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ON NILPOTENT SUBSEMIGROUPS IN SOME MATRIX

SEMIGROUPS

Olexandr Ganyushkin, Volodymyr Mazorchuk
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Abstract. We describe maximal nilpotent subsemigroups of a given nilpo-
tency class in the semigroup Ωn of all n×n real matrices with non-negative
coefficients and the semigroup Dn of all doubly stochastic real matrices.

1. Introduction. Let Ωn denote the semigroup of all n×n real matrices
with non-negative coefficients with respect to the usual matrix multiplication.
This semigroup has two natural subsemigroups, the subsemigroup Pn of all
stochastic matrices (that is all matrices from Ωn such that the sum of the elements
of each column is equal to 1), and the subsemigroup Dn of all doubly stochastic
matrices (that is all matrices from Pn such that additionally the sum of the
elements of each row is equal to 1). These semigroups are important and popular
objects of study in many branches of modern mathematics. Surprisingly enough,
the algebraic properties of these semigroups are studied rather superficially. One
of the possible explanations for this fact is complexity of the algebraic structure
of these semigroups.
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Among the classical results on the algebraic structure of these semigroups
one should mention the descriptions of the maximal subgroups in the semigroup
Pn, see [20], and the descriptions of the maximal subgroups in the semigroup
Dn, see [1]. In particular, it was shown that every maximal subgroup in Pn is
isomorphic to the symmetric group Sk for some k ≤ n, and that every maximal
subgroup in Dn is isomorphic to the direct product of symmetric groups. Later
on there appeared alternative and easier proofs of these results, discovered by
different mathematicians, see for example [21, 26, 27, 8, 24]. In [2] it was shown
that each maximal subgroup of Ωn is isomorphic to some full monomial group of
degree k ≤ n over the group of positive real numbers (see also [8, 16, 24, 12]).

Apart from the study of maximal subgroups, a lot of attention was paid
to the description of regular elements in these semigroups, see [26, 27, 24, 16, 13,
14, 17], and Green’s relations. Green’s relations were studied for regular elements
in [19] and for arbitrary elements in [28, 29, 9, 25]. In the semigroup Dn Green’s
relations for regular elements were studied in [13, 26], and for arbitrary elements
in [14]. The paper [24], apart from new results, contains several new proofs of
already known facts about the regular elements, Green’s relations and maximal
subgroups of the semigroups Ωn, Pn and Dn.

Some algebraic properties of the set E(Dn) of idempotents of the semi-
group Dn were studied in [22], and indecomposable elements of Ωn and Dn were
studied in [18, 15]. In [20, 11] the minimal ideals of Pn were studied. Maximal
subsemigroups of Ωn, Pn and Dn were studied in [8]. And, finally, in [5, 6]
the present authors studied a homomorphism from the semigroup Dn to the
semigroup Bn of all binary relations on an n-element set, the image of which has
several interesting extremal properties.

In the present paper we describe maximal nilpotent subsemigroups of a
given nilpotency class in the semigroups Ωn (see Section 3) and Dn (see Section 4).
As a preparatory work, we develop some general reduction technique for the study
of maximal nilpotent subsemigroups via epimorphisms in Section 2.
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2. Epimorphisms of nilpotent semigroups. Let S be a semigroup
with the zero element 0. A subsemigroup, T ⊂ S, is called nilpotent provided
that there exists k ∈ N such that T k = 0. The minimal k with this property is
called the nilpotency class of T .
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For a positive integer, m, we denote by Nilm(S) the set of all nilpotent
subsemigroups of S of nilpotency class at most m, and by Nilmax

m (S) – the set of
all maximal elements in Nilm(S) with respect to inclusion. Abusing the language,
the elements of Nilmax

m (S) will be called maximal nilpotent subsemigroups of
nilpotency class m of S. Set also

Nil(S) = ∪m∈NNilm(S)

and let Nilmax(S) be the set of all maximal elements in Nil(S) with respect to
inclusion. The elements of Nilmax(S) are maximal nilpotent subsemigroups of S.

Lemma 2.1. Let ϕ : S → T be a surjective homomorphism of semigroups
with zero. Assume that T is a nilpotent semigroup of class n and ϕ−1(0) is a
nilpotent semigroup of class m. Then S is a nilpotent semigroup of class at most
mn.

