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Abstract. The prime number theorem with error term presents itself as

π(x) =
x∫
2

dt

log t
+ O

(
xe−K logL

x

)
. In 1909, Edmund Landau provided a

systematic analysis of the proof seeking better values of L and K. At a key
point of his 1899 proof de la Vallée Poussin made use of the nonnegative
trigonometric polynomial 2

3
(1 + cosx)2 = 1 + 4

3
cosx + 1

3
cos 2x. Landau

considered more general positive definite nonnegative cosine polynomials
1 + a1 cosx + · · · + an cosnx ≥ 0, with a1 > 1,ak ≥ 0 (k = 1, . . . , n), and
deduced the above error term with L = 1/2 and any K < 1/

√
2V (a),
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where V (a) :=
a1 + a2 + . . . an

(
√
a1 − 1)2

. Thus the extremal problem of finding

V := minV (a) over all admissible coefficients, i.e. polynomials, arises.
The question was further studied by Landau and later on by many other

eminent mathematicians. The present work surveys these works as well
as current questions and ramifications of the theme, starting with a long
unnoticed, but rather valuable Bulgarian publication of Lubomir Chakalov.

1. Introduction

1.1. In his famous book “Handbuch der Lehre von der Verteilung der
Primzahlen” [15] Edmund Landau provided a systematic analysis of the proof
of the prime number theorem developed by de la Vallée Poussin [26] ten years
before the appearance of the monograph. The prime number formula with error
term presents itself as

(1.1) π(x) =

x∫

2

dt

log t
+O

(
x · exp(−K logL x)

)
,

and Landau sought better values of L an K, which can be deduced using the
method of de la Vallée Poussin. A key point of the original proof is the application
of the nonnegative trigonometric polynomial

(1.2)
2

3
(1 + cos x)2 = 1 +

4

3
cos x+

1

3
cos 2x.

Landau’s idea was to improve upon the error term by finding even better poly-
nomials in place of (1.2). Considering positive definite nonnegative cosine poly-
nomials

(1.3) f(x) = 1 + a1 cosx+ · · · + an cosnx ≥ 0, ak ≥ 0 (k = 1, . . . , n)

he proved in §65 of his book that (1.1) holds true with K = 1 and for any L
satisfying

(1.4) L <
1

U + 2

where

(1.5) U = inf

{
f(0)

a1 − 1
: f ∈ T satisfies (1.3) with a1 > 1

}
.



On some extremal problems of Landau 127

Here and elsewhere in the paper T stands for the set of all trigonometric
polynomials periodic by 2π, and Tn denotes the set of polynomials from T having
degree not exceeding n.

We also use C(T) for the set of all continuous functions on the one
dimensional torus T := R/2πZ (i.e. the circle group) which is identical to the set
of continuous 2π-periodic functions on R. Note that T is compact.

Landau realized that his first proof, although shorter and more direct,
did not provide L = 1/2 proved by de la Vallée Poussin, as Landau himself found
that 5 < U < 6. In his second proof described in §79 of [15] he deduced for the
Riemann ζ function that

(1.6) ζ(s) 6= 0 if s = σ + it, σ ≥ 1 − 1

R log t
, t ≥ 2

with R satisfying

(1.7) R >
1

2
V,

where

(1.8) V = inf

{
f(0) − 1
(√

a1 − 1
)2 : f ∈ T satisfies (1.3) with a1 > 1

}
.

In §80 Landau finishes his argument proving that (1.6) entails (1.1) with L = 1/2
and K < 1/

√
R for all x > x0(K). Now this proof gives as good an error term

as de la Vallée Poussin’s, and even better with respect to K. Note that later

improvements pushed L up to
3

5
− ε, cf. e.g. [6, p. 111], [29] but for practical

applications, in particular for computational number theory, the theoretically
better asymptotic results all have a defect with respect to the O-constant (and/or
the validity range x > x0). Thus Landau’s method is still interesting for practical
applications, cf. e.g. [22].

1.2. The present work is aimed to deal with the extremal quantities (1.5)
and (1.8). As attracting many eminent mathematicians, the determination, or
estimation of U and V became a well-known problem independently of its number
theoretic applications. To give a historical account of results thus far, let us
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introduce a more systematic notation. We put for any a ∈ R

(1.9)

F(a) :=

{
f ∈ C(T) : f(x) = 1 + a cos x+

∞∑

k=2

ak cos kx ≥ 0 (∀x),

ak ≥ 0 (k ∈ N)

}

and denote

(1.10)

Fn(a) := F(a) ∩ Tn, F∗(a) := F(a) ∩ T , F =
⋃

a>1

F(a),

Fn :=
⋃

a>1

Fn(a) = F ∩ Tn, F∗ :=
⋃

a>1

F∗(a) = F ∩ T =

∞⋃

n=1

Fn.

One can define

(1.11)

α(a) := inf
{
f(0) : f ∈ F(a)

}

α∗(a) := inf
{
f(0) : f ∈ F∗(a)

}

αn(a) := inf
{
f(0) : f ∈ Fn(a)

}
.

Note that the definitions (1.11) can be used whenever F(a) 6= ∅, F ∗(a) 6= ∅ or
Fn(a) 6= ∅, resp. It is easy to see that α(a) = α∗(a) for all a ∈ D(α) except
possibly for the point A at the left end of the domain of α where F ∗(A) may
be empty. It is also easy to see that [1, 2) ⊂ D(α), α(a) is continuous in [1, 2),
and that F(a) = ∅ for a ≥ 2; moreover, α(a) → +∞ as a → 2 − 0. Finally the
infimum in the definition of α(a) is actually a minimum,

(1.12)
α(a) = min

{
f(0) : f ∈ F(a)

}

αn(a) = min
{
f(0) : f ∈ Fn(a)

}
.

These observations can be found in [19] in a more general setting. However, we
have to note that most of the facts mentioned here appeared first in [2] where
χ(a) = α(a) − 1 and χn(a) = αn(a) − 1 are defined and analyzed (for a ≥ 1).
This analysis is continued (for a ≥ 0) in [1].

Thus we can omit α∗ and F∗ from now on using only α and F in place
of the original, equivalent usage of Landau. With these cleared we can also put

(1.13)

U := min
a>1

α(a)

a− 1
, Un := min

a>1

αn(a)

a− 1
,

V := min
a>1

α(a) − 1

(
√
a− 1)2

, Vn := min
a>1

αn(a) − 1

(
√
a− 1)2

,
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where the use of min in place of inf is justified later.
Plainly for all a we have αn(a) ↘ α(a) (n → ∞) and Un ↘ U , Vn ↘ V

(n → ∞). (Here ↘ means monotonically nonincreasing convergence.) Below is
a list of values already determined.

(1.14)

U2 = 7 Landau, [15] & Chakalov, [4, 5]

U3 = U4 = U5 = 6 Landau, [16, 17] & Chakalov, [4, 5]

U6 = 5.92983 . . . Chakalov, [4, 5]

U7 = U8 = U9 = 5.90529 . . . Chakalov, [4, 5]

V2 = 53.1390719 . . . French, [11]

V3 = 36.9199911 . . . Arestov, [1]

V4 = V5 = V6 = 34.8992258 . . . Arestov, [1].

Estimates were also deduced for many of the extremal quantities. It follows a list
of records to date in estimating these values.

(1.15)

U < 5.90529 . . . Chakalov, [4, 5]

U > 5.8726 Arestov-Kondrat’ev, [2]

V < 34.5035864 . . . Arestov-Kondrat’ev, [2]

V > 34.468305 . . . Arestov-Kondrat’ev, [2]

V8 < 34.54461566 Kondrat’ev, [13].

For historical completeness let us mention a few other results, already improved
upon.

V < 35.074 Westphal, [28]

V2 ≤ 53.15 Stechkin, [25]

U11 > 5.792 Chakalov, [4, 5]

V3 ≤ 37.04 Landau, [15]

V3 < 36.97 Stechkin, [25]

V4 < 35.03264 Rosser and Schönfeld, [22]
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V > 21.64 French, [11] referring to an unpublished result of

Schoenfeld & V. J. Le Veque

V > 32.49 Stechkin, [25]

U > 5.8642 B. L. van der Waerden, [27]

V > 32.5136 French, [11]

36.96 > V3 > 36.59 Bateman (unpublished, quoted in [11]) and [25], resp.

34.91 > V4 > 34.35 Stechkin, [25]

V5,6,7 > 33.373 French, [11]

V8 > 33.313 French, [11]

V9 > 33.1766 French, [11]

Vn ≥


8 − 3π − 7

2 cos
(

π
n+2

)
− 1


 ·

√
2 cos

(
π

n+2

)
+ 1

√
2 cos

(
π

n+2

)
− 1

(n ∈ N) Stechkin, [25]

34.8993 > V4 D. Hollenbeck (unpublished, referred to in [23])

V > 33.58 Reztsov, [20]

U > 5.8656 Révész, unpublished

33.54 < V < 34.677 Révész, unpublished.

