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Abstract. We propose a method of constructing partial Steiner triple
system, which generalizes the representation of the Desargues configuration
as a suitable completion of three Veblen configurations. Some classification
of the resulting configurations is given and the automorphism groups of
configurations of several types are determined.

Introduction. Let us start with the classical Desargues configuration
103 arising from the Desargues theorem on the perspective of two triangles in a
projective space (cf. eg. [5]). This configuration consists of three lines of size 3
through a point p, three Veblen subconfigurations inscribed into every pair of the
given lines, and an axis which joins corresponding points of intersection. This
description does not characterize the Desargues configuration, actually also the
combinatorial Veronese space V3(3) (cf. [13]) may be presented in the same way,
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and it is not isomorphic to the Desargues configuration. Besides, these two are
the only possible. Constructing the Desargues configuration we join six points on
the lines through p so as two triangles appear; constructing a Veronese space we
draw a hexagon, which makes the resulting configuration a cousin of the Pappus
Configuration. As a generalization of such situation the following question arises.
Given a set of points S, let p be a point and let Lp be a set of triples of points of
S, called lines, all containing p ∈ S. What configurations can appear when every
pair of these lines yields a Veblen figure (such a situation appears eg. when we
consider the perspective of two n-simplices in a projective space, cf. [14]). In the
paper we give some answers to this problem. It is also worth to point out that
our investigations lead us to purely combinatorial problems concerning, in fact,
determining partial Steiner triple systems defined on the universe of 2-element
subsets of a given set (cf. Representation 3).

The resulting configuration M is determined by some graph P on n
vertices and the way of joining points of intersection of “second” pairs of lines
in the corresponding Veblen figures. The way to join points in the Veblen
figures is characterized by an isomorphism γ determining the type H of the
configuration which constitute these points. The obtained configuration will
be written M = MVn.

γ

P
H. A natural rule of such a joining is suggested by

the construction of the combinatorial Grassmann space G2(n). In accordance
with this rule every triple of lines through p yields in M either the Desargues
Configuration or the V3(3) space. In most of the considered examples this rule
will be adopted (one interesting exception is discussed in Representation 3 and
Proposition 17). After that the configuration M = MVn.

P
G2(n) is determined by

a graph P only. A classification of the investigated configurations follows from
some natural classification of graphs, proposed in the paper.

For fixed n all the configurations MVn.
γ

P
H have the same parameters

(numbers of points and lines), but, of course, they need not to be isomorphic.
Section 4 contains the classification of MVn.

P
G2(n), for n ≤ 5 (Theorems 4

and 5). It turns out that there are exactly three nonisomorphic configurations
MV4.

P
G2(4), and exactly seven nonisomorphic configurations MV5.

P
G2(5). In

Section 3 we determine automorphism groups Aut(MVn.
P
G2(n)) for arbitrary n

and some more regular graphs P (Proposition 10, Corollary 1, Propositions 12,
13, and 14). As a consequence we obtain a characterization of automorphisms of
our small configurations classified in Section 4.

Among the structures discussed in the paper two types seem especially
interesting, possibly for their own. The first one consitute structures of the form
MVn.

Kn
G2(n) ∼= G2(n + 2), generalizing the Desargues configuration, which are
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studied in details in [14]. The second type constitute structures MVn.
Nn

G2(n)
determined by an empty graph Nn; these structures generalizing the Veronese
space V3(3) slightly remind also generalization of (dual minor) Pappus configura-
tion.

1. Generalities, definitions, and basic facts. Let X be a non-
empty n-element set. For every nonnegative integer k let ℘

k(X) denote the set
of all k-element subsets of X. We begin with recalling some fundamental types
of graphs (nonoriented, without loops) defined on X (cf. [18]). We write

Kn – for the complete graph 〈X, ℘2(X)〉, and Nn for the empty graph 〈X, ∅〉,

Ln – for the linear graph
〈
X,

{
{xi, xi+1} : i = 1, . . . , n − 1

}〉
for some ordering

x1, . . . , xn of the set X,

Cn – for the (closed) n-gon
〈
X,

{
{xi, xi+1} : i = 1, . . . , n − 1

}
∪

{
{xn, x1}

}〉
,

Kn1,n2 – for the complete bipartite graph
〈
X,

{
{xi, xn1+j} : i = 1, . . . , n1, j =

1, . . . , n2

}〉
, (n = n1 + n2); in particular, Mn−1 = K1,n−1 is the pencil with

n − 1 edges;

if X ⊂ Y , |X| = n, |Y | = m, and T is any of the above types of graphs on X, we
write

T
m – for the image of the graph of the type T defined on X under natural

embedding of X into Y .

If P is a graph defined on a set X (ie. P ⊂ ℘
2(X)) and A ⊂ X, we write P fA

for the restriction P ∩ ℘
2(A) of P to A.

Further, we briefly recall the definitions of some (combinatorial) struc-
tures, which will be used in the paper.

Desarguesian closure D(S) of a graph S (cf. [15], [7]) Let S = 〈S, E〉, where
E ⊂ ℘

2(S) is a nonoriented graph without loops. We complete its every
edge e ∈ E with a new point e∞ in such a way that distinct edges get
distinct improper points. Let T be the set of all triangles in S. With every
triangle T ∈ T we associate a new line T∞ consisting of the points e∞,
where e ∈ E , e ⊂ T . The structure D(S) is the incidence structure

〈
S ∪ {e∞ : e ∈ E},

{
e ∪ {e∞} : e ∈ E

}
∪

{
T∞ : T ∈ T

}〉
.

Combinatorial Grassmannian Gk(X) (cf. [13], [14], [9]) For any positive integer
k such that 1 ≤ k < n we put Gk(X) = 〈℘k(X), ℘k+1(X),⊂〉. We write,
shortly, Gk(n) ∼= Gk(X), where |X| = n. (The structure G2(n) formalizes
the perspective of two (n − 1)-simplices, cf. [14].)
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Combinatorial Veronesian Vm(X) (cf. [11], [13]) We write ym(X) for the set of
m-element multisets with elements from X, coded with the rule

xm1
1 . . . xmν

ν =
{

x1, . . . , x1︸ ︷︷ ︸
m1times

, . . . , xν , . . . , xν︸ ︷︷ ︸
mνtimes

}
,

where the mi are nonnegative integers, m = m1 + . . .+mν , and x1, . . . xν ∈
X. The structure Vm(X) is the incidence structure whose points are
elements of ym(X), and lines are all the sets of the form fX r = {fxr : x ∈
X} with 1 ≤ r ≤ m and f ∈ ym−r(X). For short, we write Vk(n) ∼= Vk(X),
where |X| = n. (For some results on classical projective Veronesians we
refer the reader, eg. to [2, 10, 17].)

Let α ∈ SX i.e. let α be a permutation of X; we write α(m) for the natural
action of α on ℘

m(X). Clearly, α(k) ∈ Aut(Gk(X)). In a similar way SX acts
(faithfully) as an automorphism group of Vk(X).