P r o o f. For arbitrary a1, . . . , anm ∈ S we have

ϕ(a1 · · · an) = ϕ(an+1 · · · a2n) = · · · = ϕ(an(m−1)+1 · · · anm) = 0

and hence ani+1 · · · an(i+1) ∈ ϕ−1(0) for every i = 0, 1, . . . ,m− 1. Therefore

(a1 · · · an) · (an+1 · · · a2n) · · · (an(m−1)+1 · · · anm) = 0. �

Theorem 2.2. Let ϕ : S → T be a surjective homomorphism of semi-
groups with zero and assume Nilmax(S) 6= ∅. Then:

(a) ϕ−1 induces a bijection between Nilmax(T ) and Nilmax(S) if and only if ϕ−1(0)
is a nilpotent subsemigroup of S.

(b) If ϕ−1(0) = 0, then for any U ∈ Nil(S) the semigroups U and ϕ(U) have the
same nilpotency class; and for any V ∈ Nil(T ) the semigroups V and ϕ−1(V )
have the same nilpotency class. Moreover, for every k ∈ N the maps ϕ and
ϕ−1 induce mutually inverse bijections between Nilmax

k (S) and Nilmax
k (T ).

P r o o f. We start with (a). The necessity is obvious. To prove the
sufficiency we observe that from Lemma 2.1 it follows that if ϕ−1(0) is nilpotent,
then ϕ−1 induces a map from Nil(T ) to Nil(S), which is obviously injective.

Let A ∈ Nilmax(T ). If ϕ−1(A) 6∈ Nilmax(S), then there exists B ∈ Nil(S)
such that ϕ−1(A) $ B. This implies A $ ϕ(B). On the other hand, ϕ(B) is
obviously nilpotent since so is B. This contradicts the maximality of A. Hence
ϕ−1(A) ∈ Nilmax(S).
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Let now B ∈ Nilmax(S). Then for every nilpotent subsemigroup A of
T such that ϕ(B) ⊂ A we have B ⊂ ϕ−1(A). Since ϕ−1(A) is nilpotent, from
the maximality of B we get B = ϕ−1(A) and ϕ(B) = A. This means that
ϕ(B) ∈ Nilmax(T ) and the map

Nilmax(T ) −→ Nilmax(S)
A 7→ ϕ−1(A)

is surjective. This proves (a).
Since the homomorphic image of a nilpotent semigroup is a nilpotent

semigroup, whose nilpotency class is not greater than the nilpotency class of the
original semigroup, the first part of (b) follows from Lemma 2.1. Analogously to
the proof of (a) one shows that ϕ induces the bijective map

Nilmax
k (T ) −→ Nilmax

k (S)
A 7→ ϕ−1(A),

and the statement (b) follows. This completes the proof. �

3. Maximal nilpotent subsemigroups in Ωn. Consider the semi-
group M0

n of all real n× n matrices, each row and each column of which contain
at most one non-zero component. The semigroup M0

n is naturally identified with
the Rees matrix semigroup M0(R∗; I,Λ;E), where I = Λ = {1, 2, . . . , n} and
the sandwich-matrix E is the identity matrix of order n. Since the identity
matrix does not contain any zero rows or columns, the semigroup M0

n is a regular
semigroup. Recall that Ωn denotes the semigroup of all n×n matrices with non-
negative real coefficients. Set M̃0

n = M0
n ∩ Ωn. Then M̃0

n can be identified with
the Rees matrix semigroup M0(R+; I,Λ;E), where R+ denotes the multiplicative
group of positive real numbers.

Theorem 3.1. Let S denote one of the semigroups M0
n, M̃0

n, or Ωn.
Then

(a) The semigroup S contains n! maximal nilpotent subsemigroups, each of nil-
potency class n. These subsemigroups are in a natural bijection with linear
orders on the set {1, 2, . . . , n}.

(b) The maximal nilpotent subsemigroup of S, which corresponds to the linear
order i1 ≺ i2 ≺ · · · ≺ in, has the form

T = {(ak,l) ∈ S : ak,l 6= 0 ⇒ k ≺ l}.
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(c) Let the maximal nilpotent subsemigroups T1 and T2 of S correspond to the
linear orders i1 ≺1 i2 ≺1 · · · ≺1 in and j1 ≺2 j2 ≺2 · · · ≺2 jn respectively.
Then T2 = M−1T1M , where M = (mi,j) is the monomial matrix, which
corresponds to the permutation

π =

(

i1 . . . in
j1 . . . jn

)

(that is M is a (0, 1)-matrix such that mi,j = 1 if and only if j = π(i)). In
particular, all maximal nilpotent subsemigroups of S are isomorphic.