1.3. In the many investigations of Landau’s extremal problems, a number
of new relatives were introduced. In his quite elegant and sharp lower estimation
for U , van der Waerden [27] used the construction of a measure

(1.16) dκ(x) ∼ b0 + 2

∞∑

k=1

bk cos kx ≥ 0

with the properties

(1.17) κ ≥ 0, b0 + b1 ≤ 2, bk ≤ 1 (k ∈ N2),

where N2 := N ∩ [2,∞]. Actually van der Waerden sought minimal b1 (b1 < 0
with maximal absolute value) and could prove that U ≥ 1− b1. Formulating this
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as an extremal problem, van der Waerden treated

(1.18) Ω := sup
{
1 − b1 : ∃κ ∈ BM(T), κ ≥ 0 with (1.16)–(1.17)

}
.

Finding a measure with (1.16)–(1.17) and with b1 = −4.8642 . . . , van der Waerden
showed actually

(1.19) U ≥ Ω ≥ 5.8642 . . . .

S. B.S̃techkin [25] used a different method aiming mainly the estimation of V . In
the course of proof he defined an intermediate quantity between U and V when
introducing
(1.20)

W := inf

{
f(0) − 1

a1 − 1
: f ∈ T satisfies (1.3) with a1 > 1

}
= min

a>1

α(a) − 1

a− 1
,

Wn := inf

{
f(0) − 1

a1 − 1
: f ∈ Tn satisfies (1.3) with a1 > 1

}
= min

a>1

αn(a) − 1

a− 1
.

As in case of U and V , we again have Wn ↘ W , and the determination of W
and Wn is a problem of a similar sort.

Stechkin himself could estimate W as follows.

(1.21)

W2 =
1

2

(
5 +

√
17
)

= 4.56 . . . ,

W4 ≤W3 ≤ 1

2

(
5 +

√
13
)

= 4.30 . . . ,

W ≥ 4.159.

1.4. We also introduce some more extremal quantities. Denote by λ and
δz (z ∈ T) the normalized measures (the Lebesgue and (essentially) the Dirac
measures at z ∈ T)

(1.22)

dλ(x) ∼ 1,

dδz(x) ∼ 1 + 2

∞∑

b=1

(
cos kz cos kx+ sin kz sinkx

)
,

δ := δ0.

We consider the measure sets
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(1.23)

M(0) :=

{
τ ∈ BM(T) : dτ(x) ∼

∞∑

k=1

tk cos kx,

t1 ∈ R, tk ≤ 0 (k ∈ N2)

}
,

Mn(0) :=

{
τ ∈ BM(T) : dτ(x) ∼

∞∑

k=1

tk cos kx,

t1 ∈ R, tk ≤ 0 (2 ≤ k ≤ n)

}
,

M(a) :=

{
τ ∈ BM(T) : dτ(x) ∼ b

(
1 − 2

a
cos x

)
+

∞∑

k=2

tk cos kx,

b ∈ R, tk ≤ 0 (k ∈ N2)

}

=
{
τ ∈ BM(T) : τ = −a

2
t1(τ0) · λ+ τ0, τ0 ∈ M(0)

}
,

(
t1(τ0) := 〈τ0, 2 cos x〉

)
,

Mn(a) :=

{
τ ∈ BM(T) : dτ(x) ∼ b

(
1 − 2

a
cos x

)
+

∞∑

k=2

tk cos kx,

b ∈ R, tk ≤ 0 (2 ≤ k ≤ n)

}

=
{
τ ∈ BM(T) : τ = −a

2
t1(τ0) · λ+ τ0, τ0 ∈ Mn(0)

}
,

(
t1(τ0) := 〈τ0, 2 cos x〉

)
,

where the last two definitions are valid for any a ∈ R and a 6= 0. Also we put for
arbitrary y ∈ R
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(1.24)

N (y) :=

{
ν ∈ BM(T) : ν ≥ 0, dν(x) ∼ 1 +

∞∑

k=1

yk cos kx,

y1 ∈ R, yk ≤ y (k ∈ N2)

}
,

Nn(y) :=

{
ν ∈ BM(T) : ν ≥ 0, dν(x) ∼ 1 +

∞∑

k=1

yk cos kx,

y1 ∈ R, yk ≤ y (2 ≤ k ≤ n)

}
.

Finally let us introduce for all b ∈ (−2, 2) the square-integrable function
set

(1.25) G(b) :=

{
g ∈ L2(T) : g ≥ 0, g(x) ∼ 1 + b cos x+

∞∑

k=2

bk cos kx

}
.

To these sets we define the following extremal quantities.

(1.26)

ω(a) := sup
{
t : ∃τ ∈ M(a), τ + δ ≥ t · λ

}
,

ωn(a) := sup
{
t : ∃τ ∈ Mn(a), τ + δ ≥ t · λ

}
,

β(y) := sup
{
− y1 : ∃ν ∈ N (y), y1 = 〈ν, 2 cos x〉

}
,

βn(y) := sup
{
− y1 : ∃ν ∈ Nn(y), y1 = 〈ν, 2 cos x〉

}
,

ϑ(y) := sup
{
y1 : ∃ν ∈ N (y), y1 = 〈ν, 2 cos x〉

}
,

ϑn(y) := sup
{
− y1 : ∃ν ∈ Nn(y), y1 = 〈ν, 2 cos x〉

}
,

γ(b) := inf
{
||g||2 : g ∈ G(b)

}
.

1.5. I would like to thank Professor Andrzej Schinzel for calling my
attention to the problem and giving the first sources for the study of the subject.
Gábor Halász suggested the investigation of (1.25) and γ(b) in (1.26) which led
to nice findings. After presenting the matter in Zakopane on the Number Theory
Conference dedicated to the sixtieth birthday of Professor Andzrej Schinzel,
Sergei Konyagin provided important references [1], [13], [20], [2] on the work
published in the Russian mathematical literature. That helped me to correct
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and extend this work at many places, as previously I did not know about, and
hence did not refer to these very valuable works. In particular, many of my
results in [18], [19] are greatly overlap with these, and my estimates announced
in Zakopane, were preceded by even better ones of Arestov and Kondrat’ev. That
led me a complete revision of this work and now I hope to give due credit to all
researchers who contributed to the subject. I also hope that the independent and
sometimes more or less different formulations and proofs could add to the value
of the results in [1], [2], [13], [20]. The overlapping results are pointed out in due
course.

2. Preliminaries

2.1. As we will extensively use sets of Borel measures and extremal
quantities defined on these sets, we summarize a few facts of the structure of
BM(T) at the outset.

Let us recall that BM(T) = C(T)∗, the topological dual of the Banach
space C(T) with the norm of the total variation norm

(2.1) ‖µ‖BM(T) =

∫

T

|dµ|.

We know that C(T) is not reflexive, and BM(T)∗ ) C(T). Hence the
weak, and the weak ∗ topology of BM(T) are different, the weak topology being
the weakest topology so that all functionals from BM(T)∗ be continuous linear
functionals on BM(T), while the weak ∗ topology is the weakest topology so that
the functionals belonging to C(T) be continuous on BM(T). Thus the weak ∗
topology is even weaker than the weak one.

In a topological vector space convex and closed sets remain convex and
closed when considering the weak topology in place of the original topology.
However, in dual spaces like BM(T) closedness is not necessarily saved when
considering the weak ∗ topology instead of the weak topology. On the other hand
we have the Banach-Alaoglu Theorem ([9], 4.10.3. Theorem, p. 205) stating that
all the closed balls in the dual space BM(T) are weak ∗ compact.

Our application of these structural facts will have the following pattern.
Usually we define a set of measures in BM(T) and wish to extremalize some
quantity on that set. Using the definition, we can pass on to a decreasing sequence
of closed, bounded and convex sets Fn ⊂ BM(T), and to show that there exists
an extremal measure, we are entitled to show that F :=

⋂∞
n=1 Fn 6= ∅. This

is a Cantor type property, and can be guaranteed for decreasing and nonempty
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sequences of compact sets. Now usually Fn ⊂ BM(T) will be convex and closed,
but not compact. To save the idea, we pass on to the weak ∗ topology. First,
the nonempty sets Fn ⊂ BM(T) remain convex in any topology. They will be
bounded in the norm of BM(T) usually because for nonnegative measures

(2.2) ‖µ‖BM(T) =

∫

T

|dµ| =

∫

T

dµ = 2π〈1, µ〉 (µ ∈ BM(T), µ ≥ 0).