Example 1. G2(3) ∼= V1(3) is a single 3-element line. G2(4) ∼= V2(3)
is the Veblen Configuration. Moreover, Do := G2(5) ∼= D(K4) is simply the
Desargues configuration, and Vo := V3(3) is the 103G-configuration of Kantor
(cf. [6], see also [3]), presented in Figure 1. ©

Finally, let us recall some standard notations from the theory of partial
linear spaces. If M is a partial linear space with constant point degree and line
size we write νM for the number of its points, bM for the number of its lines, rM

for the degree of any of its points, and κM for the size of any of its lines; M is also
called a (νr, bκ)-configuration, where ν = νM, r = rM, κ = κM, and b = bM.
A partial Steiner triple system is a partial linear space whose lines have size 3;
consequently, every (νr, b3)-configuration is a partial Steiner triple system.

Proposition 1. Let G = G2(n + 2) and V = Vn(3). Then νG = νV =(
n+2

2

)
, bG = bV =

(
n+2

3

)
, κG = κV = 3, and rG = rV = n.

This means that G and V both are
((

n+2
2

)
n
,
(
n+2

3

)
3

)
-configurations.

In this paper we are going to construct and investigate a class of (νr, b3)
configurations. In particular, we are interested how do they look like, and what
are their automorphisms. We end this section by recalling some classical results
on (νr, bκ) configurations, and the definition of subspace of a partial linear space.

Proposition 2 (Kirkmann). A Steiner triple system can be defined on
an ν-element set if and only if ν ≡ 1 mod 6 or ν ≡ 3 mod 6.

Proposition 3 [1]. If M is a (νr, bκ)-configuration, then νr = bκ. A
(νr, bκ)-configuration is a linear space if and only if

(ν
2

)
= b

(κ
2

)
.
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Theorem 1 [4]. There is a (νr , b3)-configuration if and only if ν ≥ 2r+1
and νr = 3b.

A subset Z of the point set of a partial linear space M is a subspace of M

if every line of M which crosses Z in at least two points is entirely contained in
Z.

2. Construction of some
((

n+2

2

)
n

,
(

n+2

3

)
3

)
-configurations. In

this section we are going to give our constructions. Let us start with a repre-
sentation of Vo = V3({a, b, c}), which consists in suitable modification of the
construction of D(K4).

Representation 1. It is seen that the set y3({a, b}) yields in Vo the
complete graph K4 with vertices

(1) = a2b, (2) = b3, (3) = ab2, and (4) = a3.

We have a new point (i, j)∞ added on the edge (i), (j) for every pair i, j with
1 ≤ i < j ≤ 4.

(1, 2)∞ = bc2, (1, 3)∞ = abc, (1, 4)∞ = a2c, (2, 3)∞ = b2c,

(2, 4)∞ = c3, (3, 4)∞ = ac2.

For two triangles (1)(2)(3) and (1)(4)(3) of K4 (with the common side (1), (3))
we add two lines which join their improper points:

(1, 2)∞, (1, 3)∞, (2, 3)∞ bcX and (1, 3)∞, (1, 4)∞, (3, 4)∞ acX;

the other two new lines join improper points of three edges which complete (1), (3)
to a quadrangle in K4:

(1, 4)∞, (2, 4)∞, (2, 3)∞ cX2 and (1, 2)∞, (2, 4)∞, (3, 4)∞ c2X.

Recall, that to obtain the Desargues configuration Do we need to add every
of the four new lines as joining improper points of edges of a triangle in K4

(cf. [7]). ©

On the other hand, the configuration Vo can be, more intuitively presen-
ted in the following way:

Representation 2. The three lines L1 = abX, L2 = acX, and L3 = bcX
of Vo pass through the point p = abc (the center). The other two points ai, bi
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on the corresponding Li are: a1 = a2b, b1 = ab2, a2 = ac2, b2 = a2c, a3 = b2c,
b3 = bc2. The structure Vo contains also the lines Gi,j = ai, bj (i 6= j); namely
G1,2 = a2X, G2,1 = aX2, G1,3 = bX2, G3,1 = b2X, G2,3 = c2X, G3,2 = cX2.
After that the diagonal point cl is placed on Gi,j , Gj,i, where {i, j, l} = {1, 2, 3}
(c1 = c3, c2 = b3, c3 = a3). Finally, Vo is obtained by adding one new line X3

(the axis) which joins the diagonal points of the corresponding three quadrangles
(see Figure 1).

Now, we can immediately recognize a similarity between Vo and other
classical configurations, in particular, the Pappus (and Pascal-Brianchon) confi-
guration (cf. [5, 8, 12]).

It is worth to note that if we introduce the lines Ai,j = ai, aj and Bi,j =
bi, bj and require that the points cl on Ai,j , Bi,j ({i, j, l} = {1, 2, 3}) are on one
axis, then simply the Desargues Configuration will arise (cf. [5]). ©

abc

b c
2

ac
2

a b
2

a
3

b
3

c
3

ab
2

a c
2

bc
2

abX

acX

bcX

X
3

bX
2

c X
2

b X
2

aX
2

a X
2

cX
2

Fig. 1. Configuration Vo

Both Representation 1 and Representation 2 can be generalized.

Construction 1. We define the closure D̃(Kn) of the complete graph
Kn as follows. First, we complete every edge of Kn by an improper point, like in
the case of defininig D(Kn). The obtained triples constitute one class of lines of
D̃(Kn). Let e be a fixed edge of Kn. The second class of lines of D̃(Kn) consists
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of the sets of the form {e∞1 , e∞2 , e∞3 }, where the ei are edges of Kn such that one
of the following holds:

– e1, e2, e3 is a triangle in Kn which either misses e or has e as one of its sides;

– e, e1, e2, e3 is a quadrangle in Kn.

Since the automorphism group of Kn is transitive on its edges, the isomorphism
type of D̃(Kn) does not depend on the choice of a particular edge e. ©

Construction 2. Let us fix a natural number n and let us write X =
{1, . . . , n}. Let p be a point, and let L1, . . . , Ln be distinct lines (rays) through
p. On every line Li we consider two other points ai, bi, and then we have lines
Gi,j = ai, bj for all i, j ∈ {1, . . . , n} with i 6= j. After that we complete every
system of points on Li, Lj to the Veblen figure adding a point ci,j on Gi,j , Gj,i

(note: we can write, in fact, ci,j = c{i,j}, i.e. we can consider the points c’s as
labelled with elements of ℘2(X)). Finally, for every T ∈ ℘3(X) we consider the
line CT =

{
cz : z ∈ ℘2(T )

}
.

p a1
b1

a2

b2

a3

b3

a4

b4

l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

p a1
b1

a2

b2

a3

b3

a4

b4

l4

l3

l1

l2

c12

c23

c13

c24

c14

c34

The configuration PB(4) The configuration MV4.
N4

PB(2)

Fig. 2. The configuration PB(4) and its cousin (cf. Example 2)

The obtained system of points and lines will be denoted by PB(n). ©

As an example we present Figure 2 which illustrates the structure of PB(4).