(d) For every k ∈ N, k < n, the semigroup S contains
k−1
∑

i=0
(−1)i

(

k
i

)

(k − i)n

maximal nilpotent subsemigroups of nilpotency class k. These maximal nil-
potent subsemigroups of nilpotency class k are in a natural bijection with
decompositions of the set {1, 2, . . . , n} into an ordered union of k pairwise
disjoint and non-empty blocks.

(e) Let N1 ∪ · · · ∪Nk = {1, . . . , n} be a decomposition into an ordered union of
pairwise disjoint non-empty blocks. Then the maximal nilpotent subsemigroup
of nilpotency class k of S, which corresponds to this partition, is

T = {(ai,j) ∈ S : ai,j 6= 0 and i ∈ Np, j ∈ Nq ⇒ p < q}.

P r o o f. Consider the map ψ : (ai,j) 7→ (âi,j) from the set Mn(R) of all
real n× n matrices to the set of all (0, 1)-matrices of size n× n, defined via

âi,j =

{

1, ai,j 6= 0;

0, otherwise.

As M0
n = M0(R+; I,Λ;E), the restriction ψ|M0

n

is a surjective homomorphism

from M0
n to the multiplicative semigroup Rn of those (0, 1)-matrices of size

n × n, each row and column of which contains at most one non-zero element.
The semigroup Rn is usually called the Rook monoid, and it is canonically
isomorphic to the symmetric inverse semigroup ISn of all partial injections on
the set {1, 2, . . . , n}, see for example [23]. Obviously, ψ−1(0) = 0. Hence for the
semigroup M0

n the statements (a)–(c) follow from Theorem 2.2 and the description
of all maximal nilpotent subsemigroups in ISn, given in [3]. The statements (d)–
(e) follow for M0

n from Theorem 2.2 and the description of all maximal nilpotent
subsemigroups of nilpotency class k in ISn, given in [4].

For the semigroup M̃0
n the proof is identical. Hence it remains to consider

the case S = Ωn. If M ∈ Ωn, the matrix ψ(M) can be considered as the matrix
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of some binary relation on {1, 2, . . . , n}. Then the restriction ψ|Ωn
defines a

surjective homomorphism from Ωn on the semigroup Bn of all binary relations
on {1, 2, . . . , n}. Moreover, ψ−1(0) = 0. Therefore the statements (a)-(e) for
the semigroup Ωn follow from Theorem 2.2 and the description of all maximal
nilpotent subsemigroups (of a given nilpotency class) in Bn, given in [7, Theo-
rem 5.15 and Theorem 6.1]. �

Corollary 3.2. Each nilpotent matrix from Ωn contains at most
n(n− 1)/2 non-zero elements.

P r o o f. This follows from Theorem 3.1(b). �

From Theorem 3.1 we obtain that the semigroup T of all upper triangular
n×n matrices with non-negative real coefficients and zero diagonal is a maximal
nilpotent subsemigroup of Ωn, and all other maximal nilpotent subsemigroups are
obtained from T via conjugation with monomial matrices. On the other hand,
for every non-degenerate matrix A ∈ Ωn the semigroup A−1TA is nilpotent.
However, if A is not monomial, then for every monomial matrix B we have
A−1TA 6= B−1TB (this follows immediately from the obvious fact that C−1TC =
T is possible only for a diagonal monomial matrix C). Hence A−1TA is not a
maximal nilpotent subsemigroup of Ωn, which means that A−1TA 6⊂ Ωn. By our
choice of A we have that the matrix A−1MA can contain negative coefficients
only if there are some negative coefficients in the matrix A−1. This proves the
following:

Corollary 3.3. The group of invertible elements of Ωn coincides with
the complete monomial group of degree n over positive reals.

We note that Corollary 3.3 can be also derived from the description of all
maximal subgroups in Ωn, see [2, Theorem 1], [16, Corollary 1], [24, Corollary 3.3].

