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Abstract. In this paper, we study the oscillatory behavior of first order
nonlinear neutral delay differential equation

(x (t) − q (t) x (t − σ(t)))
′

+ f (t, x (t − τ(t))) = 0,

where σ, τ ∈ C([t0,∞), (0,∞)), q ∈ C([t0,∞), [0,∞)) and f ∈ C([t0,∞) ×
R, R). The obtained results extended and improve several of the well known
previously results in the literature. Our results are illustrated with an ex-
ample.

1. Introduction. In recent years the literature on the oscillation of
neutral delay differential equations is growing very fast. It is relatively a new
field with interesting applications in real world life problems. In fact, the neutral
delay differential equations appear in modelling of the networds containing lossless
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transmission lines (as in high-speed computers where the lossless transmission
lines are used to interconnect swithching circuits), in the study of vibrating masses
attached to an elastic bar, as the Euler equation in some variational problems,
theory of automatic control and in neuromechanical systems in which inertia plays
an important role, see Hale [20], Driver [5], Brayton and Willoughby [4], Popove
[21] and Boe and Chang [3], and reference cited therein.Also this evidenced by
the extensive references in the books of Ladde et al. [17] and Gyori and ladas [19].
In a paper [18], Li and Kuang obtained a sufficient codition for the oscillation of
a nonlinear delay differential equation of the form

(1.1) x′(t) + p(t)g(x(t − τ(t))) = 0,

where

(1.2) p ∈ C ([0,∞) , [0,∞)) , τ ∈ C ([0,∞) , (0,∞)) , lim
t→∞

(t − τ(t)) = ∞,

(1.3) g ∈ C(R, R) and ug(u) > 0, for u 6= 0.

The main results in [18] is the following:

Theorem 1.1. Assume that (1.2) and (1.3) hold and that for some

ε > 0, M ≥ 0 and r > 0,

|g (u) − u| ≤ M |u|1+r
, for |u| < ε.

Furthermore, suppose that

∫ t

δ(t)
p(s)ds ≥ e−1, t ≥ t0,

and
∫ ∞

t0

p(t)

[

exp

(

∫ t

δ(t)
p(s)ds − e−1

)

− 1

]

dt = ∞,

where δ(t) := maxs∈[0,t] {s − τ(s)}. Then every solution of (1.1) oscillates.

The purpose of this paper is to extend the above mentioned oscillation
criteria to the nonlinear neutral delay differential equation

(1.4) (x (t) − q (t)x (t − σ(t)))′ + f (t, x (t − τ(t))) = 0, fort ≥ t0 > 0,
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where

(1.5) σ, τ ∈ C ([t0,∞) , (0,∞)) , lim
t→∞

(t − σ(t)) = lim
t→∞

(t − τ(t)) = ∞,

(1.6) q ∈ C ([t0,∞) , [0,∞)) , 0 ≤ q1 ≤ q(t) ≤ q2 ≤ 1,

(1.7) f ∈ C ([t0,∞) × R, R) , uf (t, u) ≥ 0,

and there exist

(1.8) p ∈ C ([t0,∞) , (0,∞)) and g ∈ C (R, R) ,

such that

(1.9) g′(u) ≥ 0, f(t, u) ≥ p (t) g (u) and |g (u) − u| ≤ M |u|1+r
,

for u ∈ (−ε, ε) and, for some ε > 0, M ≥ 0, r > 0 and ug(u) > 0, for u 6= 0.

Let % = max{σ, τ}, and t1 ≥ t0. A function x(t) ∈ C ([t1 − %,∞) , R) is
said to be a solution of equation (1.4), for some t1 ≥ t0 if x (t) − q (t)x (t − σ)
is continuously differentiable on [t1,∞) and satisfies (1.4), for t > t1. For further
research on the oscillation of neutral delay differential equations, see the recent
papers by Elabbasy and Saker [10], Tang and Shen [23] and Elabbasy, Hassan
and Saker [8] and [9]. As usual a solution x (t) of equation (1.4) is said to be
oscillatory if it has arbitrarily large zeros on [t0,∞) , otherwise it is nonoscillatory.
Equation (1.4) is called oscillatory if every solution of this equation is oscillatory.