In view of Representation 2 the following is immediate:
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Proposition 4. PB(3) = Vo.

It is slightly more difficult to prove

Proposition 5. D̃(Kn+1) ∼= PB(n).

P r o o f. Let X = {1, . . . , n +1} be the set of vertices of Kn+1 and let the
edge {1, 2} be fixed. We label the points and lines of D̃(Kn+1) in the following
way:
p = {1, 2}∞, a0 = 2, b0 = 1, L0 = {1, 2},
ai = {1, i}∞, bi = {2, i}∞, Li = {1, 2, i}∞, G0,i = {2, i}, Gi,0 = {1, i}, c{0,i} = i,
for i = 3, . . . , n + 1,
c{i,j} = {i, j}∞, Gi,j joins improper points of the quadrangle (1, i, j, 2) in Kn+1

(with p omitted), C{0,i,j} = {i, j}, for {i, j} ∈ ℘
2({3, . . . , n + 1}),

CT = T∞ for T ∈ ℘
3({3, . . . , n + 1}).

It is seen that the above labelling establishes an isomorphism of D̃(Kn+1)
on PB(n) with its rays numbered by the integers 0, 3, 4, . . . , n + 1. �

Proposition 6. The incidence structure PB(n) is isomorphic to the dual
of V3(n).

P r o o f. Let X = {t1, . . . , tn}, V = V3(X), and M be the dual of V.
Set Li = t3i for i = 1, . . . , n; these lines of M meet in the point p = X 3. Next,
we define ai = tiX

2, bi = t2i X for i = 1, . . . , n, and c{i,j} = titjX for distinct
i, j ∈ {1, . . . , n}. A straightforward verification shows (see Section 3 of [13] for
details) that the above yields a required isomorphism. �

The following is evident.

Proposition 7. For every natural n ≥ 3 the structure B = PB(n) is a
partial linear space (a partial Steiner triple system, cf. [16]), with parameters:

(1) νB =

(
n + 2

2

)
, bB =

(
n + 2

3

)
, rB = n, κB = 3.

Remark 1. Let us modify the construction of PB(n) so as we draw lines
Ai,j = ai, aj , Bi,j = bi, bj , and after that ci,j is on Ai,j , Bi,j. It is seen that we
obtain simply G2(n + 2) ∼= D(Kn+1).

The way in which the points cz are grouped into lines is, from some
point of view, natural. Following this way we obtain, in particular, that the
subconfiguration of PB(n) spanned by the points cz is isomorphic to G2(n). But
it is not the unique one. In what follows we shall generalize our construction.
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Construction 3. Let n be a fixed natural number and X = {1, . . . , n}.
The construction goes in several steps.

Step A Let p be an arbitrary “point”.

Step B Through p we have lines Li, and new points ai, bi on Li, for every i ∈ X.

Step C We choose a subset P of ℘2(X), and after that

if {i, j} ∈ P: we draw lines Ai,j = ai, aj and Bi,j = bi, bj ; the point c{i,j}
is common for Ai,j and Bi,j ,

if {i, j} ∈ ℘
2(X) \ P: we draw lines Gi,j = ai, bj ; the point c{i,j} is com-

mon for Gi,j and Gj,i,

for every {i, j} ∈ ℘
2(X). It is seen that the point p and the points ai, bi

(i ∈ X) have degree n, while (up to now) cz with z ∈ ℘
2(X) has degree

2. Moreover, the number of the points cz is
(
n
2

)
.

Step D Let H be any
((

n
2

)
n−2

,
(
n
3

)
3

)
-configuration. Finally, we identify the points

cz constructed above with points of H (under some bijection γ) and,
consequently, we group the points cz into new

(
n
3

)
lines obtained as

coimages of the lines of H under γ.

The resulting configuration will be written as MVn.
γ

P
H. ©

We write
C =

{
cz : z ∈ ℘

2(X)
}
.

If a bijection γ is fixed (or evident), we write simply MVn.
P
H.

In particular, if H = G2(n), it is natural to put γ : c{i,j} 7−→ {i, j}. It is evident
now that

MVn.
N4

G2(n) ∼= PB(n); moreover, MVn.
Kn

G2(n) ∼= G2(n + 2).

From the definitions the following generalization of Proposition 7 follows

Theorem 2. Let n be a natural number, P be a subset of ℘2({1, . . . , n}),
and H be any

((
n
2

)
n−2

,
(
n
3

)
3

)
-configuration. Then MVn.

γ

P
H is a

((
n+2

2

)
n
,
(
n+2

3

)
3

)
-

configuration, for every bijection γ, as in Step D of Construction 3.

Now we see (cf. Propositions 1 and 7, and Theorem 2) that the construc-
tion can be iterated: it makes sense to consider structures of the form

(2) MVn.
γ1

P1
(MVn−2.

γ2

P2
. . . (MVn−2k.

γk−1

Pk−1
H)).
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But note that now the choice of particular bijections γ1, γ2, γk−1 may be essential
(even if we fix, e.g. P1 = P2 = . . .Pk−1 = ∅). Such a general approach seems too
complex, and in the paper we shall restrict ourselves to some particular cases of
the definition (2).

Still, one “standard” way of handling with structures of the form (2) seems
natural, which (though simple) may be also of some interest from the point of
view of combinatorics.

Representation 3. Let X = {1, . . . , n} and B = MVn.
γ

P
H be the

configuration obtained from Construction 3. Clearly, γ−1 defines the structure
of a partial linear space on C and thus, under the identification cz 7→ z, on
the set ℘

2(X) as well; let us write L for the obtained set of lines. Let X ′ =
X ∪ {n + 1, n + 2}. Consider the following families of blocks:

L1 =
���

{n + 1, n + 2}, {n + 1, i}, {n + 2, i} � : i ∈ X � ,
L2 =

���
{i, j}, {n + 1, i}, {n + 2, j} � , : i, j ∈ X, i 6= j, {i, j} /∈ P � ,

L3 =
� �

{i, j}, {n + 1, i}, {n + 1, j} � , � {i, j}, {n + 2, i}, {n + 2, j} � : i, j ∈ X, {i, j} ∈ P � .
Then under the identification p = {n + 1, n + 2}, ai = {n + 1, i}, bi = {n + 2, i},
and cz = z the structure 〈℘2(X

′),L ∪ L1 ∪ L2 ∪ L3〉 is isomorphic to B. ©

A representation of the structure MVn.
P
G2(n) as a closure of the complete

graph Kn+1 is also available (cf. Representation 1 and Construction 1). We shall
mention this representation below, however, it will not be used in the next parts
of the paper.