4. Maximal nilpotent subsemigroups in Dn. The structure of
maximal nilpotent semigroups in the semigroup Dn of doubly stochastic matrices
is more complicated. In [5] it is shown that the restriction of the map ψ from the
proof of Theorem 3.1 to Dn is a surjective homomorphism on the factor power
FP+(Sn) of the symmetric group Sn. However, the zero element of the semigroup
FP+(Sn) (the latter being considered as a subsemigroup of Bn) is the full relation,
and hence ψ−1(0) coincides with the semigroup of all doubly stochastic matrices,
all coefficients of which are positive. However, this subsemigroup of Dn is not
nilpotent. Indeed, the zero element of Dn is the matrix On, all coefficients of
which are equal to 1/n. The matrix At = tOn + (1 − t)E, where 0 < t < 1 is
doubly stochastic and has positive coefficients. However, At is not nilpotent since

Ak
t = (1 − t)kE + (1 − (1 − t)k)On 6= On
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for all k ∈ N.
For a positive integer, k, we denote by Mk(R) the semigroup of all real

matrices of size k × k. Set

Qn =

{

(ai,j) ∈Mn(R) :

n
∑

k=1

ak,i =

n
∑

k=1

ai,k = 1 for all i

}

.

It is easy to check that Qn is a subsemigroup of Mn(R), moreover, that On is the
zero element of Qn.

Lemma 4.1. A ∈ Qn if and only if the vector v = (1, 1, . . . , 1) is an
eigenvector for A with eigenvalue 1, and the subspace

V = {(x1, . . . , xn) ∈ Rn : x1 + · · · + xn = 0}

is invariant with respect to A.

P r o o f. The “only if” part is checked by a direct calculation. Let us
prove the “if” part. The fact that v = (1, 1, . . . , 1) is an eigenvector for A
with eigenvalue 1 means that the sum of all elements in each row of A equals
1. Consider, for i 6= j, the vector ui,j defined as follows: the i-th and j-th
coordinates of ui,j equal 1 and −1 respectively, and all other coordinates are
zero. Since ui,j ∈ V we have Aui,j ∈ V, which means that in the matrix A the
sums of all elements in the i-th and in the j-th columns coincide. From the first
part we have the the sum of all entries of A equals n. The lemma follows. �

Proposition 4.2. Qn
∼= Mn−1(R).

P r o o f. Let v and V be as in Lemma 4.1. Let further v2, . . . ,vn be an
arbitrary basis of the vector space V, and F be the transition matrix from the
standard basis e1, . . . , en of Rn to the basis v,v2, . . . ,vn. Then, from Lemma 4.1
it follows that for every A ∈ Qn we have

F−1AF =

(

1 0

0 B

)

,

where B ∈ Mn−1(R). It is straightforward that the map A 7→ B from Qn to
Mn−1(R) is an isomorphism. �

In [10, Section 7] it is shown that for an arbitrary field, F, there exists a
bijection between the maximal nilpotent subsemigroups of nilpotency class k in
the multiplicative semigroup Mn(F), and flags of length k in Fn. Moreover, the
maximal nilpotent subsemigroup T of nilpotency class k, which corresponds to
the flag 0 = V0 $ V1 $ · · · $ Vk = Fn, has the following form:

T = {A ∈Mn(F) : AVi ⊂ Vi−1 for all i}.
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In particular, it follow that the nilpotency class of each maximal nilpotent subse-
migroup of Mn(F) equals n, and that all such subsemigroups are isomorphic and
correspond bijectively to complete flags in Fn. Choose some basis f1, . . . , fn in
Fn such that Vi = 〈f1, . . . , fi〉 for each i. Let F be the transition matrix from the
standard basis e1, . . . , en of Fn to the basis f1, . . . , fn. Then the maximal nilpotent
subsemigroup T , which corresponds to the flag 0 = V0 $ V1 $ · · · $ Vn = Fn, has
the form FTnF

−1, where Tn is the semigroup of all upper triangular matrices
fromMn(F), having zero diagonal. This and Proposition 4.2 immediately implies:

Theorem 4.3. Let v and V be as in Lemma 4.1. Then:

(a) There exists a bijection between maximal nilpotent subsemigroups of nilpo-
tency class k in the semigroup Qn and flags of length k in the space V.

(b) If 0 = V0 $ V1 $ · · · $ Vk = V is a flag in V, then the maximal nilpotent
subsemigroup of nilpotency class k, which corresponds to this flag, has the
form

T = {A ∈ Qn : AVi ⊂ Vi−1 for all i}.