Hence Fn will be conditionally compact in the weak ∗ topology according to the
Banach-Alaoglu Theorem. To show that Fn are weak ∗ compact, the key point
is to show that Fn are weak ∗ closed, too.

It is obvious that any closed and convex sets Fn can be represented as the
intersection of a set of closed halfspaces defined by continuous linear functionals
from the bidual space. However, such level sets of linear functionals can be proved
to be even weak ∗ closed only if the functionals themselves are weak ∗ continuous,
i.e. if the functionals belong to C(T). Thus we will look for a representation of
Fn as an intersection of level sets of the type

(2.3) X(f, c) :=
{
µ ∈ BM(T) : 〈f, µ〉 ≤ c

}

with f ∈ C(T). Having such a representation, we can claim Fn to be even weak
∗ closed, hence we get that Fn is not only conditionally compact, but it is also
compact in the weak ∗ topology. Finally, we can refer to the Cantor type property
that the intersection of the compact, decreasing and nonempty sets Fn must be
nonempty. To formalize this argument, we can state the following.

Lemma 2.1. Suppose that Fn (n ∈ N) is a sequence of subsets of BM(T)
with the following properties.

i) Fn 6= ∅ (n ∈ N).

ii) Fn+1 ⊂ Fn (n ∈ N).

iii) Fn is bounded in the total variation norm of BM(T) (perhaps for n > n0).

iv) Fn can be represented as the intersection of a number of closed halfspaces
of the form (2.3) with the generating functionals belonging to C(T).

Then the intersection

(2.4) F :=
∞⋂

n=1

Fn
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is a norm-bounded, closed, convex, weak ∗-compact and nonempty subset
of BM(T).

Consider the sets

BM(T)C :=
{
µ ∈ BM(T) : µ

is even (i.e. µ(H) = µ(−H) (∀H ⊂ T, measurable))
}

(2.5)

=
{
µ ∈ BM(T) : 〈sin kx, µ〉 = 0 (k ∈ N)

}

=
{
µ ∈ BM(T) : 〈f, µ〉 = 0 ∀f ∈ C(T),

f(x) ≡ −f(−x)(x ∈ T)
}
,

BM(T)S :=
{
µ ∈ BM(T) : µ

is odd (µ(H) = −µ(−H) (∀H ⊂ T, measurable))
}

(2.6)

=
{
µ ∈ BM(T) : 〈cos kx, µ〉 = 0 (k ∈ N)

}

=
{
µ ∈ BM(T) : 〈f, µ〉 = 0 ∀f ∈ C(T),

f(x) ≡ −f(−x)(x ∈ T)
}
,

and the set

BM(T)P :=
{
µ ∈ BM(T) : µ

is nonnegative (i.e. µ(H) ≥ 0 (∀H ⊂ T, measurable))
}

(2.7)

=
{
µ ∈ BM(T) : 〈f, µ〉 ≥ 0 ∀f ∈ C(T), f ≥ 0

}
.

Here we use the sets of even, odd and nonnegative functions

(2.8)

E :=
{
f ∈ C(T) : f(x) ≡ f(−x) (x ∈ T)

}
,

O :=
{
f ∈ C(T) : f(x) ≡ −f(−x) (x ∈ T)

}
,

P :=
{
f ∈ C(T) : f ≥ 0

}
,

to establish a representation of the type iv) for the sets (2.5)–(2.7). Namely,

BM(T)C =
⋂

f∈O

(X(f, 0) ∩X(−f, 0)),(2.8)

BM(T)S =
⋂

f∈E

(X(f, 0) ∩X(−f, 0)),(2.9)

BM(T)P =
⋂

f∈P

(X(−f, 0).(2.10)
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Thus in the following we can use property iv) for the sets (2.5), (2.6) and (2.7).

2.2. Let 0 < a < b, and k : [a, b] → R be any continuous, strictly
increasing and concave function on the interval.

We define the “tangential function to k” and the “extremal tangential
curve” to k as follows.

Definition. For t ∈ R let us consider the points (x, t), (0, t), (x, k(x))
in this order for all x ∈ [a, b] and denote ϕ(t, x) the angle (measured from the
positive x direction to the counterclockwise sense) of the chord drawn from (0, t)
to (x, k(x)). As 0 < a ≤ x ≤ b, and the vector ((0, t), (x, t)) is horizontal, we
plainly have −π

2 < ϕ(t, x) < π
2 .

We introduce the “extremal tangential curve”

(2.12) Γ := Γk :=

{
(t0, x0) ∈ R2 : ϕ(t0, x0) = max

a≤x≤b
ϕ(t0, x)

}
;

we also introduce the “tangential function to k”

(2.13)
f(t) := fk(t) := max

a≤x≤b

k(x) − t

x
= max

x∈[a,b]
tanϕ(t, x) = tanϕ(t, x∗)

(
(t, x∗) ∈ Γk

)
.

Plainly we may also consider

(2.14) ϕ(t) := arctan f(t) = max
a≤x≤b

ϕ(t, x) = ϕ(t, x∗) ((t, x∗) ∈ Γk).

Geometrically ϕ(t) is the oriented angle, f(t) is the slope of the tangential straight
line drawn from the point (0, t) to the curve {(x, k(x)) : a ≤ x ≤ b}.

Note that fk(t) is just the well-known Legendre transform of the function
k; as properties of the Legendre transform are well-known, see e.g. [21], in the
following assertions we will omit the proofs.

Lemma 2.2.

i) The function f(t) : R → R is continuous and strictly decreasing.

ii) The curve Γ is “oriented positively” in the sense that for any two points
(t′, x′), (t′′, x′′) ∈ Γ t′ < t′′ entails x′ ≤ x′′.

iii) The point set I(t) := {x : (t, x) ∈ Γ} is a convex closed set ⊂ [a, b].
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Now let us define

(2.15)

x(t) := min
{
x : (t, x) ∈ Γ

}
= min I(t);

x(t) := max
{
x : (t, x) ∈ Γ

}
= max I(t);

x(t) := x(t) whenever x(t) = x(t);

T (x) :=
{
t ∈ R : (t, x) ∈ Γ

}
;

t(x) := max
{
t : (t, x) ∈ Γ

}
= maxT (x);

t(x) := min
{
t : (t, x) ∈ Γ

}
= minT (x);

t(x) := t(x) whenever t(x) = t(x).

The existence and nature of T , t, t are similar to I, x, x, by the very same
Lemma 2.2 ii) and iii).

Lemma 2.3.
i) The concave function k is differentiable iff t(x) exists for all a < x < b.

Moreover, for any x ∈ (a, b) we have t(x) = t(x) iff k ′(x− 0) = k′(x+ 0).

ii) We always have

f ′(t+ 0) =
−1

x(t)
, f ′(x− 0) =

−1

x(t)
.

Corollary 2.1. If f is the tangential function defined to k, then f is
always a continuous, strictly decreasing convex function. Moreover, f is diffe-
rentiable (and then also continuously) iff k is strictly concave. Conversely, f is
strictly convex iff k is differentiable iff k ∈ C1[a, b].

3. Analysis of the extremal quantities

3.1. First of all let us record some basic properties of the functions defined
in Section 1. As for the domain of definition (where the corresponding definition
yields a finite value) we use the notation D; similarly, the range of a function is
denoted by R.

Proposition 3.1.
i) D(α) = (A, 2) or [A, 2), where −

√
3 ≤ A ≤ −

√
2.

ii) D(αn) = [An, Bn], where An ≤ −
√

2 (n ≥ 2) and Bn = 2 cos π
n+2 .

iii) D(γ) = (−2, 2).
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P r o o f. i) See Proposition 4.1 of [19].
ii) The first estimate follows from the example (4.2) of [19], and the

second statement is a consequence of a theorem of Fejér [10] and Szász [24] who
determined the corresponding extremal polynomials. See also [25], Lemma 1.

iii) Similar to i) but essentially trivial. �

Proposition 3.2.
i) In the definition (1.11) of α(a) the infimum is actually a minimum, i.e.

α(a) = min
{
f(0) : f ∈ F(a)

}

for all a ∈ D(α).

ii) If A ∈ D(α), then lim
a→A+

α(a) = α(A), and if A /∈ D(α), then lim
a→A+

α(a) =

∞.

iii) lim
a→2−

α(a) = ∞.

iv) α(a) is a convex function on D(α).

v) αn(a) is a convex function on D(αn).

P r o o f. These can be found in [19], Propositions 4.2 and 4.3 or, in a
somewhat more general form, in [18], 2.3, 2.5 and 2.6 Propositions. Note that i)
and v) appeared already in Theorem 1 3) of [2], while iii) was proved first in [20],
see also the comments to Proposition 3.5. iii). �

Our knowledge about the actual function values of α(a) is summarized in
the next three propositions.

