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Modelling of singularities given by discontinuous functions or distributions by means
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1. Introduction

The generalized functions of Colombeau [1] have become a powerful tool
for treating differential equations with singular coefficients and data as well as
singular products of Schwartz distributions. The flexibility of the Colombeau
theory allows to model such singularities by means of appropriately chosen gen-
eralized functions, treat them in this framework and — via the association
process — bring down the obtained results to distributional level.

In particular, generalized models of the Heaviside step-function θ have
proved useful in solving problems that arise in Mathematical Physics [2]. Other
examples involving θ- and δ-type singularities that describe realistic physical
phenomena are jump conditions in hyperbolic systems leading to travelling δ-
waves solutions [3], the so-called controlled hybrid systems [6], geodesics for
impulsive gravitational waves [8]. A detailed presentation of results and citations
on this topic can be found in [7] and [5].
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Motivated by such works, we have introduced in a unified way general-
ized functions of Colombeau that model singularities of certain type and have
additional properties [4]. Following the same idea, we model in this paper sin-
gularities given by functions that have discontinuities of first order in a point
on the real line R. Moreover, we evaluate products of singularity-modelling
generalized functions whenever the result admits an associated distribution.

2. Notations and definitions

We recall first the basic definitions of the Colombeau algebra G(R).
Notation 1. Let N denote the natural numbers, N0 = N ∪ {0}, and

δij = { 1 if i = j, = 0 if i 6= j }, for i, j ∈ N0. Then we put for arbitrary
q ∈ N0 :

Aq(R) = {ϕ(x) ∈ D(R) :

∫
R
xj ϕ(x) dx = δ0j , j = 0, 1, ..., q},

where D(R) is the space of infinitely-differentiable functions with compact sup-
port. For ϕ ∈ A0(R) and ε > 0, we will use the following notation throughout the
paper: ϕε = ε−1ϕ(ε−1x) and s ≡ s(ϕ) := sup {|x| : ϕ(x) 6= 0)}. Then clearly
s(ϕε) = εs(ϕ), and denoting σ ≡ σ(ϕ, ε) := s(ϕε) > 0, we have σ := εs = O(ε),
as ε→ 0, for each ϕ ∈ A0(R). Finally, the shorthand notation ∂x = d/dx will
be used in the one-dimensional case too.

Definition 1. Let E [R] be the algebra of functions F (ϕ, x) : A×R→ C
that are infinitely differentiable for fixed ‘parameter’ ϕ. Then the generalized
functions of Colombeau are elements of the quotient algebra G ≡ G(R) =
EM[R] / I [R]. Here EM[R] is the subalgebra of ‘moderate’ functions such that
for each compact subset K of R and p ∈ N, there is a q ∈ N, such that for each
ϕ ∈ Aq(R), supx∈K |∂p F (ϕε, x) | = O(ε−q), as ε→ 0+. The ideal I [R] of EM[R]
consists of all functions such that for each compact K ⊂ R and any p ∈ N, there
is a q ∈ N such that, for every r ≥ q and ϕ ∈ Ar(R), supx∈K |∂p F (ϕε, x) | =
O(εr−q), as ε→ 0+.

The algebra E [R] contains the distributions on R, canonically embedded
as a C-vector subspace, by the map

i : D′(R)→ G : u 7→ ũ = { ũ(ϕ, x) := (u ∗ ϕ̌)(x)|ϕ ∈ Aq(R) },
where ϕ̌(x) = ϕ(−x). (1)

The equality of generalized functions in G is very strict and a weaker form of
equality in the sense of association is introduced, which plays a fundamental
role in the Colombeau theory.

Definition 2. (a) Two generalized functions F,G ∈ G(R) are said to
be ‘associated’, denoted F ≈ G, if for some representatives F (ϕε, x), G(ϕε, x)
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and arbitrary ψ(x) ∈ D(R) there is a q ∈ N0, such that for any ϕ(x) ∈ Aq(R),

lim
ε→0+

∫
R

[F (ϕε, x)−G(ϕε, x)]ψ(x) dx = 0.