(c) The nilpotency class of each maximal nilpotent subsemigroup of Qn equals
n− 1, all such semigroups are isomorphic and they correspond bijectively to
complete flags in V.

(d) Let 0 = V0 $ V1 $ · · · $ Vn = V be a complete flag in V and f2, . . . , fn
be a basis in V such that Vi = 〈f2, . . . , fi+1〉 for each i. Then the maximal
nilpotent subsemigroup T , which corresponds to this flag, has the form

T = F

(

1 0

0 Tn−1

)

F−1,

where F is the transition matrix from the standard basis e1, . . . , en of Rn

to the basis v, f2, . . . , fn, and Tn−1 is the semigroup of all upper triangular
matrices from Mn−1(R) with zero diagonal.

Question 4.4. Does the analogue of the semigroup Qn for fields of
positive characteristic p have any interesting properties in the case p|n?

Lemma 4.5. Let the semigroup S2 be such that every nilpotent subse-
migroup of S2 is contained in some maximal nilpotent subsemigroup of S2. Let
further S1 be a subsemigroup of S2. Then every maximal nilpotent subsemigroup
T1 of S1 of nilpotency class k has the form T1 = S1 ∩ T2, where T2 is some
maximal nilpotent subsemigroup of S2 of nilpotency class k.
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P r o o f. We have T1 = S1 ∩ T2, where T2 is some maximal nilpotent
subsemigroup of S2 of nilpotency class k, containing T1 (which exists because of
our assumptions). �

Lemma 4.6. Let T be a maximal nilpotent subsemigroup of nilpotency
class k in Qn, A ∈ Qn, and α 6= 0. Then A ∈ T if and only if αA+(1−α)On ∈ T .

P r o o f. Let T ′ be a maximal nilpotent subsemigroup of nilpotency class
k in Mn−1(R). From the result of [10, Section 7] mentioned above it follows that
for any B ∈ Mn−1(R) and α 6= 0 we have that B ∈ T ′ if and only if αB ∈ T ′.
Since

(

1 0

0 αB

)

= α

(

1 0

0 B

)

+ (1 − α)

(

1 0

0 α0

)

,

the necessary statement follows from Theorem 4.3 and the isomorphism Qn
∼=

Mn−1(R) from the proof of Proposition 4.2. �

Theorem 4.7. Let k ∈ N. Then the map τ : T 7→ T ∩ Dn defines a
bijection between the maximal nilpotent subsemigroups of nilpotency class k in
Qn and the maximal nilpotent subsemigroups of nilpotency class k in Dn. In
particular, every nilpotent subsemigroup of Dn is contained in some maximal
nilpotent subsemigroup, and every maximal nilpotent subsemigroup of Dn has
nilpotency class n− 1.

P r o o f. Taking Lemma 4.5 into account, we have just to prove that τ
is injective and preserves the nilpotency class. Let T1 and T2 be two different
maximal nilpotent subsemigroups of nilpotency class k from Qn and let A =
(ai,j) ∈ T2 \ T1. Then αA + (1 − α)On ∈ T2 \ T1 for any α 6= 0 by Lemma 4.6.
However, if α ∈

(

0,min{(2n|ai,j |)
−1 : ai,j 6= 0}

)

, then we have αA+ (1 − α)On ∈
Dn. Hence (T2 ∩Dn) \ (T1 ∩Dn) 6= ∅. The injectivity of τ follows.

Let now T be a maximal nilpotent subsemigroup of nilpotency class k in
Qn, and A1, . . . , Am ∈ T be such that A1 · · ·Am 6= On. Then for any non-zero
α1, . . . , αm there exists β ∈ R such that

(α1A1 +(1−α1)On) · · · (αmAm +(1−αm)On) = α1 · · ·αmA1 · · ·Am +βOn 6= On.

Analogously to the previous arguments, all αi can be chosen such that all corres-
ponding αiAi + (1 − αi)On belong to Dn. Hence the nilpotency classes of T and
T ∩Dn coincide. This completes the proof. �

Corollary 4.8. There is a bijection between the maximal nilpotent sub-
semigroups of a given nilpotency class, k, in Dn and the flags of length k in
the (n− 1)-dimensional real vector space V. In particular, the maximal nilpotent
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subsemigroups in Dn correspond to complete flags 0 = V0 $ V1 $ · · · $ Vn−1 =
V.

