

im
-i- -V 2
! /?=—Z(D Uk {j:

AN

This gives (1) for finite /7?>1. If p=00, the proof is trivial.
Consider now functions @ belonging
duce the singular integral

1 00
<

46 (ti+ uk)— G (ti-x + uk)\p}1"

BWI[d] (2)- 4 - _7 SW* « (z—t)dt
with

to the space Lq (Is~<o00). Intro-

(z=x4-/».

/& (Q==(cos”-cos2aQ/(aC2?
Clearly, /CefAa.i.

(0 < a< 00).
As well known, Wo>\s Z2a and in the case of e Baq

WS ()= o) (1; BR).
Further, I Ka\\i“cxn (c1<2-h 45-2log 3).
iF[cple™ (see [1, Sect. 106])).

Consequently,
An easy calculation leads to

IWMc] Jas e xlld Ny i.e.,
Lemma 2. Let ¢« eBVp (1<p”o00).

Then

Vp(W[4>])<CIVpto).
. Given a positive number ¢ and a positive
conditions

let p
20 p'(t)
30

integer r, be an even
real-valued function continuous with its derivatives p', p" on R, satisfying the
1° plo)=p'o)=o
=0

(tr+") and p"(t)= O(t') as t-+ O+,
for all t=c.

Consider the Bernoulli type function

M *)*"s F lim _é '”’l:‘n\t eitxdt (x(R>
As well known, ®r is

real-valued bounded and Lebesgue-integrable on R In
the case of r=2, it is continuous everywhere ([1, Sect. 101]).
Lemma 3. // a>c, then there exist entire functions PQr, QQ 1
such that
1° Pa, r(x)M®r(x), Qo.r(x)<,or(x) for all x(:K
2 IPM-®«iii

. N
The proof is given

- Qi X 1v) forv=o0, 1...,r.
in [9] (see also [6, Sect. 2]). >
Finally, we will present the following supplementary
Lemma 4. Let fbBV?x (X~p<oo) and let Vo(/)~= 0 for
real Xx.

a>0. Then there exists an entire function FEFa such that F{x)=f(x)
all

some finite
for
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Proof. Consider a function f*BVp (Isp<oo0). By the assumption for
every VEN, there are entire functions FMNEEa satisfying the condition

(4) sup \f{u)—Fv(u)—f(v) + Fv(v) |<J-t-:
u, viR v
Without loss of generality, we may suppose that /(0) =F V(0)= 0.
From (4) it follows that \f(u)—Fv(u)Isv-1 (v=i, 2,...)» uniformly in
«ER. Consequently, lim Fv(u)~f(u), uniformly on R an(} SUPRIFy(u)\SM for

v=1, 2,..., where M= 14- sup \f(u) |< oo. *J m
n(R

Further, if z= x-\-iy is an arbitrary complex j.number, the Bernstein ine-
quality leads to

\Fv(z)\s*AdeaM (v=1, 2,...)
and "i; *‘:;  QjifiiM- ®m. - -1 . , -
IFv(z)—F,,(z)\sMeaM sup \Fv(u)—Fviu)\ (u, VvFN)
ui R

(see [1, Sect. 83]). Hence, in view of the well-known Weierstrass Theorem,
the limit lim Fv(z)=F(zj is finite for every complex z, FAEa and F(x)=f(x)
on R. .
In the general case, when ft BV o, the starting point is similar to that
of Theorem 1 in Sect. 107 of [1].

3. Main results. Now, some approximation theorems will be given.

Theorem 1. Letf be a real-valued function of class AC[~X(r£ N),
having the derivative f* £BVfa (I"p<oo)f and let S7c(f{r))p< oo for some
positive number c. Then for every c there exists an, entire function
Taf£Ea such that

1° Ta(x)>f(x) for all x(: R

2° Vp(TO—)<c3r)<j-rv*(fN)p.