(b) A generalized function F ∈ G(R) is said to be ‘associated’ with a
distribution u ∈ D′(R), denoted F ≈ u, if for some representative F (ϕε, x), and
arbitrary ψ(x) ∈ D(R) there is a q ∈ N0, such that for any ϕ(x) ∈ Aq(R),

lim
ε→0+

∫
R
F (ϕε, x)ψ(x) dx = 〈u, ψ〉.

These definitions are independent of the representatives chosen, and the associ-
ation is a faithful generalization of the equality of distributions. The following
relations hold in G:

F ≈ u & F1 ≈ u1 =⇒ F + F1 ≈ u+ u1, ∂F ≈ ∂u.

Remark. Note that the relation F ≈ u is asymmetric in the sense that
the terms cannot be moved over the ≈-sign: on the r.h.s. of it there stands a
distribution. Of course, the equivalent relation F ≈ ũ in G, is symmetric (and
can be written as F − ũ ≈ 0 as well). We prefer however the first, simpler and
suggesting, notation for the associated distribution.

Below we shall need also the following.

Notation 2. If a ∈ R, a > −1, introduce the locally-integrable functions
that are ‘normed’ powers of the variable x ∈ R supported in one of the real
semiaxes :

ν a+ ≡ ν a+(x) = { x a

Γ(a+ 1)
if x > 0, = 0 if x < 0}.

ν a− ≡ ν a−(x) = { (−x) a

Γ(a+ 1)
if x < 0, = 0 if x > 0}.

In particular, for a = p ∈ N0, we have

ν p+ = { x
p

p!
, x > 0; = 0, x < 0}, ν p− = { (−x)p

p!
, x < 0; = 0, x > 0}.

We can also define their ‘even’ and ‘odd’ compositions : |ν| p = ν p++ν p−, |ν| p sgnx =
ν p+ − ν

p
−. If p = 0, we come to the Heaviside step-function θ = {1, x < 0; =

0, x > 0}.
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All these functions have singularities at x = 0 and only considered as
distributions, their derivatives exist and satisfy the relations

∂x ν
p+1
± = ± ν p±, ∂x |ν| p = |ν| p−1 sgnx, ∂x |ν| p sgnx = |ν| p−1.

Note that, due to the norming, no number coefficients are present here,
which makes the calculations with these distributions easier.

The definition of ν a± can be extended for any a ∈ Ω := R\{−N}, by
setting

ν a+ = ∂r ν a+r+ (x), ν a− = (−1)r ∂r ν a+r− (x), where r ∈ N is such that a+r > −1.

Notation 3. Let Ckd (R \{0}) be the class of k-times differentiable func-
tions on R\{0} for some k ∈ N, such that each function f(x) and its derivatives
f (i), i = 1, ..., k, have discontinuities of first order at the point x = 0, i.e. for
each i ≤ k, the values f (i)(0+) and f (i)(0−) exist but in general differ from each
other. Then we denote the mean values and the jumps at x = 0 of f (i)(x) by :

mi ≡ mi(f) =
1

2

[
f (i)(0+) + f (i)(0−)

]
, hi ≡ hi(f) = f (i)(0+)−f (i)(0−), i = 0, .., k.

3. Modelling of singularities in G(R)

Consider first generalized functions that model the δ-type singularity in
the sense of association, i.e. being associated with the δ-function.Since there is
an abundant variety of such functions (together with the canonical imbedding δ̃
in G of the distribution δ), we can put on the generalized functions in question
an additional requirement. So define, following [7, §10], a generalized function
D ∈ G with the properties:

D ≈ δ, D2 ≈ δ. (2)

Let ϕ ∈ A0(R), s ≡ s(ϕ), and σ = s(ϕε) = εs be as in Notation 1,
and D ∈ G be the class [ϕ 7→ D(s(ϕ), x)]. We then specify that D(s, x) =
f(x) + λs g(x), where f, g ∈ D(R) are real-valued, symmetric, with disjoint
support, and satisfying:∫

R
f(x)dx = 1,

∫
R
g(x)dx = 0, and λ2s =

s−
∫
f2(x)dx∫

g2(x)dx
.