P r o o f. This follows from Theorem 4.3 and Theorem 4.7. �

The elements of the semigroup Tn−1 of all upper triangular matrices
with the zero diagonal can be naturally identified with the elements of the
vector space Rn(n−1)/2. The condition that some matrix from the nilpotent

subsemigroup F

(

1 0

0 Tn−1

)

F−1 belongs to Dn is equivalent to the condition

of non-negativity of the elements of the matrix. If the transition matrix F is
fixed, our condition reduces to a system of linear inequalities for the coefficients
of matrices in Tn−1. This means that every maximal nilpotent subsemigroup T
of Dn corresponds to some convex polyhedron P(T ) from Rn(n−1)/2.

Proposition 4.9. The polyhedron P(T ) is bounded (compact) for every
maximal nilpotent subsemigroup T of Dn.

P r o o f. It is obvious that the point O = (0, . . . , 0), which corresponds to
the zero element On of the semigroup T is an inner point of P(T ). Hence it is
enough to show that the intersection of every straight line from Rn(n−1)/2, which
contains O, with P(T ) is a bounded segment.

Let A ∈ T \ {On} and M ∈ P(T ) be the corresponding point of P(T ).
From the proof of Lemma 4.6 it follows that the elements of the straight line
OM = {αM : α ∈ R} correspond to the elements of the subset M̃ = {αA+ (1 −
α)On : α ∈ R} of Qn. Consider the intersection M̃ ∩ Dn. Since A 6= On, there
exists coefficients a′ and a′′ of A such that a′ > 1/n and a′′ < 1/n. From the
inequalities

αa′ + (1 − α)1/n ≥ 0 and αa′′ + (1 − α)1/n ≥ 0

we obtain (1 − na′)−1 ≤ α ≤ (1 − na′′)−1. Hence M̃ ∩Dn is a bounded segment
and therefore OM ∩ P(T ) is a bounded segment as well. �

We remark that the geometric structure of P(T ) heavily depends on the
choice of T :

Example 4.10. Let n = 4. We identify the matrix





0 a b
0 0 c
0 0 0



 from

T3 with the point (a, b, c) ∈ R3. Then for the transition matrix

F ′ =









1 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1








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the corresponding maximal nilpotent subsemigroup TF ′ of D4 is given by the
following system of linear inequalities:















































1 + a+ b+ c ≥ 0,
1 − 3a+ b+ c ≥ 0,
1 + a− 3b− 3c ≥ 0,
1 − a+ 3b ≥ 0,
1 + 3a− b ≥ 0,
1 − a− b ≥ 0,
1 + 3c ≥ 0,
1 − c ≥ 0.

The set of solutions to this system is the convex polyhedron with vertexes A =
(−5/12,−1/4,−1/3), B = (−1/4,−5/12,−1/3), C = (1/8,−7/24,−1/3), D =
(5/12, 7/12,−1/3), E = (1/4, 3/4,−1/3), F = (−1/8, 5/8,−1/3), G = (−1/2,
−1/2, 0), H = (1/2, 1/2, 0), I = (−1/2,−1/2, 2/3), and J = (1/2,−1/6, 2/3).
This polyhedron has seven faces, one of which is a hexagon, two are pentagons,
two are quadrangles and the remaining two are triangles (see Figure 1).

At the same time for the transition matrix F ′′ =









1 0 1 1
1 0 1 0
1 1 1 0
1 −1 −3 −1









the corresponding maximal nilpotent subsemigroup TF ′′ of D4 is given by the
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following system of linear inequalities:















































1 − a+ 4b+ 4c ≥ 0,
1 + 3a− 4b− 4c ≥ 0,
1 + a− 4b− 12c ≥ 0,
1 − 3a+ 4b+ 12c ≥ 0,
1 + 4c ≥ 0,
1 − 4c ≥ 0,
1 − a ≥ 0,
1 + a ≥ 0.

The set of solutions to this system is the tetrahedron with the following vertexes:
X = (1, 5/4,−1/4), Y = (1,−1/4, 1/4), Z = (−1,−1/4,−1/4), and W =
(−1,−3/4, 1/4).

Question 4.11. Is there any connection between the algebraic properties
of a maximal nilpotent subsemigroup, T ⊂ Dn, and the geometric properties of
the polyhedron P(T )?
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[21] Š. Schwarz. A note on the structure of the semigroup of doubly-stochastic
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