Proposition 3.3.
i) α(a) = 1 + a for −1 ≤ a ≤ 1.

ii) α(a) = 2a for 1 ≤ a ≤ 4/3.

iii) α(a) = 0 for −4/3 ≤ a ≤ −1.

Proposition 3.4. α(a) > 0 for a < −4/3, a ∈ D(α).

Proposition 3.5. In the range 4/3 < a < 2 we have the following lower
estimates for the function α(a).

i) α(a) > δ(a) := 2a,
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ii) α(a) ≥ ϕ(a) := 8a− 3π,

iii) α(a) ≥ τ(a) :=

√
2 + a

2 − a
.

P r o o f. For a proof of the claims in Proposition 3.3, see e.g. Proposition
4.4 i), ii) and iv) in [19]. Note that i) is (0.17) of [1] and ii) is covered by (0.15)
of [1] or Theorem 1 1) in [2].

For Proposition 3.4 see Proposition 4.4 v) in [19].

Lastly, consider Proposition 3.5. First, i) can be found in Proposition 4.4
iii) of [19]. (α(a) ≥ δ(a) is trivial from Proposition 3.3 ii) and Proposition 3.2
iii).)

Proposition 3.5 ii) is an estimate of Stechkin, see Lemma 3 in [25].

Finally, the nontrivial estimate of Proposition 3.5 iii) is proved e.g. in
[19], Theorem 5.1. A very similar proof of a very similar, but somewhat more
elaborated (and thus slightly better) nonlinear estimate was given first in [20].
Actually, the key lemma to the result was attributed to Yudin (oral communica-
tion) in [20], while in [19] an independent and different proof was given which
precisely characterizes also the extremal cases of the lemma. �

3.2. For the functions introduced in (1.26) their use and relevance to
the problems studied can be best seen from the relation between α and ω. Let
f ∈ F(a) be arbitrary and take any τ ∈ M(a) satisfying τ + δ ≥ t · λ with some
t ≥ 0. (Such t and τ must exist since the zero measure, 0 ∈ M(a).) We have
from the nonnegativity of f and ak (k ∈ N2), the nonpositivity of tk (k ∈ N2)
and from δ ≥ t · λ− τ , that
(3.1)
f(0) = 〈f, δ〉 ≥ 〈f, t · λ− τ〉

= t− 〈f, τ〉 = t−
{
b+

1

2
· a · b ·

(−2

a

)
+

∞∑

k=2

aktk

}
= t−

∞∑

k=2

aktk ≥ t.

Taking supremum over all τ and t on the right, and then infimum at the left-hand
side, we obtain the inequality

(3.2) α(a) ≥ ω(a).

That estimate was essentially at the heart of van der Waerden’s estimate, as we
shall see later. This estimate is not only close numerically, but actually it is
theoretically exact.
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Theorem 3.1 (Duality).
i) D(α) = D(ω), and the sup in the first definition of (1.26) is actually a

maximum.

ii) For all a ∈ D(α) α(a) = ω(a).

iii) For all n ∈ N D(αn) = D(ωn), and the sup in the second definition
of (1.26) is actually a maximum.

iv) For all n ∈ N and a ∈ D(αn) αn(a) = ωn(a).

P r o o f. The easy part is α(a) ≥ ω(a) and its relatives αn(a) ≥ ωn(a),
as shown above. That also entails D(α) ⊂ D(ω), D(αn) ⊂ D(ωn). The converse
is nontrivial, and the proof applies functional analysis. For the whole argument
we refer to [18], especially 3.4 Theorem and 3.5 Proposition. Note that here
the index sets M and L of [18] are N2 and ∅ or [2, n] and ∅, and thus also 2.6
Proposition of [18] applies. That covers the border cases a = A and a = An or
Bn, not included in the even more general setting of 3.4 Theorem of [18]. The
existence of extremal measures ω and ωn follows from the argument as pointed
out in section 3.6 of [18].

3.3. With the above duality theorem at hand, let us also define the
functions

(3.3)

U(a) :=
α(a)

a− 1
=

ω(a)

a− 1
,

V (a) :=
α(a) − 1

(
√
a− 1)2

=
ω(a) − 1

(
√
a− 1)2

,

W (a) :=
α(a) − 1

a− 1
=
ω(a) − 1

a− 1
(a ∈ (1, 2)),

and for any n ∈ N their finite degree counterparts

(3.4)

Un(a) :=
αn(a)

a− 1
=
ωn(a)

a− 1
,

Vn(a) :=
αn(a) − 1

(
√
a− 1)2

=
ωn(a) − 1

(
√
a− 1)2

,

Wn(a) :=
αn(a) − 1

a− 1
=
ωn(a) − 1

a− 1
(a ∈ (1, Bn]).

Since the functions (3.3)-(3.4) are the products of one of the positive convex
functions α(a), α(a) − 1, αn(a), or αn(a) − 1 and one of the strictly convex
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and positive functions
1

a− 1
or

1

(
√
a− 1)2

, all functions are positive and strictly

convex. Note also that all the six functions tend to +∞ as a → 1 + 0 as the
denominators tend to +0 and the numerators are finite and positive. Similarly,
as Proposition 3.5 iii) entails, α(a) → +∞ (a→ 2− 0), and that implies U(a) →
+∞, V (a) → +∞ and W (a) → +∞ (a→ 2−0). Hence we see that the functions
(3.3)–(3.4) all have minimum points where the extremal quantities (1.13) and
(1.20) are attained, and also that these points are unique due to strict convexity.
Thus we have

Proposition 3.6.
i) All the functions (3.3)–(3.4) are strictly positive and strictly convex in their

domain of definition.

ii) All the functions (3.3)–(3.4) have limit +∞ at 1 + 0.

iii) The functions (3.3) have limit +∞ at 2 − 0 while the functions (3.4) are
continuous and finite at Bn.

iv) The functions (3.3)–(3.4) have unique minimum points aU , aV , aW and
aU,n, aV,n, aW,n, respectively, where we have

U = U(aU ), V = V (aV ), W = W (aW ),
Un = Un(aU,n), V = V (aV,n), W = W (aW,n).

3.4. Proposition 3.7.
i) N (y) = ∅ for y < 0.

ii) N (y) = N (2) = {ν ∈ BM(T) : 〈ν, 1〉 = 1 and ν ≥ 0} for y ≥ 2.

iii) ∅ 6=
{
ν ∈ BM(T) : dν(x) = 1 +

∞∑
k=1

yk cos kx,

∞∑
k=1

|yk| ≤ 1, yk ≤ 0 (k ∈ N2)

}
⊂ N (0) =

=

{
ν ∈ BM(T) : ν ≥ 0, dν(x) = 1 +

∞∑
k=1

yk cos kx,

1 +
∞∑

k=1

yk ≥ 0, yk ≤ 0 (k ∈ N2)

}
.

iv) For any two values 0 ≤ y′ < y′′ ≤ 2 we have N (y′) ( N (y′′).

v) For all y ≥ 0 N (y) is a convex, closed and bounded set in BM(T).
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P r o o f. i) Suppose that y < 0 and ν ∈ N (y). Consider the convolution
ν ∗ FN = fN ∈ TN for any N ∈ N where FN denotes the usual Fejér kernel.

On the one hand fN ≥ 0, on the other hand fN (0) = 1 +

(
1 − 1

N + 1

)
y1 +

N∑

k=2

(
1 − k

N + 1

)
yk ≤ 1 + 2 + y

N∑

k=2

(
1 − k

N + 1

)
. As the right-hand side tends

to −∞ with N → ∞ by y < 0, we have proved i) by contradiction.

ii) For all ν ∈ BM(T), 〈ν, 1〉 = 1, ν ≥ 0 we have 〈ν, 2 cos kx〉 ≤ 〈ν, 2〉 = 2.

iii) It suffices to prove the last equation, the others being easy consequences.
Plainly the conditions on the right-hand side are exceeding the defining conditions
(1.24) for N (0) in two respect: by prescribing convergence of the Fourier repre-
sentation, and by supposing

(3.5) 1 +

∞∑

k=1

yk ≥ 0.

This last condition, together with yk ≤ 0 (k ∈ N2), entails absolute convergence
of the series (3.5), hence the Fourier representation must be absolutely uniformly
convergent, and the measure ν is an absolutely continuous measure with a deriva-
tive having absolutely uniformly convergent series representation. The only thing
to show that (3.5) holds for all ν ∈ N (0). We can use the Fejér kernel FN and
the convolution FN ∗ ν, already used in part i) to get for arbitrary N ∈ N

0 ≤ fN (0) = (ν ∗ FN )(0) = 1 +

N∑

k=1

(
1 − k

N + 1

)
yk

≤ 1 + y1 +

∞∑

k=2

(
1 − k

N + 1

)
yk.