Now, it is not difficult to check that, for each ϕ ∈ A0(R), the representative
D(s, x) of the generalized function D satisfies the conditions:

D(., x) ∈ D(R), D(.,−x) = D(., x),
1

s

∫
R
D 2(s, x) dx =

∫
R
D(s, x)dx = 1,

(3)
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for each real positive value of the parameter s. Moreover, the generalized func-
tion D so defined satisfies the association relations (2). To show this, denote
by

Dσ(x) :=
1

σ
D
(
σ,
x

σ

)
, where σ = s(ϕε). (4)

Now, for an arbitrary test-function ψ ∈ D(R), evaluate the values

I1(σ) = 〈Dσ(x), ψ(x)〉, I2(σ) = 〈D2
σ(x), ψ(x)〉,

as ε→ 0+, or equivalently, as σ → 0+. But in view of (3), it is immediate to see
that limσ→0+ I1(σ)= limσ→0+ I2(σ) = 〈δ, ψ〉; which according to Definition 2 (b)
implies (2).

Remark. The first equation in (2) is in consistency with the observation
that Dσ(x) is a strict δ-net as defined in distribution theory [7, §7]. But note
that D is not the canonical embedding δ̃ of the δ-function since δ̃ 2 does not
admit associated distribution.

The flexible approach to modelling singularities allowed by the general-
ized functions so that the models satisfy auxiliary conditions can be system-
atically applied to defining generalized models of particular singularities. We
recall that such approach has proved useful in studying Euler-Lagrange equa-
tions for classical particle in δ-type potential as well as the geodesic equation
for impulsive gravitational waves; see [5, §1.5, §5.3].

We will consider models of singularities given by distributions with sin-
gular point support. For their definition, we intend to take advantage of the
properties of δ-modelling function D. Observe that it holds

(δ ∗D(s, .))(x) = 〈δy, D(s, x− y)〉 = D(s, x),

(δ′ ∗D(s, .))(x) = 〈δ′y, D(s, x− y)〉 = −〈δy ∂yD(s, x− y)〉 =

= 〈δy, D′(s, x− y)〉 = D′(s, x).

This can be continued by induction for any derivative to define a generalized
function D(p)(x) that models the distribution δ(p)(x) and has a representative

D(p)(s, x) = (δ(p) ∗D(s, .))(x). (5)

Clearly, this is in consistency with the differentiation: ∂xD
(p)(x) =

D(p+1)(x). Moreover,

D(p)(−x) = ∂pD(−x) = (−1)pD(p)(x). (6)

In [4] we have employed such procedure for a unified modelling of sin-
gularities given by distributions with singular point support, i.e. (besides δ(p))
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the distributions νa±, a ∈ Ω. Namely, choosing an arbitrary generalized function
D with representative D(s, x) that satisfies (3) for each ϕ ∈ A0(R), we have
introduced generalized functions Xa

±(x), modelling the above singularities, with
representatives

Xa
±(s, x) := (νa± ∗D(s, .))(x), a ∈ Ω.

A consistency with the differentiation holds: ∂xX
a
±(x) = Xa−1

± (x), in particular,
H ′ = D, where H ∈ G is model of the step-function θ, with representative
H(s, x) = θ ∗D(s, .)(x).

Now we will define and study models in G of functions on the real line
that have discontinuities in a point. Their generalized models will be obtained
by the next definition that follows the idea suggested in [4].