Proof. Given any /1> 1, set us choose an entire function gn™Ea real-
valued on R such that

6 vw(f)-aswq@n

Retain the symbols ®@,., PQr>Qa.r used in Lemma 3.
By the well-known theorem ([1, Sect. 101]), for all real X,

f(x)-g*(x) =ne(x)+ ] {f*(1)-£4t)}<br(x-t)dty
where denotes some «entire function of class Ecd real-valued on R There-

fore, putting

A(z)=9g.,(z)+Qc(z) (z=x+1iy) 4
and

h+( - 4 -{\fr) (t) t+ f(r) (t)b

£ A-«)-!A-{Iftr)W-g°r)w ~f'nw + N}

we can write
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fn=A (x)-h f h+(t)<br{x-t)d t—_f h-{t)<br(x—t)dt (x£R).

— 00

Introduce the function of a complex variable z :
T,(z)=A (z)+ ] h+({t)Par(z—t)dt—/ h~(t) Qg,r(z-t) dt.

It is easy to show that Ta(Ea(see the proof of Lemma 4).
The identity

Ta(x)-fix)=_/ A+{t){Pa,, (X-1)—dr(X-1)}d t + h - it) {dr(x-t)

-Qa,r{X-t)}dt

ensures that Ta(x)~f(x) for all real x. Furthermore, by Minkowski's inequa-
lity, (5) and Lemma 3,

Vp(Ta-f)< Vp(A+) fPar - &r|li+ Vp(h~) Ndr- Qe., U
<svp(f»-sg>) {IIPar-orix+ ||or+ Qa,,lr}
<s™MVa(/ ("%.2r2(r, o) CI.

Thus, the proof is completed.

The following related result can be obtained parallelly (cf. Ths 3.2, 3.3
of [6], Th. 45 of [7] and Ths 3, 4 of [3]).

Theorem 1. Letf be a real-valued function of class AC[~I, with
f(r)(:Lioc (Is/?<o00), and let Ac(f{r))p< «» for some positive number c. Then
for every cr>c, there exists an entire function TabEa such that

1° Ta(x)=f(x) for all * &R,

20 \\TGf\\pscAr)a-'Aa(f™)p

Remark. Theorems 1, 1' in which the conditions 1° are dropped re-
main also valid for complex-valued functions /.

Proposition 1. Let il/£Zz and let y'*"BV? (1<Lp< oo). Suppose that
for some entire function G of class Ea (0 < ct< oo) the estimate

() Vp@ar-G)~cba- 1V, W)
holds. Then
(7) Vp(v'-G')scaVpW). '

Proof. It can easily be observed that the function X is uniformly con-
tinuous and bounded on R; whence Y£La for each a=l. From (s) it follows
that G"Ba

Consider the operator W defined by (3). Since W'[y] £#2a,b we have
W [y1e Z%0.i- Therefore, W[y]iBVp and in view of Lemma 2,

4*(mv}P<Vp(WI[y]-G)=Vp{W[y-G\)"c1lVp(y-G),
i. e
(8) V» (W [vDp<CiCs a1 Vp(v')-
Given any >.>1, let -S[U?[y]] be an entire function of class B[] such that

9) H,(WW-S[H[]V]»<*-V.(W1VJ),.
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By subadditivity of /;-th variation,
Vp(v'-G )< v,,W - r[v'])+ Vp(S' [WA[V]]—O")
+ vp(WM -5 + AV+ V3

and (see Lemma 2)

N.< Vily ) + Vb (w VDL, 1+ ¢) vp(V).

From Lemma 1, (9), (8) and (s) it follows that
[UMyll-G)sa{v/, (S Imnvl
+V, ("M -G )}<sa {XVa(*M )P+~VV(V-<?)}

<a{XclG T 1Vp(vO +Vs[] V,(v)}-.(XNi)ciceVr(v')-
Since U/[v/']=ir' [4/] (U/[v]s RB20, we have

N/j= Vp(W IV]—S' [WAN]}J
< 2aV,[W [V]--S [W [VI])< 2gXV o(W [y])..

by Lemma 1 and (9). Applying (8), we get Afs<5!x,ci£sVip(4/,)-
Thus,

V,(y'm-G')s(1+ cXYVp(y')m(X+ 1)cics Vp(V)' + 2XClc6Vp(y')-

and passing to limit as X-»l4-, we conclude that Vp(y'—G')<(l+7i
+ 4N\cHV p (v')- , ] ) L
This gives (7). Analogously, the following implication can also be proved
(see the estimates (1.1), (2.3) and propos. 2.7 of [7]; cf. propos. of [9]).
Proposition 1'. Let'y be as in Proposition 1 with a finite p~>1
Suppose that for some entire function G of class E, (0—ct< «),

I'V—G Y<c- Vp(y')-
Then H .
, HV'-O' YH,c6a-"">Vp(v')-

Theorem 2. Suppose that f is a real-valued function of class BVP
(Is/?<00). Then for every finite ct>0 there exists an entire function Ta£Ba
satisfying the conditions:

1° Tra(x)=f(x) for all real x,

20 \\TI-fh*c~r~ypVp(f),

3» VP(T'a-f)< c 10Vp(f).