Representation 4. Let X = {1, . . . , n} and B = MVn.
P
G2(X). Next,

let C′ = {cz ∈ C : n ∈ z}, e = {an, bn}, and K = C ′ ∪ e. Then any two points in K
are collinear in B i.e. K is the complete graph Kn+1. With every edge q = {x, y}
of K we can associate the unique third point point q∞ on the line x, y of B; in
this way all the points of B are exhausted. The elements of C ′ can be identified
with the numbers in X ′ = X \ {n} under the map i 7−→ c{i,n}, let the subgraph
P ′ of K be the image of P fX ′ under this correspondence. The class of lines
of B is the union of the family of the sets {x, y, {x, y}∞} with x, y ∈ K, x 6= y,
and the family of all the sets of the form {e∞1 , e∞2 , e∞3 } where one of the following
holds:

– e1, e2, e3 are the sides of a triangle in K which misses e or has e as a side;

– e1, e2, e3 are the sides of a triangle in K with (exactly) one vertex in e and
the side opposite to this edge in P ′;

– e, e1, e2, e3 are the sides of a quadrangle in K in which the side opposite to
e does not belong to P ′. ©
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3. Automorphisms. Let us try to establish the automorphism group
of the structures of the form B = MVn.

γ

P
H defined by Construction 3 (in what

follows the notation is taken from Construction 3 as well). Let X = {1, . . . , n}.
The following three lemmas are immediate.

Lemma 1. Let σ be the bijection of the points of B defined by

(3)
σ(p) = p,
σ(cz) = cz for every z ∈ ℘2(X),
σ(ai) = bi, σ(bi) = ai for every i ∈ X.

Then σ is an involutory automorphism of B.

Lemma 2. Let α ∈ SX . Assume that

(i) α is an automorphism of the graph 〈X,P〉, and

(ii) α(2) is (up to the bijection γ) an automorphism of H.

Then the map Fα defined by

(4) Fα(p) = p, Fα(ai) = aα(i), Fα(bi) = bα(i), Fα(ci,j) = cα(i),α(j)

for i, j ∈ X is an automorphism of B, and Fα ◦ σ = σ ◦ Fα.

Under the isomorphism defined in Representation 3 the map σ given in Lemma
1 corresponds to β(2), where β ∈ SX∪{n+1,n+2} is the transposition (n+1, n+2).

The map Fα of Lemma 2 corresponds to β(2), where β ∈ SX∪{n+1,n+2} is the
extension of α by the identity on {n + 1, n + 2}.

Lemma 3. Let B = MVn.
P
G2(n) and f, g ∈ Aut(B) fix the point p.

Then

(i) f leaves the set C invariant.

(ii) f determines a permutation αf = α ∈ SX by the rule f(Li) = Lα(i), and
then f(cz) = cα(2)(z).

(iii) Assume that αf = αg and f(ai) = g(ai) for some i ∈ X. Then f = g.

Moreover, if f ∈ Aut(B) leaves the set C ∪ {p} invariant, then f(p) = p.

P r o o f. (i) and (ii) are easy to verify. To prove (iii) it suffices to note
that for every i, j ∈ X, j 6= i, there is exactly one point si,j on Lj collinear with
ai, and thus both f and g must map si,j onto sα(i),α(j).

Finally we observe that in the substructure of B determined by X =
C ∪ {p} the point p is the only one isolated, and thus it must be fixed by f ,
provided X is preserved. �
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As a consequence of Lemmas 1 and 2 we can infer, eg., that the groups
Aut(G2(n + 2)) ∼= Aut(MVn.

Kn
G2(n)) and Aut(PB(n)) ∼= Aut(MVn.

Nn
G2(n))

both contain C2 ⊕ Sn. Partly, it is a trivial result since we know that
Aut(G2(n + 2)) ∼= Sn+2 (comp. [14]). However, as we shall see in Proposition
10, PB(n) has no other automorphisms.

As a convenient tool for distinguishing the types of points of B we use
the notion of the neighborhood N+(q) and the antineighborhood N−(q) of a point
q. We write N−(q) for the substructure of V whose points are points of V not
collinear with q, and whose lines are at least two element sections of lines of V

with points in N−(q). Similarly, N+(q) is build from points of B collinear with
q. The following is just an easy though useful observation and thus we write it
down explicitly.

Lemma 4. Let q be a point of B, N+ = N+(q), and N− = N−(q).
Then

q = p :

{
N+ = ai, bi : i ∈ X,
N− = cz : z ∈ ℘

2(X),

q = ai :

{
N+ = bi, p, aj : {i, j} ∈ P, bj : {i, j} /∈ P, cz : i ∈ z ∈ ℘2(X),
N− = aj : {i, j} /∈ P, j 6= i, bj : {i, j} ∈ P, cz : i /∈ z ∈ ℘2(X),

q = cz :

{
N+ = ai, bi : i ∈ z, cw : cw is collinear with cz in B, w ∈ ℘

2(X),
N− = p, ai, bi : i ∈ X \ z, cw : cw is not collinear in B with cz.

Lemma 5. N−(p) is isomorphic to H. Moreover, it is a subspace of B.

Lemma 6. Let z ∈ ℘
2(X); set X ′ = X \ z. Then N−(cz) is contained

in MVn−2.
γ′

P ′
H′, where P ′ = P fX ′, γ′ is the restriction of γ to ℘2(X

′), and H′ is
the suitable restriction of H.

If (up to γ) points of H noncollinear with cz are exactly all the cw with

z ∩ w = ∅, then N−(cz) is isomorphic to MVn−2.
γ′

P ′
H′.

Lemma 7. Let z ∈ ℘
2(X). The set N−(cz) yields a subspace of B if

and only if the following two conditions hold:

(a) for every w ∈ ℘
2(X) the points cw and cz are collinear in H if and only if

w ∩ z 6= ∅, and

(b) the set
{
cw : w ∈ ℘

2(X \ z)
}

yields a subspace of H.
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P r o o f. Two observations are sufficient:

(i) Let w ∩ z = ∅ and cw, cz be collinear. Write w = {i, j}. Then either
{ai, cw, aj} or {ai, cw, bj} is a line of B. Since ai, aj , bj ∈ N−(cz) and cw /∈
N−(cz), the set N−(cz) is not a subspace of B.

(ii) Let w ∩ z 6= ∅ and cw, cz be not collinear. Write w = {i, j}, where i ∈ z.
Then, again, we consider the line through bj and cw (bj and cz are in N−(cz)!).
Its third point is ai or bi and they both are not in N−(cz) and thus N−(cz) is
not a subspace of B.

The proof of the converse implication consists in direct verification. �

Lemma 8. Let i ∈ X. The set N−(ai) yields a subspace of B if and
only if the following holds

(a) there are no j1, j2 ∈ X such that P f{i, j1, j2} ∼= N3 or P f{i, j1, j2} ∼= L3,
and

(b) the set
{
cw : w ∈ ℘

2(X \ {i})
}

yields a subspace of H.

P r o o f. Clearly, we see that if N−(ai) a subspace then (b) follows from
Lemma 4. To prove (a) we take arbitrary j1 ∈ X \ {i}. Assume that {i, j1} /∈ P
so, from Lemma 4 we have aj1 ∈ N−(ai). For arbitrary j2 ∈ X \ {i, j1} there is a
line L of B through aj1 and c{j1,j2}, and from Lemma 4, c{j1,j2} ∈ N−(ai); let q
be the third point on L. If {j1, j2} ∈ P, then q = aj2 and to prove that N−(ai)
is a subspace we need {i, j2} /∈ P. Similarly, if {j1, j2} /∈ P, then q = bj2 and we
need {i, j2} ∈ P. The case {i, j1} ∈ P is considered analogously.