Using also yk ≤ 0 (k ∈ N2), we can take limits with respect to N → ∞, what
yields (3.5).

iv) The inclusion is trivial. ν =

(
1 − y′′

2

)
· λ +

y′′

2
· δ ∈ N (y′′) but

ν /∈ N (y′) shows that N (y′) 6= N (y′′).

v)

N (y) = N (2) ∩
∞⋂

k=2

{
ν ∈ BM(T) : 〈2 cos kx, ν〉 ≤ y

}
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N (2) is the intersection of a hyperplane defined by 〈1, ν〉 = 1, and the (closed
and convex) set of nonnegative measures. The other intersection is defined as the
intersection of closed halfspaces. Therefore N (y) is convex and closed. Note that
for any ν ∈ N (y) ||ν||BM(T) = 2π, cf. (2.2), hence N (y) is also bounded. �

Proposition 3.8.

i) For all n ∈ N there exists a unique Cn, −2 ≤ Cn < 0, so that Nn(y) = ∅
for y < Cn, but not for y ≥ Cn.

ii) Cn ↗ 0 as n→ +∞.

iii) Nn(y) = Nn(2) = N (2) for y ≥ 2.

iv) For any two values Cn ≤ y′ < y′′ ≤ 2 we have

Nn(y′) ( Nn(y′′).

v) For all y ≥ Cn Nn(y) is a convex, closed and bounded set in BM(T).

P r o o f. i) Plainly, as the inclusion part is trivial from statement iv),
Cn := inf{y : ∃ν ∈ Nn(y)} = sup{y : Nn(y) = ∅}.

First we prove Cn < 0, or more precisely, Cn ≤ − 1

n− 1
. To this end let

us consider the function gn(x) := 1 − 1

n− 1

n∑

k=2

cos kx and the measure dν(x) =

gn(x)dx. Plainly ν ∈ N
(
− 1

n−1

)
showing Cn ≤ − 1

n− 1
. On the other hand

let y < 0 be arbitrary with N (y) 6= 0 and let ν ∈ N (y). If we choose N = n
in the construction of the Proof of Proposition 2.7 i), we obtain 0 ≤ gn(0) ≤
3+y

(
N

2
− 1 +

1

N + 1

)
≤ 3−|y| · n− 2

2
. Thus |y| ≤ 6

n− 2
, proving also Cn → 0

(n→ +∞). For small n the above estimate can be substituted by the easier one

0 ≤ 〈1 + cos 2x, ν〉 = 1 +
y2

2
≤ 1 +

y

2
,

showing y ≥ −2; the measure ν π

2

:=
1

2

(
δπ

2

+ δ−π

2

)
∈ N2(−2) shows that this

estimate is sharp for n = 2.
We now prove Nn(Cn) 6= ∅. This statement is a Cantor-type one, as

Mm := N
(
Cn +

1

m

)
are closed (also convex) and nonempty sets of BM(T) and

plainly Nn(Cn) =
⋂∞

m=1Mm, where Mm ⊃MM for all m < M .
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To apply Cantor’s Lemma, we only have to show that the sets Mm are
compact sets. That is not true in the original topology of BM(T), but it holds
true in the weak ∗ topology of BM(T). Indeed, Nn(y) is bounded in view of (1.24)
and (2.1), and all bounded sets of BM(T) are conditionally compact in the weak
∗ topology. Moreover, N (y) is also closed, since by (2.7) BM(T)P is closed, and
we have, using notation (2.3),

(3.6) Nn(y) = BM(T)P ∩
(

n⋂

k=2

X(cos kx, y)

)
∩X(−1,−1) ∩X(1, 1).

Thus Lemma 2.1 can be applied to show Nn(Cn) 6= ∅.
ii) Monotonicity is obvious from definition, and Cn → 0 is already proved.
iii) Follows from Proposition 3.7 ii) trivially.
iv) The inclusion is obvious. If y′′ > 0, the example in Proposition 3.7

iv) fits here, too, showing Nn(y′′) \ Nn(y′) 6= ∅, while λ ∈ Nn(0) belongs to no
Nn(y′) with y′ < 0. In case y′ < y′′ < 0 by the same way any ν ′ ∈ Nn(y′) with

min
2≤k≤n

yk(ν
′) = y ≤ y′ can be a starting point to define ν ′′ =

y′′

y
·ν ′+

(
1 − y′′

y

)
λ ∈

Nn(y′′) with ν ′′ /∈ Nn(y′) since min
2≤k≤n

yk(ν
′′) = y′′ > y′.

v) Clear. �

Proposition 3.9. In the definitions (1.26) for β, ϑ, βn, ϑn (n ∈ N),
the supremum can be substituted by maximum since in case N (y) 6= ∅, resp.
Nn(y) 6= ∅, the supremum is actually attained by some measure of N (y), resp.
Nn(y).

P r o o f. One proof can be given following the proof of Nn(Cn) 6= ∅.
However, it is easier to refer to the fact that N (y) and all Nn(y) (n ∈ N) are
closed sets, and thus the continuous functional ν → 〈2 cos x, ν〉 maps these sets to
some closed sets of R. (We may also note that the sets are convex and bounded,
too, hence the image sets must be finite closed intervals.) Taking the supremums
as in (1.26), we actually extremalize on these image sets of R, and that concludes
the argument. �

Proposition 3.10.
i) ϑ2(y) =

√
2 + y (C2 = −2 ≤ y ≤ 2).

ii) β2(y) =
√

2 + y (C2 = −2 ≤ y ≤ 2).

P r o o f. We already know that C2 = −2 (cf. the end of the proof of part
i) of Proposition 3.8.) Since β2(y) ≥ 0 and ϑ2(y) ≥ 0 and both functions are
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nondecreasing in their domain of definition, it is enough to prove the statements
for all −2 < y ≤ 2. Let us fix one particular y, and let us choose two extremal
measures µ, ν ∈ N2(y) with Fourier series

(3.7) dµ(x) ∼ 1 +

∞∑

k=1

zk cos kx, dν(x) ∼ 1 +

∞∑

k=1

yk cos kx

so that

(3.8) z1 = −β2(y), y1 = ϑ2(y).

The extremal measures exist according to Proposition 3.9. Let us estimate y2 and
z2 by the values of y1 and z1! That kind of estimation was already worked out
in [19], Theorem 2.2 (See also the Remark after it.). We get from this Theorem
that

(3.9) z2 ≥ 2 cos

(
2 arccos

(−z1
2

))
, y2 ≥ 2 cos

(
2 arccos

(y1

2

))
.

Combining (3.7) and (3.8) with the inequalities z2 ≤ y, y2 ≤ y, coming from
µ, ν ∈ N (y), we are led to

(3.10) y ≥ 2 cos

(
2 arccos

(
β2(y)

y

))
, y ≥ 2 cos

(
2 arccos

(
ϑ2(y)

2

))
.

After some calculation this yields the estimates

(3.11) β2(y) ≤
√

2 + y, ϑ2(y) ≤
√

2 + y.

Now we only have to show that this upper estimate is sharp. Let us
consider the measure

η :=
1

2
(δw + δ−w)

(
w := arccos

(z
2

))
,
(
z :=

√
2 + y

)
.

We have η ≥ 0, and

dη(x) ∼ 1 +

∞∑

k=1

2 cos(kw) cos kx,

and thus the coefficient of cosx is z, and the coefficient of cos 2x is 2 cos(2w) =
2(2 cos2(w) − 1) = z2 − 2 = y, verifying η ∈ N2(y) and ϑ2(y) ≥ z =

√
2 + y. The

translated measure dη(x + π) shows by the same way β2(y) ≥ √
2 + y. These

and (3.11) together concludes the proof of the Proposition. �
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Proposition 3.11.
i) β and ϑ are concave functions on D(β) = D(ϑ) = [0,∞).

ii) For all n ∈ N βn and ϑn are concave functions on D(βn) = D(ϑn) =
[Cn,∞).

iii) β(y) = ϑ(y) = βn(y) = ϑn(y) = 2 for all y ≥ 2 and n ∈ N.

iv) For all m > n, m,n ∈ N and y ≥ Cm, we have

βm(y) ≤ βn(y), ϑm(y) ≤ ϑn(y).

v) For all y ≥ 0 we have βn(y) → β(y), ϑn(y) → ϑ(y) (n → ∞), uniformly
in y.

vi) β(0) = 1, ϑ(0) ≥ 2√
3
.

vii) β and ϑ are strictly increasing in [0, 2]; βn and ϑn are strictly increasing in
[Cn, 2] (n ∈ N).