2. Main results. In this section, we will establish oscillation criteria
for equation (1.4), which improves and extends known results.

Theorem 2.1. Assume that (1.5)–(1.9) hold. Furthermore, suppose that

(2.1)

∫ t

δ(t)
p (s) ds ≥ 1

e
, for t ≥ t0,

and

(2.2)

∫ ∞

t0

p (t)

[

exp

(

∫ t

δ(t)
p (s) ds − 1

e

)

− 1

]

dt = ∞,
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where δ(t) := maxs∈[t0,t] {s − τ(s)}. Then every solution of equation (1.4) oscil-

lates.

P r o o f. Assume (1.4) has a nonoscillatory solution on [t0,∞). Then,
without loss of generality, there is a t1 ∈ [t0,∞), sufficiently large, so that
x(t), x (t − σ(t)) , and x (t − τ(t)) > 0 on [t1,∞). Set

(2.3) z (t) := x (t) − q (t)x (t − σ(t)) .

Then, by (1.4) and (1.7), we find

z′(t) = −f (t, x (t − τ(t))) < 0,

which implies that z(t) is strictly decreasing. We claim that z(t) > 0 on [t1,∞).
If not, then there exists t2 ≥ t1 such that z(t2) =: c < 0 and hence z(t) ≤ c, for
all t ≥ t2. Then, from(2.3), we get

(2.4) x (t) ≤ c + q (t) x (t − σ(t)) , for all t ≥ t2.

We consider the following two possible cases. Case 1: x(t) is unbounded, i.e.,
lim supt→∞ x(t) = ∞. Thus, there is a increasing sequene {tk} such that tk →
∞ as k → ∞,

x(tk) = sup
t≤tk

x(t) and lim
k→∞

x(tk) = ∞.

From (1.6) and (2.4), we find

x (tk) ≤ c + q (tk) x (tk − σ(tk)) ≤ c + x (tk) ,

which is a contradiction. Case 2: x(t) is bounded, i.e., lim supt→∞ x(t) =
l < ∞. Thus, there is a sequene {tk} such that limk→∞ x(tk) = l and then
lim supk→∞ x(tk − σ(tk)) ≤ l. By (1.6) and (2.4), we have

x (tk) ≤ c + q (tk)x (tk − σ(tk)) ≤ c + x (tk − σ(tk)) ,

and so
l ≤ c + lim

k→∞
x (tk − σ(tk)) ≤ c + l,

which is also a contradiction. Then, we get z(t) > 0 on [t1,∞). By using that fact
z(t) is strictly decreasing and positive function, we find that limt→∞ z(t) = α ≥ 0.
If α > 0, from (1.4), (1.9) and (2.3), we obtain

z(t) − z(t1) = −
∫ t

t1

f (s, x (s − τ(s))) ds ≤ −
∫ t

t1

p(s)g(x (s − τ(s)))ds

≤ −
∫ t

t1

p(s)g(z (s − τ(s)))ds ≤ −g(α)

2

∫ t

t1

p(s)ds.
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Hence by (2.1), we have lim
t→∞

z(t) = −∞, which contradicts that z(t) being posi-

tive function, then α = 0. It follows from (1.9), and (2.3) that, for t ≥ t1

f (t, x(t − τ(t))) ≥ p (t) g (x (t − τ(t))) ≥ p (t) g (z (t − τ(t)))

≥ p (t)
(

z (t − τ(t)) − Mz1+r (t − τ(t))
)

≥ p (t) z (t − τ(t)) (1 − Mzr (t − τ(t))) .

From this and equation (1.4), we find

(2.5) z′ (t) + p (t) z (t − τ(t)) (1 − Mzr (t − τ(t))) ≤ 0, for t ≥ t1.

The rest of the proof is similar to that of Theorem 1 in [18] and hence is omit-
ted. �

Theorem 2.2. Assume that (1.5)–(1.9) hold. Furthermore, suppose that

(2.6) lim
t→∞

inf

∫ t

δ(t)
P (s) ds >

1

e
,

or

(2.7) lim
t→∞

sup

∫ t

δ(t)
P (s) ds > 1,

where δ(t) is defined as in Theorem 2.1 and P (t) := (1 − ε) p (t), for ε > 0. Then

every solution of (1.4) oscillates.