The converse implication is verified directly. �

In the particular case B = MVn.
P
G2(n) as a direct consequence of Lem-

mas 5, 6, 7, and 8 we obtain a more explicit classification of antineighborhoods.

Proposition 8. Let P be a graph on the set X = {1, . . . , n} and
B = MVn.

P
G2(n).

(i) The set N−(p) yields a subspace of B isomorphic to G2(X).

(ii) Let z ∈ ℘2(X). Then N−(cz) yields a subspace of B, which is isomorphic
to MVn−2.

P f(X\z)
G2(X \ z).

(iii) Let i ∈ X. The set N−(ai) yields a subspace of B if and only if (a) of
Lemma 8 holds.

Remark 2. Some other cases are also easy to determine. Let B =
MVn.

P
H and i ∈ X.

(i) If P = ∅, then N−(ai) is not a subspace of B.
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(ii) If P = Kn, then N−(ai) is a subspace of B if and only if (b) of Lemma
8 holds.

Let us come back to the case B = MVn.
P
G2(n). We write

Z = the set of the points q such that N−(q) is a subspace of B.

From Proposition 8, C ∪ {p} ⊆ Z, and clearly, every automorphism of B leaves
the set Z invariant.

To classify all the structures MVn.
P
G2(n) the following criterion is useful.

Let X 6= ∅ and X = ℘(℘2(X)) be the family of all graphs defined on X.
For every x ∈ X we define the transformation µx of the family X by the formula

x 6= y, z =⇒
(
{y, z} ∈ µx(P) ⇐⇒ {y, z} ∈ P

)
;

x 6= y =⇒
(
{x, y} ∈ µx(P) ⇐⇒ {x, y} /∈ P

)
.

We write µ(P) = ℘2(X)\P for the boolean complementation of the graph P ∈ X .
Note that if x1, x2 ∈ X then µx1µx2 = µx2µx1 and µx1µ = µµx1 .

Two graphs P1,P2 ∈ X are said to be equivalent iff there exists a sequence
x1, . . . , xn ∈ X such that µxn . . . µx1(P1) = P2; then we write P1 ≈ P2. Clearly,
P1 ≈ P2 if and only if µ(P1) ≈ µ(P2).

Proposition 9. MVn.
P1

G2(n) ∼= MVn.
P2

G2(n) whenever P1 ≈ P2.

P r o o f. It suffices to prove the claim for P2 = µm(P1), where m ∈
X. In this case we define an isomorphism F by the requirements: all points of
MVn.

P1
G2(n) remain unchanged except am, bm, and these two are interchanged. �

It is relatively easy to determine the automorphism groups of the structu-
res of the form MVn.

P
G2(n) for some simple graphs P. The following observation

is essential here:

Lemma 9. Let P be a graph defined on a set X with |X| = n, i1, i2, i3 ∈
X, and Li1 , Li2 , Li3 be three lines of B = MVn.

P
G2(n) through p. Then the Lij

(j = 1, 2, 3) determine in B the subconfiguration with points p, aij , bij , cij1 ,ij2
,

isomorphic to MV3.
P ′

G2(3), where P ′ = P f{i1, i2, i3}), and thus isomorphic
either to the Desargues configuration, when P ′ ≈ K3, or to V3(3), when P ′ ≈ N3.
Clearly, every f ∈ Aut(B)p preserves these two types of 3-subsets of X.

Proposition 10. Let n ≥ 4. Then Aut(PB(n)) ∼= C2 ⊕ Sn.

P r o o f. Let X = {1, . . . , n} and V = PB(n). Take i ∈ X; from (i) of
Remark 2 we find that ai, bi /∈ Z. From the above and Lemma 3 we get that every
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automorphism f of V fixes p and it determines the permutation α = αf of the
set X such that f(Li) = Lα(i). Evidently, every α ∈ Sn yields the automorphism

α(2) of G2(X), and Sn ⊂ Aut(〈X, ∅〉). In view of the above and Lemmas 1, 2,
and (iii) of Lemma 3, the group Aut(V) consists exactly of the maps Fα ◦ σε

(ε = 0, 1), which proves our claim. �

Proposition 11. Let 4 ≤ n1 +2 ≤ n and P = Kn
n1

or P = µ(Kn
n1

). Set
B = MVn.

P
G2(n). Then

(i) Aut(B) ∼= C2 ⊕ (Sn1 ⊕ Sn−n1).

(ii) If n − n1 > 2, then MVn.
Kn

n1

G2(n) 6∼= MVn.
µ(Kn

n1
)
G2(n).

P r o o f. Let X = {1, . . . , n}. Set X1 = {1, . . . , n1} and X2 = X \ X1,
and let Kn

n1
= ℘

2(X1). Clearly, for every α1 ∈ SX1 = Sn1 and α2 ∈ SX2 = Sn−n1

the permutation α = α1 ∪ α2 of X is an automorphism of Kn
n1

and of µ(Kn
n1

).
Consequently, from Lemma 2, we obtain the induced automorphism Fα of B.

Let f ∈ Aut(B)p and let α = αf be the induced permutation of X.
Assume, first, that P = Kn

n1
. Then the only triples a ∈ ℘

3(X) such that P f a ≈
K3 (cf. Lemma 9) are those, which meet X1 in at least 2 elements. What is more,
if w ∈ ℘

2(X) then w ⊂ X1 is equivalent to P f a ≈ K3 for every a ∈ ℘
3(X) such

that w ⊂ a.
Consequently, there are

(
n1
2

)
(n − n1) Desargues subconfigurations of B

spanned by lines through p. The remaining 3-subsets of X determine V3(3)
subconfigurations and thus B contains

(
n
3

)
−

(
n1
2

)
(n−n1) such subconfigurations.

Note that if n − n1 > 2 then 2
(
n1

2

)
(n − n1) <

(
n
3

)
. Since replacing P = Kn

n1

by P = µ(Kn
n1

) results in interchanging Desargues subconfigurations with V3(3)-
subconfigurations we conclude that for n − n1 > 2 there is no isomorphism of
MVn.

Kn
n1

G2(n) and MVn.
µ(Kn

n1
)
G2(n) that preserves p.

Continuing, we note that α preserves X1 and, consequently, α preserves
X2. Therefore, α can be written in the form α = α1 ∪α2, where αj ∈ SXj

which,
together with Lemmas 1 and 3 proves that Aut(B)p

∼= C2 ⊕ (Sn1 ⊕ Sn−n1).
To close the proof let us determine the set Z. For any j1 ∈ X2 and i ∈ X1

one can find j2 ∈ X2 with j1 6= j2 and then P f{i, j1, j2} ∼= N3. Moreover,
for every j ∈ X2 and distinct i1, i2 ∈ X1 we have µ(P)f{i1, i2, j} ∼= L3. In
view of Proposition 8, the set Z is the union C ∪ {p}; from Lemma 3 we obtain
Aut(B) = Aut(B)p. �

Corollary 1. Let n ≥ 4 and P = Ln
2 or P = µ(Ln

2 ). Set B =
MVn.