Definition 3. For any function f ∈ Ckd (R \{0}), choosing an arbitrary
function D ∈ G with representative D(s, x) that satisfies (3) for each ϕ ∈ A0(R),
define its generalized model as the function F (x) ∈ G with representatives given
by

F (s, x) := f ∗D(s, .)(x). (7)

Note that each generalized functions F so introduced is really model of
the corresponding discontinuous function f . Indeed, let Fσ(x) = f ∗ Dσ(x)
be the representative of F depending on σ = εs and suppose (without loss of
generality) that suppD(σ, x) ⊆ [−l, l] for some l ∈ R+. Then for an arbitrary
test-function ψ ∈ D(R), evaluate I(σ) :=

∫
R ψ(x)Fσ(x) dx. Transformation of

the variable y = σv + x yields

I(σ) =
1

σ

∫
R
dxψ(x)

[∫ 0

−σl+x
f(y)D

(
σ,
x− y
σ

)
dy +

∫ σl+x

0
f(y)D

(
σ,
x− y
σ

)
dy

]
=

=

∫
R
dxψ(x)

[∫ −x/σ
−l

f(σv + x)D(σ, v) dv +

∫ l

−x/σ
f(σv + x)D(σ, v) dv

]
Now taking the limit as ε → 0+, or else σ = εs → 0+, and applying equation
(3), we get

lim
σ→0+

I(σ) =

∫
R
dxψ(x) f(x)

∫ l

−l
D(σ, v) dv = 〈 f, ψ 〉,

which according to Definition 2(b) implies the association F (x) ≈ f(x).

4. Products of some singularities modelled in G(R)

The models of singularities we consider all have products in the Colombeau
algebra as generalized functions, but we are seeking results that can be evaluated
back in terms of distributions, i.e. products that admit associated distributions.
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So, it was proved in [4] that, for an arbitrary p in N0, the generalized
models X p

±, D
(p+1), and D(p+2) satisfy:

(∓1)p+1Xp
± . D

(p+1) ≈ δ ∓ (p+ 1)

2
δ′. (8)

(∓1)pXp
± . D

(p+2) ≈ ∓2p+ 3

2
δ′ +

1

2

(
p+ 2

2

)
δ′′, (9)

Then the generalized functions |X| p = X p
+ + X p

−, |X| p sgnx = X p
+ −X

p
−, and

D satisfy:

|X| p . D(p+1) ≈ 2 δ, |X| p . D(p+2) ≈ (2p+ 3) δ′, for p = 1, 3, 5, ... (10)

|X| p sgnx .D(p+1) ≈ −2 δ, |X| p sgnx .D(p+2) ≈ −(2p+ 3) δ′, for p = 2, 4, 6...
(11)

Now we proceed to studying singular products, obtained by Definition 3,
of generalized models of functions from the class Ckd (R \{0}) with derivatives
of the δ-modelling generalized function D(x). Products of discontinuous func-
tions with the derivatives of δ exist neither in the classical Distribution theory
nor as so-called Colombeau products - their canonical embeddings in G do not
admit associated distributions. Nevertheless, their generalized models obey the
following.

Theorem 1 . For each function f(x) ∈ C2
d(R \{0}), its model F (x) in G(R)

satisfies

F (x) . D′(x) ≈ −(h0 +m1) δ + m0 δ
′, (12)

where h0 = f(0+)− f(0−),m0 = (f(0−) + f(0+))/2, m1 = (f ′(0−) + f ′(0+))/2.

P r o o f. For ψ(x) ∈ D(R), we denote I(σ) := 〈 Fσ(x) . D′σ(x), ψ(x) 〉.
From equations (4), (5), and (7), we get on transforming the variables y =
σv + x, x = −σu and taking into account equation (6)

I(σ) =
−1

σ

∫ l

−l
duψ(−σu)D′(σ, u)

(∫ u

−l
f(σv − σu)D(σ, v) dv +

+

∫ l

u
f(σv − σu)D(σ, v) dv
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Now applying Taylor theorem to the test-function ψ and changing the
order of integration, we obtain

I(σ)=
−ψ(0)

σ

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)D′(σ, u)du+

∫ v

−l
f(σv − σu)D′(σ, u)du

)
+ ψ′(0)

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)uD′(σ, u)du+

∫ v

−l
f(σv − σu)uD′(σ, u) du

)
+

+ O(σ) =: ψ(0) I1 + ψ′(0) I2 + O(σ). (13)