P r o o f. Assume (1.4) has a nonoscillatory solution on [t0,∞). Then,
without loss of generality, there is a t1 ∈ [t0,∞), sufficiently large, so that
x(t), x (t − σ(t)) , and x (t − τ(t)) > 0 on [t1,∞). As in the proof of Theorem
2.1, from (2.5) there exists T ≥ t1, sufficiently large such that

(2.8) z′ (t) + P (t) z (δ (t)) ≤ 0, for all t ≥ T.

But, then by Corollary 3.2.2 [19] the delay differential equation

(2.9) z′ (t) + P (t) z (δ (t)) = 0,

has an eventually positive solution as well. It is also well known that (2.6) or
(2.7) implies (2.9) has no eventually positive solution (see, [19] Theorem 3.4.3).
This contradiction completes the proof. �
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It is clear that there is a gap between (2.6) and (2.7) for the oscillation
of all solutions of (1.4). The problem how to fill this gap for the equation (1.4)
when the limit

lim
t→∞

∫ t

δ(t)
P (s) ds,

does not exist needs to be considered. This problem has been cleared for the
linear (2.9). Let the numbers k and l be defined by

k := lim
t→∞

inf

∫ t

δ(t)
P (s)ds, l := lim

t→∞
sup

∫ t

δ(t)
P (s)ds,

0 < k ≤ 1

e
, l < 1,

and λ is the smallest root of the equation λ = ekλ. Then (2.9) will be oscillatory
if either of the following conditions is satisfied:

(A)

l >
lnλ + 1

λ
, [15].

(B)

l > 1 − 1 − k −
√

1 − 2k − k2

2
, [24].

(C)

l >
1 + lnλ

λ
− 1 − k −

√
1 − 2k − k2

2
, [12].

(D)

l > 2k +
2

λ
− 1, [13].

(E)

l >
lnλ − 1 +

√
5 − 2λ + 2kλ

λ
, [16].

(F)

l >
e − 1

e − 2

(

k +
1

λ1

)

− 1

e − 2
, [7].

Note that Theorem 2.2 implies that (1.4) will also be oscillatory if either
of the conditions (A)–(F) is satisfied.
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Theorem 2.3. Assume that (1.5)–(1.9) hold with τ(t) = τ ∈ (0,∞).
Furthermore, suppose that

∫ t

t−τ

p (s) ds ≥ 1

a
> 0,

and

(2.10)

∫ ∞

t0

p (t)

[

exp

(

a

∫ t

t−τ

p (s) ds

)]

dt = ∞.

Then every solution of (1.4) oscillates.

P r o o f. Assume (1.4) has a nonoscillatory solution on [t0,∞). Then,
without loss of generality, there is a t1 ∈ [t0,∞), sufficiently large, so that
x(t), x (t − σ(t)) , and x (t − τ) > 0 on [t1,∞). As in the proof of Theorem
2.1, from (2.5) there exists T ≥ t1, sufficiently large such that

z′ (t) +
1

2
p (t) z (t − τ) ≤ 0, for all t ≥ T,

since limt→∞ z(t) = 0. In view [18, Lemmas 3, 4], we get
z (t − τ)

z (t)
is bounded

and

∫ t

t−τ

p(s)ds ≤ 2. Set

λ (t) = −z′ (t)

z (t)
,

we have the generalized characteristic equation

λ (t) ≥ 1

2
p (t) exp

(
∫ t

t−τ

λ (s) ds

)

.

It is easy to see that

(2.11) e
s
r ≥ 1 +

s

r2
, for s > 0, r ≥ 1.

Let

A (t) := exp

(

a

∫ t

t−τ

p (s) ds

)

,

then

λ (t) ≥ 1

2
p (t) exp

(

1

A (t)
A (t)

∫ t

t−τ

λ (s) ds

)

.
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By using (2.11), we have

λ (t) ≥ 1

2
p (t)

(

1 +
1

A (t)

∫ t

t−τ

λ (s) ds

)

.