P
G2(n). Then Aut(B) ∼= C2 ⊕ (C2 ⊕ Sn−2).

Moreover, if n > 4, then MVn.
Ln

2
G2(n) 6∼= MVn.

µ(Ln
2 )

G2(n).
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Proposition 12. Let n1 + n2 + 1 = n with n1, n2 ≥ 2, and P = Mn
n1

or
P = µ(Mn

n1
). Set B = MVn.

P
G2(n). Then

(i) Aut(B) ∼= C2 ⊕ Aut(Kn1,n2). In particular, if n1 6= n2, then Aut(B) ∼=
C2 ⊕ (Sn1 ⊕ Sn2).

(ii) MVn.
P
G2(n) 6∼= MVn.

µ(P)
G2(n).

P r o o f. Without loss of generality we can consider X = {1, . . . , n}. Let
X1 = {i : i = 1, . . . , n1}, X2 = {n1 + i : i = 1, . . . , n2}. Let us take Pj ={
{n, i} : i ∈ Xj

}
for j = 1, 2. It is seen that µn(P1) = P2 so, without loss of

generality we can assume that n1 ≤ n2 and P = P1.
Let αj ∈ SXj

= Snj
for j = 1, 2, we take α = α1 ∪ α2 ∪ {(n, n)}. Clearly,

α ∈ Aut(P) so, as a consequence of Lemma 2 we obtain an automorphism Fα ∈
Aut(B).

Next, assume that n1 = n2 and consider any bijection β0 : X1 −→ X2

(e.g. defined by β(i) = n1 + i for i ∈ X1); let the map β : X −→ X be defined as
β = β0 ∪ β−1

0 ∪ {(n, n)}. Then we consider the map Gβ defined as follows:

(5) Gβ(p) = p, Gβ(an) = an, Gβ(bn) = bn, Gβ(ci,j) = cβ(i),β(j) (i, j ∈ X),

Gβ(ai) = bβ(i) = G−1
β (ai), for i ∈ X1 ∪ X2.

Clearly, β /∈ Aut(P), but β � (X1 ∪ X2) ∈ Aut(Kn1,n2) and a straightforward
computation gives that Gβ ∈ Aut(B). This proves that every automorphism of
the graph Kn1,n2 determines an automorphism of B.

Conversely, let us first determine the stabilizer of the point p in the group
Aut(B). Let f ∈ Aut(B)p. From Lemma 3, f leaves the set C invariant and
determines the permutation α = αf of the set of lines through p; clearly, α can
be considered as a permutation in Sn.

Let a ∈ ℘
3(X). Note that if a ⊂ X1 or a ⊂ X2, or a = {n, i1, i2}

where i1, i2 ∈ X1 or i1, i2 ∈ X2, then P f a ≈ N3. But if a = {n, i1, i2},
where i1 ∈ X1, i2 ∈ X2, then P f a ≈ K3. Consequently, α leaves the family{
{n, i1, i2} : i1 ∈ X1, i2 ∈ X2

}
invariant so, α(n) = n. With Lemma 1 we can

assume that f(an) = an and f(bn) = bn. Now, we see that either α preserves X1

and X2 or interchanges these two sets (which can happen if n1 = n2 only). In
the first case f can be identified with a pair of permutations αj ∈ SXj

, j = 1, 2.
Thus Aut(B)p

∼= C2 ⊕ Aut(Kn1,n2).
To close this part of proof we determine the set Z. For every i1, i2 ∈ X1

such that i1 6= i2 and every j ∈ X2 the set {i1, i2, j} is an empty subgraph
of P, and {n, i1, i2} is a L3-subgraph of P. From Proposition 8 we infer that
Z = C ∪ {p} which, in view of Lemma 3, proves (i) for P = P1.
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Let us adopt P = µ(P1). It is evident that Gβ defined by (5) is an
automorphism of B. Let f ∈ Aut(B)p and let α = αf be the induced permutation
of X.

Let a ∈ ℘3(X1) ∪ ℘3(X2) or a = {n} ∪ w with w ∈ ℘2(X1) ∪ ℘2(X2);
clearly we have P f a ≈ K3. The only triples a such that P f a ≈ N3 have form
{n, i, j} with i ∈ X1 and j ∈ X2. Their intersection is the point n, and thus
α(n) = n. The rest of reasoning goes as in the case P = P1 ending with the
(required) form of Aut(B)p.

Finally, we note that for every i ∈ X1 and j ∈ X2 the set {1, i, j} is a
L3-subgraph of P and thus, again from Proposition 8 we get Z = C ∪{p}, which,
together with Lemma 3 yields Aut(B) = Aut(B)p.

Note that the number of a ∈ ℘3(X) such that P1 f a ≈ K3 is n1n2, and
the number of a ∈ ℘3(X) such that µ(P1)f a ≈ K3 is

(
n
3

)
− n1n2. If there were

an isomorphism F of MVn.
P1

G2(n) and MVn.
µ(P1)

G2(n), then F (p) = p and we

would have 2n1n2 =
(
n
3

)
. Clearly,

(
n
2

)
> 2n1n2 and n1+n2−1

3 ≥ 1 so,
(
n
3

)
> 2n1n2

and a contradiction arises. This proves (ii). �

With similar techniques we can prove

Proposition 13. Let n > 4, n 6= 6, 8, and P = Cn or P = µ(Cn). Then
Aut(MVn.

P
G2(n) ∼= C2 ⊕ Dn.

P r o o f. Let X = {1, . . . , n} and edges of Cn join consecutive points
( mod n). Evidently, every α ∈ Dn is an automorphism of Cn, and of µ(Cn)
as well; as a consequence of Lemma 2, α determines an automorphism of B =
Aut(MVn.

Cn
G2(n).

Now, let P = Cn. For every fixed pair {i1, i2} ∈ ℘2(X) with |i2 − i1| ≤
n
2

we determine the number ν = νi1,i2 of triples a = {i1, i2, j} such that P f a ≈ K3:

i2 = i1 + 1: ν = (n− 4), triples have form {i1, i1 +1, j} with j 6= i1, i1 +1, i1 +
2, i1 − 1);

i2 = i1 + 2: ν = 2, triples are {i1, i1 + 2, j} with j = i1 + 3, i1 − 1;

i2 = i1 + m (m > 2): ν = 4, corresponding triples are {i1, i1 + m, j}, where
j = i1 + m + 1, i1 + m − 1, i1 + 1, i1 − 1.

Let f ∈ Aut(B)p and α = αf be the induced permutation of X (cf. Lemma 3).
In view of the the above, α preserves the distance 1 between points of X and thus
it is an element of Dn. With (iii) of Lemma 3 we conclude that either f = Fα, or
f = σ ◦ Fα. We end the proof with the observation that for every i ∈ X the set
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{i − 1, i, i + 1} (taken mod n) yields a L3-subgraph of P. From Proposition 8
we infer that the set Z is the union of C and the point p so, Aut(B) = Aut(B)p.