P r o o f. i) Let 0 ≤ y′ ≤ y ≤ y′′ be arbitrary and y = λy′ + (1 − λ)y′′

be the representation of y. Note that here we have 0 ≤ λ ≤ 1. Suppose that
ν ′ ∈ N (y′) and ν ′′ ∈ N (y′′) and consider the measure

(3.12) ν := λν ′ + (1 − λ)ν ′′ ∈ BM(T)

which is nonnegative as λ ≥ 0 and 1 − λ ≥ 0.
Plainly

(3.13)

〈1, ν〉 =λ〈1, ν ′〉 + (1 − λ)〈1, ν ′′〉 = 1,

y1 =〈2 cos x, ν〉 = λy′1 + (1 − λ)y′′1 ,

yk =〈2 cos kx, ν〉 = λy′k + (1 − λ)y′′k ,

where

(3.14)

dν(x) ∼ 1 +
∞∑

k=1

yk cos kx,

dν ′(x) ∼ 1 +

∞∑

k=1

y′k cos kx,

dν ′′(x) ∼ 1 +

∞∑

k=2

y′′k cos kx.
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Now the first and the third lines of (3.13) prove ν ∈ N (y) as yk =λy′k+(1−λ)y′′k ≤
λy′ + (1 − λ)y′′ = y (k ∈ N2). The second equation of (3.13) entails that

(3.15)

ϑ(y) = sup{y1 : ν ∈ N (y)}
≥ λ sup{y′1 : ν ′ ∈ N (y′)} + (1 − λ) sup{y′′1 : ν ′′ ∈ N (y′′)}
= λϑ(y′) + (1 − λ)ϑ(y′′)

and similarly to (3.15) we also have

(3.16) β(y) = sup{−y1 : ν ∈ N (y)} ≥ λβ(y′) + (1 − λ)β(y′′),

proving concavity.
ii) Similar to i).
iii) Proposition 3.7 ii) and Proposition 3.8 iii) entail that all functions are

constant for y ≥ 2. The same coefficient estimate

(3.17) |〈2 cos kx, ν〉| ≤ 〈2, ν〉 = 2 (k ∈ N, ν ∈ N (2)),

already used in the proof of Proposition 3.8 iii), shows that |y1| ≤ 2. Now
βn(2) = β(2) = 2 is shown by δπ ∈ N (2), and ϑn(2) = ϑ(2) = 2 is shown by
δ ∈ N (2).

iv) Trivial in view of Cn ≤ Cm ≤ y and ∅ 6= Nm(y) ⊆ Nn(y).
v) For any fixed particular y ≥ 0 we have N (y) =

⋂∞
n=2 Nn(y). Therefore

β(y) ≤ βn(y) (n ∈ N) is trivial. To prove convergence of βn(y) to β(y) at the
point y, let us denote for all n ∈ N

(3.18)

Nn :=
{
νn ∈ Nn(y) : 〈2 cos x, νn〉 ≤ −βn(y)

}
= Nn(y) ∩X

(
2 cos x, βn(y)

)
.

Note that in view of Proposition 3.9 Nn 6= ∅, and the sets Nn satisfy all the

conditions of Lemma 2.1 in view of (3.6) and (3.18). Hence N =
∞⋂

n=2
Nn is

nonempty. One can easily see that any ν ∈ N belongs to N (y) and

(3.19) 〈2 cos x, ν〉 ≤ − lim
n→∞

βn(y),

proving β(y) ≥ lim
n→∞

βn(y). Now we have βn(y) → β(y) monotonically nonincrea-

singly in the pointwise sense on the whole [0, 2]. But for the concave and hence
continuous functions βn and β that entails also uniform convergence on [0, 2] by
Dini’s monotone convergence criteria (cf. e.g. [7], (7.2.2), p. 129). With part iii)
that settles uniform convergence, too. A similar argument works for ϑ as well.



On some extremal problems of Landau 149

vi) The easy examples dν+(x) = (1 + cos x)dx, dν−(x) = (1 − cosx)dx
show that ϑ(0) ≥ 1 and β(0) ≥ 1. To show that ϑ(0) ≥ 2/

√
3, one may consider

the trigonometric polynomial

(3.20) h(x) = 1 +
1

cos π
6

cos x− tan π
6

3
cos 3x = 1 +

2√
3

cos x− 1

3
√

3
cos 3x

and the corresponding measure dν(x) = h(x)dx. The only thing to check is h ≥ 0,
which can be done directly, or we can refer to the k = 3 case of Proposition 2.1
of [19]. On the other hand, Proposition 3.7 iii) entails that for ν ∈ N (0) we can
not have 〈2 cos x, ν〉 = y1 < −1, and this proves β(0) = 1.

vii) Follows from parts i), ii), iii) and Proposition 3.10. �

3.5. Proposition 3.12.
i) For 1 ≤ a < 2 we have

(3.21) ω(a) = a · max
y>0

β(y) − 2/a

y
+ a+ 1.

ii) For a ≤ −1, a ∈ D(ω) we have

(3.22) ω(a) = (−a)max
y>0

ϑ(y) + 2/a

y
+ a+ 1.

Remark. For −1 ≤ a ≤ 1 we have ω(a) = α(a) = 1 + a according to
Propositions 3.3 i) and Theorem 3.1 i). Also for −1 ≤ a ≤ 1

(3.23) sup
y>0

a · β(y) − 2

y
= lim

y→+∞

a · β(y) − 2

y
= 0

and

(3.24) sup
y>0

(−a)ϑ(y) − 2

y
= lim

y→+∞

(−a)ϑ(y) − 2

y
= 0,

since |a| ≤ 1, and 0 ≤ β(y) ≤ 2, 0 ≤ ϑ(y) ≤ 2 (see Proposition 3.11) and
hence the numerators of these functions are always nonpositive. In this sense
the statement is valid for all a, but to emphasize the given forms, where sup is
changed to max and a has been brought out, we used the above formulation.

P r o o f. i) For a = 1 the statement is trivial according to the above
Remark. For a > 1 let us take two extremal measures τ ∈ M(a) and ν0 ∈ N (y0)
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with max
y>0

β(y) − 2/a

y
=

β(y0) − 2/a

y0
. Since a > 1 and β(0) = 1 we see that

ϕa(y) = ϕ(y) =
β(y) − 2/a

y
is negative for small y > 0, while for y = 2 ϕ(2) =

1 − 1/a > 0, and for y > 2 ϕ(y) < ϕ(2) and ϕ(y) → 0 (y → +∞). Hence there
exists a y0 /∈ (0, 2], depending on a, where ϕa(y0) is a maximum. Also τ and ν0

must exist in view of Proposition 3.9 and Theorem 3.1 i). First, we recall

(3.25) τ + δ ≥ t · λ; t = ω(a)

and define

(3.26) µ := τ + δ − t · λ ≥ 0,

where with the Fourier expansion in (1.22) and (1.23) we are led to

(3.27)

dµ(x) ∼ (b+ 1 − t) +

(
2 − 2b

a

)
cos x+

∞∑

k=2

(2 + tk) cos kx,

b ∈ R, tk ≤ 0 (k ∈ N2).

Now by µ ≥ 0 we have also b + 1 − t ≥ 0. In case of b + 1 − t = 0 the trivial
argument (2.2) would give µ ≡ 0, leading in view of the coefficient of cos x to the
equation b = a and thus a + 1 − t = 0. But t = ω(a) = α(a) ≥ 2a > 1 + a for
a > 1 according to Propositions 3.3 ii) and 3.5 i), thus excluding b+1− t = 0 for
a > 1. We get

(3.28) b+ 1 − t > 0 if a > 1,

and we can introduce the new normalized measure

(3.29) ν :=
1

b+ 1 − t
µ, dν(x) ∼ 1 +

2(a− b)

a(b+ 1 − t)
cos x+

∞∑

k=2

2 + tk
b+ 1 − t

cos kx.

Denoting

(3.30) y1 := − 2(b− a)

a(b+ 1 − t)
, yk := − 2 + tk

b+ 1 − t
(k ∈ N2), y :=

2

a(b+ 1 − t)
,

we immediately get that ν ∈ N (y) with the parameters and coefficients in (3.30).
Consequently, we have by definition

(3.31)
2(b− a)

a(b+ 1 − t)
≤ β(y)

(
y − 2

b+ 1 − t
> 0

)
.
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Let us use the definition of y and t = ω(a) in the left-hand side to express (3.31)
by y and ω(a) as

(3.32)
y

a

{(
2

y
− 1 + ω(a)

)
− a

}
≤ β(y),

or, after some calculation,

(3.33) ω(a) ≤ a · β(y) − 2/a

y
+ a+ 1.