The proof is similar to that of Theorem 3 in [s].

Theorem 3. Let f be a real-valued function of class WrBVp (réN,
1<p < o00). Then for every finite ct- o there exists an entire function TafEa
such that

1° Ta(x)zif(x) for all real x,

20 ITM-Z(V)]Ip< 5 ~ 4 r Kp(/">),
3° v, (Tr>-fw)< Ciari,v)-Vp(fr)),

where v=0, 1Moreover, in the case when fir~l)ELf the estimates
in 2° and 3° also hold for v-=r.
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Proof. In view of Theorem 2, there is an entire function Txih£EBa (a>0),
real-valued on R, satisfying the inequalities

I lir;", -f(>\l,<c9a-"" v,, (Z()),
Il K (K -f@)<cioVp(f(™>:

Suppose further that ff=c>0. Retain the symbols &r, Par, Q]r defined in
Section 2, and start with the identities

(10)

f(X)= Fc(X)+ Joo/<>(t) @, (x -f) dt
= /&KW + AW + im{f’\\t)-TIr{t)}(t>r{x-t)dt (J"R),

where Fc means some entire function of class Ea and
Ja(z)==/ orm) T'r(z—u)du (z=x+1iy. X, YER)

(sec [1, Sect. 101]). It is easily seen that JaiB G
Introduce the auxiliary function

g{x)szf(x)-Fc(x)-J«{x):_7oo {f(r>(t)-n'r(t)}Or(x-t)dt;

write
Atw —i-{I/an(t)-Tirit) 1+/<) (0 - r;, (1)},
h-w -4-{ /(>0 - 7%,0)1-7,)(0+7";,(0 }.
Then
£E(*) = 100A+ (t) ®r(x—t) dt—iOO hr(f)<t>Ux—t)dt (x(R).
Putting

ya(z)ss_f h+(t()DPa,r,(z—t)dt—_th~(t) Qar(z—t) dt (z=x +iy).
we have

(11) y*(x)-g(x):i/ h+(t){Par(x-t)-<br(x-t)}dt

+ 7 K O{Q>r(x-1)-Q &, (x-t)}dt.

Therefore, Ya£Ba,P and Ya(x) =2 g (x) for all at™R.
Taking the entire function Ta with values

(12) Ta(z)=Fc(z)4-Ja (z) + Ya (2),
we observe that
(13) Ta(x)-f(x)=Ya(x)-g(x) for all x$R.
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Hence,
TatEa and Ta(x)™f (X) on R
From the identity (11) it follows that for each non-negative integer
vsr—iu,

y@)(x)"g”n(x)= 7 (x-t)} dt

— ©

mr{~ (O) [<>(x-1) - O™\ (Xx—t)}dt (X & R).

o=
+ /

Therefore, by Minkowski’s inequalities and Lemma 3,

linv)-Ar(viU<P+I> A - AT+ TTA -1, LoA-QAIU

, '1-S " 'y ;<2c¢,(r, y)ov-4i/<)-7";,iu
Consequently (see (13) and (10)),
7w -7t*> |l,= I KW -gO [|.,<2 c2(r, V) c9(jv—c-1ii>n (/ ().
Since
K, (K>-g<)s (A a > -0 <>t
+  (A) 1e*/>—Q$ Hi<2 c2(r. vy avFVPp(/<'>-1; ),
we have

VP(T¥-fN)= Vp<rn-g<~<2c2(r, v)clofr>r' I/,(/(>).

Thus, for Ia defined by (12), the inequalities occuring in 1° and 2°—3°

(with non-negative v<r—1) are proved.
Assuming that /<—>£Z. and applying propositions 1 and I', we get at

once the desired assertion for v=r.
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