If P = µ(Cn), then the numbers ν(i1, i2) established above give the
number of triples {i1, i2, j} which yield V3(3) subconfigurations of B. The rest
of reasoning runs analogously. We only note now that µ(Cn)f{i − 1, i, i + 2} ∼=
L3. �

Proposition 14. Let n > 8 and P = Ln or P = µ(Ln). Then

Aut(MVn.
P
G2(n)) ∼= C2 ⊕ C2.

P r o o f. Let X = {1, . . . , n} and edges of Ln join consecutive points
{i, i + 1}, i = 1, . . . , n − 1. Clearly, the permutation α0 of X given by α0(i) =
(n + 1) − i is an involutory automorphism of Ln (and thus of µ(Ln) as well),
therefore (cf. Lemma 2) it determines an automorphism Fα0 of B = MVn.

P
G2(n),

where P = Ln, or P = µ(Ln).

Let P = Ln. Similarly as in the proof of Proposition 13 for z = {i1, i2} ∈
℘

2(X) we determine the number ν = νii,i2 of indices j ∈ X such that P f{i1, i2, j}
≈ K3. Here are the corresponding values:

z = {1, n}: ν = 2 (j = 2, n − 1);

z = {1, 2}: ν = n − 3 (j 6= 1, 2, 3);

z = {1, 3}: ν = 1 (j = 4);

z = {1, i2} (3 < i2 < n): ν = 3 (j = i2 − 1, i2 + 1, 2);

z = {i1, i1 + 1} (1 < i1 < n − 1): ν = n − 4 (j 6= i1, i1 + 1, i1 + 2, i1 − 1);

z = {i1, i1 + 2} (1 < i1 < n − 2): ν = 2 (j = i1 − 1, i1 + 2);

z = {i1, i1 + m} (1 < i1 < n − m, m > 2): ν = 4 (j = i1 − 1, i1 + 1, i1 + m −
1, i1 + m + 1).

Let f ∈ Aut(B)p and let α = αf be the permutation of X determined by f . In
view of the above, under assumptions of our theorem, α preserves the families{
{1, 3}, {n, n − 2}

}
and

{
{1, 2}, {n, n − 1}

}
, and thus it preserves {1, n} as well.

Without loss of generality (composing f with Fα0 , if necessary) we can assume
that α(1) = 1 and α(n) = n and then we obtain α(2) = 2, α(3) = 3. Considering
ν2,4 = ν2,α(4) we get α(4) = 4 and, inductively, we come to α = id. Finally,
we examine the set Z. It is seen that every element of X is in one of the sets
{i, i + 1, i + 2} with i = 1, . . . , n − 2, and every such a set is a L3-subgraph
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of P. From Proposition 8 we get that Z = C ∪ {p} so (cf. Lemma 3), every
automorphism of B fixes p. This proves the statement in the first case.

If P = µ(Ln), we search for V3(3) subconfigurations of B; the rest of
reasoning determining Aut(B)p remains unchanged. Then we observe that every
element of X is in one of the sets {1, i, i+1} (i = 2, . . . , n−2), {2, n, n−1} which
are L3-subgraphs of P. With standard arguments we close up with Aut(B) =
Aut(B)p. �

4. Classification. Let us start the section by recalling the following
results.

Proposition 15 ([11], [14]). Aut(G2(n + 2)) ∼= Sn+2 and Aut(Vn(3)) ∼=
S3 for n > 3.

As a consequence of this and of Proposition 10 we infer immediately

Theorem 3. Let n > 3. The following three
((

n+2
2

)
n
,
(
n+2

3

)
3

)
-confi-

gurations: PB(n) = MVn.
Nn

G2(n), G2(n + 2) = MVn.
Kn

G2(n), and Vn(3) are
pairwise nonisomorphic.

It is trivial that N3 ≈ L3 and K3 ≈ L3
2. A carefull (though tedious)

analysis of all graphs on 4 vertices shows that each of them is equivalent to one
of the following three:

P = K4,

P = N4, and

P = L4 :=
{
{1, 2}, {2, 3}{3, 4}

}
, equivalent to L4

2 =
{
{1, 4}

}
.

Proposition 16. Aut(MV4.
L4

G2(4)) ∼= C2 ⊕ (C2 ⊕ C2).

P r o o f. It suffices to recall that L4 ≈ L4
2 and use Corollary 1 and

Proposition 9. �

From the classification of graphs on 4 vertices and Propositions 9, 15, and
16 we conclude with the classification of all (154, 203)-configurations of the form
MV4.

P
G2(4):

Theorem 4. The following four (154, 203)-configurations: PB(4), G2(6),
V4(3), and MV4.

L4
G2(4) are pairwise nonisomorphic.

Let M = MV4.
P
G2(4) for some graph P on 4 vertices. Then either M ∼=

G2(6) or M ∼= PB(4), or M ∼= MV4.
L4

G2(4).

Analyzing all the possible graphs on 5 vertices we come to the conclusion,
that every of them is equivalent to one of the following
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P = K5;

P = N5;

P = C5, equivalent to a triangle K3 with two extra edges added to two of its
vertices;

P = L5
2, equivalent to C4 with one edge added to one of its vertex;

P = µ(L5
2), equivalent to a triangle K3 with a path L3 connected to one of its

vertices;

P = L5
3 (i.e. M 5

2 ), equivalent to L4 with one edge added to an intermediate
vertex (i.e. a M3 with one edge added to the degree 1 point of M3);

P = µ(L5
3), equivalent to L5.

Now we are in a position to determine the automorphism group Aut(MV5.
P
G2(5))

for arbitrary graph P on 5 vertices. Recall that Aut(MV5.
K5

G2(5)) ∼= S7 and

Aut(MV5.
N5

G2(5)) ∼= C2 ⊕ S5.

Taking into account the fact that K2,2
∼= C4 and Aut(C4) = D4 we obtain

immediately

Corollary 2.

Aut(MV5.
L5

2
G2(5)) ∼= C2 ⊕ (C2 ⊕ S3) ∼= Aut(MV5.

µ(L5
2)
G2(5));

Aut(MV5.
L5

3
G2(5)) ∼= C2 ⊕ D4

∼= Aut(MV5.
µ(L5

3)
G2(5));

Aut(MV5.
C5

G2(5)) ∼= C2 ⊕ D5.

The three isomorphisms follow from Corollary 1, Proposition 12, and
Proposition 13, respectively.

As a direct consequence of the above and of Propositions 10 and 15 we
obtain

Theorem 5. Let M = MV5.
P
G2(5) for some graph P on 5 vertices.

Then M is isomorphic to (exactly) one from the following seven configura-
tions: G2(7), PB(5), MV5.

L5
2
G2(5), MV5.

µ(L5
2)
G2(5), MV5.

L5
3
G2(5), MV5.