That proves that the left-hand side of (3.21) can not exceed the right-hand side.
Next we start by considering the extremal measure ν0 ∈ N (y0) and define
(3.34)

b := a

(
β(y0)

y0
+ 1

)
, t :=

−2

y0
+ 1 + b, tk :=

2(yk − y0)

y0
(k ∈ N2),

τ0 :=
2

y0
ν − δ + t · λ ∈ BM(T), dτ0(x) ∼ b+

(
2

y0
y1 − 2

)
cos x+

∞∑

k=2

tk cos kx.

We immediately have tk ≤ 0 (k ∈ N2) and from the extremality of ν0 ∈ N (y0)
we also have y1 = −β(y0). Moreover, in view of the definition of b, we have for
t1, the coefficient of cos x in the Fourier expansion of τ0, the equation

(3.35) t1 =
−2β(y0)

y0
− 2 = b

(
−2

a

)
.

Now (3.34)–(3.35) yield τ0 ∈ M(a), and, as ν0 ∈ N (y0) entails ν0 ≥ 0, we
immediately get τ0 + δ ≥ t · λ proving that

(3.36) ω(a) ≥ t.

Now let us substitute the parameters (3.34) in (3.36) to obtain

(3.37) ω(a) ≥ − 2

y0
+ 1 + a

(
β(y0)

y0
+ 1

)
= a · β(y0) − 2/a

y0
+ a+ 1.

Comparing (3.33) and (3.37) proves the assertion.
ii) The proof is very similar to i), hence we omit a few details and give

here only the main steps and formulas. Again we suppose a < −1, and check

that ψa(y) := ψ(y) :=
ϑ(y) + 2/a

y
has a positive maximum attained for some y

in 0 < y ≤ 2. The ≤ part will be proved by taking an extremal τ ∈ M(a) and
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following the preceding argument from (3.23) up to (3.30) with the only alteration
that here in place of (3.28) we have

(3.38) b+ 1 − t > 0 if a < −1

because of the relations t = ω(a) ≥ 0 > 1 + a (a < −1). Now in place of (3.31)
we will obtain from the extremality of τ that

(3.39)
2(b− a)

(−a)(b+ 1 − t)
≤ ϑ(y)

(
y =

2

b+ 1 − t
> 0

)
,

and similarly to (3.32)–(3.34), some calculation leads to

(3.40) ω(a) = t ≤ (−a)ϑ(y) + 2/a

y
+ a+ 1.

The converse direction goes like (3.34)–(3.36) with the only change that here we
take y1 = ϑ(y0) in place of −β(y0). Hence the same change occurs in (3.37) and
we get the ≥ part. �

Remark. We have to note here that implicitly we used that ϑ(y) + 2/a
is positive only for y > 0, i.e. ϑ(0) ≤ 2/|a|. Now we really have

(3.41) ϑ(0) =
2

−A,

a duality-type relation between different extremal problems, cf. [18], in particular
the discussion around (2.9)–(2.14).

Note that this settles the existence of maximum for ψa(y) in y > 0 for
all a > A, but leaves the question open if A ∈ D(α) and a = A. In this case for
small y (ϑ(y)+ 2/A)/y has a small, but positive numerator and the denominator
is also positive. Thus we can extend ψA to 0 as

(3.42)

ψA(0) = (−A) lim
y→0+

ϑ(y) + 2/A

y
+A+ 1

= (−A) lim
y→0+

ϑ(y) − ϑ(0)

y
+A+ 1 = (−A)ϑ′(0+) +A+ 1

in case it is finite. In turn, if (3.42) is finite, by concavity we conclude that the
maximum is attained at 0, and we conclude

(3.43) α(A) = ω(A) = (−A)ϑ′(0+) +A+ 1.
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On the other hand, if ϑ′(0+) = +∞, similarly to (3.37) it is easy to show that
we will have lim

a→A+
α(a) = +∞, and hence A /∈ D(α).

Similarly, from α(a) → +∞ (a→ 2−) we can conclude that

(3.44) β′(0+) = +∞.

Later even the asymptotic order of β will be specified, so we leave this question
for the moment.

Let us point out the geometric interpretation of the maximum in (3.21).
The concave curve {(y, β(y)) : y ≥ 0} defines a convex domain of points lying
below the curve. The maximum is just the slope of one of the tangent straight
lines drawn from the outer point (0, 2/a) to this convex domain. (The other
tangent is just the second coordinate axis.)

Proposition 3.13. We have for all n ∈ N the relations

i) βn(0) =
2

Bn
;

ii) ϑn(0) =
−2

An
;

iii) For all a ∈ [0, Bn]

ωn(a) = a sup
y>0

βn(y) − 2/a

y
+ a+ 1;

in particular,

ωn(Bn) = Bn · β′n(0+) +Bn + 1;

iv) For all a ∈ [An, 0]

ωn(a) = (−a) sup
y>0

ϑn(y) + 2/a

y
+ a+ 1;

in particular

ωn(An) = (−An) · ϑ′n(0+) +An + 1.

P r o o f. Follows similarly to the argument of Proposition 3.12 and the
Remark after it. We omit the details. �
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Next we define another extremal quantity as follows.

(3.45)

Z := inf
{
y > 0 : ∃ζ ∈ BM(T), ζ ≥ 0, z ≥ 2(1 − y),

dζ(x) ∼ 1 − z cos x+
∞∑

k=2

zk cos kx, zk ≤ y (k ∈ N2)
}
.

Proposition 3.14.
i) There exists a unique point yU in (0, 2] so that

β(yU ) = 2(1 − yU).

ii) For the point yU we have Z = yU .

iii) We have Ω = 2
yU

− 1 =
2

Z
− 1.

P r o o f. i) The functions β(y) and 2(1 − y) are continuous and strictly
monotonous in the opposite direction from 0 to 2 and from 2 to −2 in the domain
[0, 2]. Hence there exists a unique solution of the equation β(y) = 2(1− y) in the
interval (0, 2).

ii) Denote the set of measures used in the definition of Z as Z(y). Then

(3.46) Z := inf
{
y > 0 : Z(y) 6= ∅

}
.

Now if y > Z, we have Z(y) 6= ∅, and, as Z(y) ⊂ N (y), we find that β(y) =
max{−〈2 cos x, ζ〉 : ζ ∈ Z(y)} ≥ 2(1 − y). Hence, in view of the definition of yU

and the monotonicity of β(y) and 2(1−y), we conclude y ≥ yU and a fortiori Z ≥
yU . Conversely, if y > yU , then β(y) > β(yU ) = max{〈−2 cos x, ζ〉 : ζ ∈ N (yU )},
and for any extremal measure ζ0 ∈ N (yU), we have 〈−2 cos x, ζ0〉 = β(yU ) =
2(1 − yU ), hence ζ0 ∈ Z(yU ) and Z ≤ yU .

iii) Let K be the measure set in (1.18) where the defining supremum for
Ω is defined. Note that K contains δπ, hence K 6= ∅. Moreover we have for any
κ ∈ K

(3.47)
0 ≤ ||κ||BM(T) =

∫
|dκ| =

∫
dκ = 2π · b0 ≤ 2π(2 − b1) =

= 2π
(
1 + (1 − b1)

)
≤ 2π(1 + Ω),

and using the estimate Ω ≤ U (stated already in (1.19) as a result implicitly
contained already in [27], and proven in Corollary 3.1 below) we immediately
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get that K is bounded. Note that K is also closed and convex, and can be
represented in the form of the intersection of a set of closed halfspaces generated
by functionals from C(T), hence K is also weakly ∗ compact and the sup in (1.18)
is actually a maximum. Now for the extremal measure κ ∈ K we consider its
Fourier series (1.16) and prove that b0 > 1 and b0 + b1 = 2 for κ. Indeed, in case
b0 ≤ 1 we must have |b1| ≤ 1, Ω = 1− b1 ≤ 2, and the known examples are much
better than that. Also if b0+b1 < 2, one can consider dκ∗(x) = dκ(x)+ 2

3 (2−b0−
b1) · (1− cos x)dx, b∗0 + b∗1 = 〈1− cos x, κ∗〉 = b0 + b1 + 2

3 (2− b0 − b1)
(
1 + 1

2

)
= 2,

hence κ∗ ∈ K, and b∗1 < b1 would provide a contradiction.

Now let us define the measure

ν =
1

b0
· κ ≥ 0.