Hence

A (t)λ (t) − 1

2
p (t)

∫ t

t−τ

λ (s) ds ≥ 1

2
p (t) A (t) .

Integrating from T to N, where T ≤ N such that 0 < N − τ < T,

∫ N

T

A (t)λ (t) dt − 1

2

∫ N

T

p (t)

(
∫ t

t−τ

λ (s) ds

)

dt ≥ 1

2

∫ N

T

p (t)A (t) dt.

Interchanging the order of integration, we get

∫ N

T

p (t)

(
∫ t

t−τ

λ (s) ds

)

dt ≥
∫ N−τ

T

λ (s)

(
∫ s

s−τ

p (t) dt

)

ds

=

∫ N−τ

T

λ (t)

(
∫ t

t−τ

p (s) ds

)

dt.

Thus, we have

∫ N

T

A (t)λ (t) dt − 1

2

∫ N−τ

T

λ (t)

(
∫ t

t−τ

p (s) ds

)

dt ≥ 1

2

∫ N

T

p (t)A (t) dt,

and hence

∫ N

T

A (t)λ (t) dt +

∫ T

N−τ

λ (t)

(
∫ t

t−τ

p (s) ds

)

dt ≥ 1

2

∫ N

T

p (t)A (t) dt,

then,
∫ N

T

A (t)λ (t) dt +

∫ T

N−τ

λ (t)A (t) dt ≥ 1

2

∫ N

T

p (t) A (t) dt,

since

A (t) ≥
∫ t

t−τ

p (s) ds.

Then
∫ N

N−τ

λ (t)A (t) dt ≥ 1

2

∫ N

T

p (t)A (t) dt,
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On the other hand, as A (t) < β, β = e2a, we find

∫ N

N−τ

λ (t) dt ≥ 1

2β

∫ N

T

p (t)A (t) dt,

or

ln
z (N − τ)

z (N)
≥ 1

2β

∫ N

T

p (t) A (t) dt.

In view of (2.10), we have

lim
t→∞

z (t − τ)

z (t)
= ∞,

which contradicts that
z (t − τ)

z (t)
is bounded for t ≥ T. The proof of Theorem 2.3

is complete. �

Example 2.1. Consider the neutral delay differential equation

(2.12)
(

x (t) − 1

2
(1 + sin t)x

(√
t
)

)′

+ f

(

t, x

(

t

λ
− λ + 1

))

= 0, t ≥ λ(λ − 1) + 1,

where λ > 1 and

f

(

t, x

(

t

λ
− λ + 1

))

=

[

1

e lnλ (t + λ)
+

1

(t + λ) ln (t + λ)

]

|x (t − τ)|r , r > 1.

Let

p (t) =
1

e ln λ (t + λ)
+

1

(t + λ) ln (t + λ)
, λ > 1

and

g(x(t − τ)) = |x (t − τ)|r , r > 1.

It is easy to see that assumptions (1.5)–(1.9) hold. Clearly, for t ≥ λ(λ − 1) + 1,

∫ t

t

λ
−λ+1

p (s) ds =
1

e
+ ln

ln (t + λ)

ln(
t

λ
+ 1)

=
1

e
− ln

(

1 − lnλ

ln(t + λ)

)

>
1

e
,

and

lim
t→∞

∫ t

t

λ
−λ+1

p (s) ds =
1

e
.
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On the other hand

∫ ∞

λ(λ−1)+1
p (t)

[

exp

[

∫ t

t

λ
−λ+1

p (s) ds − 1

e

]

− 1

]

dt

≥
∫ ∞

λ(λ−1)+1
p (t)

[

∫ t

t

λ
−λ+1

p (s) ds − 1

e

]

dt

≥ −1

e ln λ

∫ ∞

λ(λ−1)+1

1

t + λ
ln

(

1 − lnλ

ln(t + λ)

)

dt = ∞,

since
∫ ∞

λ(λ−1)+1

dt

(t + λ) ln(t + λ)
= ∞

and

lim
t→∞

(ln(t + λ)) ln

(

1 − lnλ

ln(t + λ)

)

= − lnλ.

Then Theorem 2.1 implies that every solution of (2.12) oscillates.

Additional examples may be readily given. We leave this to interested
reader.
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