µ(L5
3)
G2(5),

MV5.
C5

G2(5).

Let us close this section with a more general characterization theorem.

Theorem 6. The following conditions are equivalent for every n ≥ 3:

(i) MVn.
P
G2(n) ∼= G2(n + 2),

(ii) P ≈ Kn,
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(iii) C ∪ {p} ( Z.

P r o o f. The implication (ii) =⇒ (i) follows directly from Proposition 9
and the implication (i) =⇒ (iii) is evident.

Let us denote X = {1, . . . , n}. If (iii) holds then ai ∈ Z for some i ∈ X.
We set X+ :=

{
j ∈ X : {i, j} ∈ P

}
∪

{
i
}

and X− :=
{
j ∈ X : {i, j} /∈ P, j 6= i

}
.

In view of Proposition 8, (a) of Lemma 8 holds, which implies that ℘
2(X

+) ⊂ P,
℘

2(X
−) ⊂ P, and {j1, j2} /∈ P for j1 ∈ X+, j2 ∈ X−. If X− = ∅ or X+ = ∅, then

P is the complete graph. Assume that both X+ and X− are nonempty, then P
is the disjoint union of two complete graphs. It is seen that the composition of
all the µx with x ∈ X− transforms P onto ℘2(X). Consequently, (ii) holds. �

Theorem 6 has various interesting consequences. Let us quote one:

Corollary 3. Let B = MVn.
P
G2(n) and n > 2. Then either Aut(B) =

Sn+2 is transitive on the points of B, or Aut(B) = Aut(B)p is a subgroup of
C2 ⊕ Sn.

5. Final remarks. At the very end we shall characterize automorphism
groups of the structures of the form (2) in one of the most regular cases. The
result solves only a particular case, but it indicates the way in which more complex
cases can be handled.

Proposition 17. Let

M = MVm+2k−2.
γk

Nm+2k−2
. . . (MVm+2.

γ2

Nm+2
(MVm.

γ1

Nm
G2(m))),

where the bijections γj (j ≤ k) are defined in accordance with Representation 3.
Then Aut(M) ∼= Ck

2 ⊕ Sm.

P r o o f. Let us write Y = {1, . . . ,m} =: Y0, pj = {m + 2j,m + 2j − 1}
and Yj = Yj−1 ∪ pj for j = 1, . . . , k. Next, we define inductively M0 = G2(Y ),
Mj = MVm+2(j−1).

γj

Nm+2(j−1)
Mj−1; clearly, M = Mk. Then, in accordance with

Representation 3, the structure Mj is defined on ℘
2(Yj). Let us write X := Yk.

Let Z be the set of points w of M such that N−(w) is a subspace of M.
From (i) of Remark 2 and Lemma 7 we find inductively that if w ∈ ℘

2(X) then
w ∈ Z iff w = pj for some j or w ∈ ℘

2(Y ) (pj is the “centre” of Mj , and an
“intersection point” of Mj′ for j < j′, cf. Representation 3 and Construction 3).
Moreover, the pj are pairwise noncollinear. One can see that pk is the only one
from among the pj such that any two lines through it yield a Veblen figure. Next,
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pk−1 is the only one such that in N−(pk) ∼= Mk−1 any two lines through it yield
a Veblen figure, and so on. Therefore an arbitrary automorphism F of M must
preserve each one of the points pj. Moreover, F must preserve the set ℘

2(Y ), as
only the pj are isolated in the set Z. Finally, F is determined by a permutation
α of X which preserves the sets pj and the set Y (use Lemmas 2 and 1). �

One particular case seems to be especially interesting, though its proof
consists in simple direct computation.

Proposition 18. Let X0 = {1, . . . , n− 2}, q = {n − 1, n}, X = X0 ∪ q,
p = {n+1, n+2}, and Y = X∪p. In accordance with Representation 3 we define
the structure PB(n − 2) on the set ℘

2(X), with “centre” = q. Next, we consider
the structure MVn.

Kn
PB(n − 2) and represent it on the set ℘

2(Y ), with “centre”

= p. Finally, we take P = ℘2(X) \ ℘2(X0) and represent MVn.
P
G2(n) on the set

℘
2(Y ), with “centre” = p. Let α = (n − 1, n + 1)(n, n + 2) ∈ SY . Then α(n+2) is

an isomorphism of MVn.
Kn

PB(n − 2) and MVn.
P
G2(n).

Proposition 18 shows that the representation of a structure B in the form
MVn.

P
H does not determine neither P nor H (consider n > 2).

Example 2. Slightly extending our definitions we can introduce also
PB(2) = MV2.

N2

ᵀ, where ᵀ is a single point, and then PB(2) is simply the Veblen

configuration defined on ℘2({1, . . . , 4}) with lines (cf. Representation 3):
℘2({1, 3, 4}), ℘2({2, 3, 4}),

{
{1, 2}, {1, 3}, {2, 4}

}
,
{
{1, 2}, {1, 4}, {2, 3}

}
.

First, let us consider the structure MV4.
K4

PB(2). From Proposition 18 we

get that MV4.
K4

PB(2) and MV4.
P
G2(4) are isomorphic, where P = ℘2(X)\{1, 2} ≈

L4. In this case the isomorphism defined in Proposition 18 corresponds to the
following relabelling F of the points of MV4.

K4
PB(2):

x = F (y) a1 b1 a2 b2 a3 b3 b4 p c{1,2}

y = F (x) c{1,3} c{1,4} c{2,3} c{2,4} a3 a4 b4 c{3,4} c{1,2}
.

Next, we consider B = MV4.
N4

PB(2) represented on the set ℘2({1, . . . , 6}) in
accordance with Representation 3. From Remark 2 and Lemma 7 we get that
Z =

{
{1, 2}, {3, 4}, {5, 6}

}
. Let f ∈ Aut(B). The unique q ∈ Z such that any

two lines through q yield in B a Veblen figure is q = {5, 6} so, f fixes q and,
consequently, f determines the permutation α = αf of {1, 2, 3, 4} (cf. Lemma
3). Direct verification shows that α(2) ∈ Aut(PB(2)) if and only if α leaves {3, 4}
invariant. This proves that Aut(B) = S{1,2} ⊕ S{3,4} ⊕ S{5,6}

∼= C3
2 .

However, the two structures MV4.
N4

PB(2) and MV4.
L4

G2(4) are not iso-
morphic, because their Z-sets have different cardinality: the first has 3, and the
second has 7 elements. ©
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Example 2 justifies that the choice of γ in Construction 3 may be essential:
there are γ1, γ2 such that MV4.

γ1

N4
G2(4) 6∼= MV4.

γ2

N4
G2(4).

In view of Theorem 4, Example 2 shows also that in the paper we have
not exhausted all (154, 203)-configurations which can be presented in the form
(2). We have not exhausted also all (215, 353)-configurations of this form (e.g.
the series MV5.

P
PB(3), where P is a graph on 5 vertices was only mentioned).

Another problem which was left is to determine how our configurations can be
completed to Steiner triple systems. All these questions are addressed in some
future papers.
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