Plainly ν ∈ N
(

2

b0

)
, hence β

(
2

b0

)
≥ −2b1

b0
=

2(b0 − 2)

b0
= 2

(
1 − 2

b0

)
. Let

y0 be
2

b0
, then we see β(y0) ≥ 2(1 − y0), hence y0 ≥ yU . From this we get

b0 =
2

y0
≤ 2

yU

, hence Ω = 1− b1 = b0 − 1 ≤ 2

yU

− 1. Similarly, for yU we can take

any β-extremal measure ν ∈ N (yU ) and consider the measure

κ =
2

yU
ν ∈ K

proving Ω ≥ 1 − b1 = 1 +
2

yU
· β(yU )

2
= 1 +

2

yU
(1 − yU) =

2

yU
− 1. �

Putting [2, n] in place of N2 one can also introduce Zn and Kn, and the
corresponding extremal quantities Zn and Ωn (n ∈ N2). It is no surprise now
that we have the analogous

Proposition 3.15. For arbitrary n ∈ N2 the following statements hold
true.

i) There exists a unique point yU,n in (0, 2] so that βn(yU,n) = 2(1 − yU,n).

ii) For the point yU,n we have Zn = yU,n.

iii) We have Ωn =
2

yU,n
− 1 =

2

Zn
− 1.

iv) Zn → Z monotonically increasingly, and Ωn → Ω a nonincreasing way.
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Corollary 3.1. We have U = Ω and also Un = Ωn (n ∈ N2).

P r o o f. As the proofs are very similar, we prove only U = Ω. The easy
part is U ≥ Ω, essentially already proved by van der Waerden [27] the idea dating
back to Landau [15]. Indeed, let f ∈ F(a) and κ ∈ K be any particular elements,
we then have by f ≥ 0, κ ≥ 0 and using bk ≤ 1, ak ≥ 0 (k ∈ N2) that

(3.48)

0 ≤ 〈f, κ〉 = b0 + ab1 +

∞∑

k=2

akbk ≤ (b0 − 1) + a(b1 − 1)+

(
1 + a+

∞∑

b=2

ak

)
= b0 − 1 + a(b1 − 1) + f(0).

We also apply b0 + b1 ≤ 2 for κ ∈ K, and get for a > 1 the inequalities

(3.49) (1 − b1)(a− 1) ≤ b1 − 1 + b0 − 1 + f(0) ≤ f(0).

Now let us take supremum over K at the left, and infimum over F(a) at the
right-hand side to get

(3.50) Ω(a− 1) ≤ α(a).

Dividing by a − 1 (> 0) and minimizing U(a) =
α(a)

a− 1
, we get Ω ≤ U . (Note

that the minimum place is a = aU , cf. Proposition 3.6 iv) for the definition and
uniqueness.)

Now let us prove the converse! We start with noting that by Proposition

3.14 iii) Ω =
2

yU

−1, and choose a = aΩ such that the maximum at the right-hand

side of (3.21) is attained at y = yU . Note that 0 < yU < 0.5 is trivial, and for
(any one of the) tangential lines of β at the point (yU , β(yU )) the intersection
point of the straight line with the second coordinate axis defines such an aΩ by(

0,
2

a

)
being the intersection point. Hence we conclude the existence of such an

aΩ. Consequently, with a = aΩ and using the Duality Theorem (Theorem 3.1 i)),
we get
(3.51)

U ≤ α(aΩ)

aΩ − 1
=

ω(aΩ)

aΩ − 1
=

1

aΩ − 1

(
aΩ
β(yU ) − 2/aΩ

yU
+ aΩ + 1

)
=

=
1

a− 1

(
a
2(1 − y)

y
− 2

y
+ a+ 1

)
=

1

a− 1

(
(a− 1)

2

y
− a+ 1

)
=

2

yU

− 1 = Ω.

�
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We may note that the above mentioned duality relation enables us to
give another form of ω(a), which has the interesting feature that only the goal
function to be maximalized is dependent on a, but not the set of measures on
what the maximization takes place. Namely, we have

(3.52)
α(a) = ω(a) = sup

{
(1 − b1)(a− 1) + (2 − b0 − b1) : ∃κ ∈ K

(with (1.16)–(1.17))
}
.

Indeed, let us define the right-hand side as ζ(a), and define also the auxiliary
quantity

(3.53) w(b) := sup
{
1 − b1 : ∃κ ∈ K, b0 = b (with (1.16)–(1.17))

}
.

Plainly with y :=
2

b
the function w(b) is related to β(y) as

(3.54) w(b) = 1 +
b

2
β(y)

(
y :=

2

b

)
,

since for κ ∈ K with b0 = b the measure ν := 1
b
κ ∈ N (y), and for ν ∈ N (y) the

measure κ := 2
y
ν ∈ K. Plainly

ζ(a) = sup
{
(1 − b1)a+ (1 − b0) : ∃κ ∈ K (with (1.16)–(1.18))

}
=

= sup
{
(1 − b0) + aw(b0) : κ ∈ K

}
= sup

b0>0

{
1 − b0 + a

(
1 +

b0
2
β

(
2

b0

))}

= sup
y>0

{
a

(
1 +

β(y)

y

)
+ 1 − 2

y

}
= a sup

y>0

β(y) − 2/a

y
+ a+ 1 = ω(a)

by (3.22), Proposition 3.12 i).

4. Concluding remarks and further questions. One can ask if
Landau’s extremal problems are interesting even now. We have already mentio-
ned that they can be of interest for practical applications, in particular for
computational number theory, as in [22]. Let us mention a further point and
comment connections to recent publications like [8] and [12].

Already Landau proved the Prime Ideal Theorem, and later on further
generalizations of Dirichlet’s and Riemann’s approach (use of multiplicative gene-
rating functions, i.e. Dirichlet series, in the study of multiplicative problems)
appeared. A quite general setup is the Beurling theory of prime distribution. Now
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for Beurling primes the de la Vallée Poussin-Landau method works, but no other
refined techniques can be utilized, since there are counterexamples: Diamond,
Montgomery and Vorhauer [8] has constructed recently a Beurling set of primes
so that no better zero-free region of ζ(s), and no better error term of π(x), can
be established than (1.6) and xe−c

√
log x, respectively.

Also, these problems are related to, or similar to, and have common
generalizations with many other important families of extremal problems. So we
are convinced that further research of them has merit not only for the analytical
beauty and difficulty of them. Hence let us end this work by listing a few
questions.

1.) The asymptotic order of α(a) when a→ 2− 0 was determined in [19].
It is of interest to obtain more precise descriptions of values of α(a), in particular
when a→ 2 − 0.

2.) We have seen that the extremal function in the α-problem is a
polynomial when say −3/4 < a <

√
2. (We can calculate this a bit further.)

Do we have for all a ∈ D(α) that there is an N := N(a) so that α(a) = αN (a)?
(If so, the “right” (minimal) degree N(a) → ∞ when a→ 2−0.) Having N(1.85),
say, would allow to exactly determine U , V , W by finite range computer search.

3.) We have seen (Chakalov) that sometimes Uk+1 = Uk. It seems that
in the dual (van der Waerden-type) extremal problem ω(a) and Ω for measures,
we have vanishing Fourier coefficients for exactly those indices k ∈ N. Prove or
disprove!

4.) Determine A and An (left endpoints of D(α) and of D(αn), resp.).
These lead to extremal problems in themselves: for how large an a can an even
Fourier series g(x) (a cosine polynomial of degree n) with ĝ(0) = 1 and ĝ(1) = 0
be strictly positive definite while g(x) + a cos x ≥ 0 ?

5.) It is possible to consider similar, however not only positive definite,
but signed Landau-problems, i.e. instead of ak ≥ 0 we can assume arbitrary sign
conditions on various k’s. We already have the duality [18]. Note that considering
negative a leads to this question naturally.

6.) Let G be a locally compact Abelian group. Develop the similar theory.

We have emphasized several times that the Landau extremal problems are
related to many classical and current extremal problems. In relation to questions
5.) and 6.), let us give an example for the Landau problem with some sign
conditions on groups.
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Example 4.1. Assume, as sign condition, that f̂ = 0 outside D, where
D ⊂ Ĝ is a domain in the dual group. (E.g. if G = T and Ĝ = Z, then considering
polynomials of degree ≤ n is equivalent to assume f̂ = 0 outside [−n, n].) Then
the problem is about the minimal value of f(0) when a = a1 = 2f̂(1) is given.

Changing the role of G and Ĝ and taking ϕ := f̂ , we obtain the following
extremal problem:
i) ϕ = 0 on G \D, i.e. ϕ is supported in D;
ii) ϕ̂ ≥ 0, i.e. ϕ is positive definite;
iii) ϕ(0) = 1 (normalization);
iv) ϕ(1) = a/2;
and then we seek to minimize

∫
ϕ = ϕ̂(0).

If one only looks for the largest possible value of a so that the problem
has a finite solution, (e.g. if we look for Bn), then the extremal problem becomes
maximization of ϕ(1) under the conditions (i)–(iii) given. This is called “pointwise
Turán problem” (although in R was already considered by Boas and Kac [3] in
the forties). See [12] and the references therein. In the special case of αn, it is
an extremal problem solved by Fejér [10] and Szász [24] – that is the exact value
of Bn given above.
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