To obtain the above asymptotic evaluation, we have taken into account that the
third term in the Taylor expansion is multiplied by definite integrals majorizable
by constants. Integrating further by parts in the variable u, applying Lebesque
theorem on bounded convergence, taking into account equation (3), and making
use of Notation 3, we obtain

I1 =
f(0−)

σ

∫ l

−l
D2(σ, v) dv −

∫ l

−l
dv D(σ, v)

∫ l

v
f ′(σv − σu)D(σ, u) du−

− f(0+)

σ

∫ l

−l
D2(σ, v) dv −

∫ l

−l
dv D(σ, v)

∫ v

−l
f ′(σv − σu)D(σ, u) du =

= f(0−)− f(0+)− 1

2

[
f ′(0−) + f ′(0+)

]
+ O(σ) = − (h0 +m1) + O(σ).

Here the Taylor theorem is applied to the function f ′ ∈ C1(R±) up to second
order to get its expansion about the point σ(v− u) which is respectively > 0 or
< 0. This gives

f ′(σv−σu)=f ′(0±)+σ(v−u) f ′′(0±)+O(σ2)=f ′(0±)+O(σ), for v > u, resp. v < u.

Proceeding similarly as above, we get for the second term in (13)

I2 = − f(0−)

∫ l

−l
vD2(σ, v) dv − f(0−)

∫ l

−l
dvD(σ, v)

∫ l

v
D(σ, u) du+

+ f(0+)

∫ l

−l
vD2(σ, v) dv − f(0+)

∫ l

−l
dv D(σ, v)

∫ v

−l
D(σ, u) du+ O(σ) =

=
−1

2

[
f(0−) + f ′(0+)

]
+ O(σ) = −m0 + O(σ).

We have used that D(σ, v) satisfies

∫ l

−l
vD2(σ, v) dv = 0 and

∫ l

−l
dv D(σ, v)

∫ v

−l
D(σ, u) du =

1

2
.
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Therefore

I(σ) = 〈 Fσ(x) . D′σ(x), ψ(x) 〉 = − (h0 +m1)ψ(0) − m0 ψ
′(0) + O(σ) =

= − (h0 +m1) 〈 δ, ψ 〉 + m0 〈 δ′, ψ 〉 + O(σ).

Passing then to the limit as σ → 0+ and applying Definition 2 (b), we obtain
equation (12).

Next we consider the product of models of discontinuous functions with
the second derivative of the δ-modelling function D(x). In view of Notation 3,
one has the following.

Theorem 2 . For each function f(x) ∈ C3
d(R \{0}), its generalized model F (x)

in G(R) satisfies :

F (x) . D′′(x) ≈ (h1 +m2) δ −
(

3

2
h0 + 2m1

)
δ′ +m0 δ

′′. (14)

P r o o f. For ψ(x) ∈ D(R), we denote J(σ) := 〈 Fσ(x) . D′′σ(x), ψ(x) 〉.
From equations (4), (5), and (7), we get on transforming the variables y =
σv + x, x = −σu and taking into account equation (6)

J(σ) =
1

σ2

∫ l

−l
duψ(−σu)D′′(σ, u)

(∫ u

−l
f(σv − σu)D(σ, v) dv +

+

∫ l

u
f(σv − σu)D(σ, v) dv

Now applying the Taylor theorem to the test-function ψ and changing the order
of integration, we obtain

J(σ)=
ψ(0)

σ2

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)D′′(σ, u) du+

∫ v

−l
f(σv − σu)D′′(σ, u) du

)
−ψ

′(0)

σ

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)uD′′(σ, u) du+

∫ v

−l
f(σv − σu)uD′′(σ, u) du

)
+

+
ψ′′(0)

2

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)u2D′′(σ, u) du+

∫ v

−l
f(σv − σu)u2D′′(σ, u) du

)
+

+ O(σ) =: ψ(0) J1 − ψ′(0) J2 +
ψ′′(0)

2
+ J3 +O(σ). (15)

Integrating twice by parts in the variable u, applying Lebesque theorem on
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bounded convergence, and taking account of equation (3), we get further

J1 =
−f(0−)

σ2

∫ l

−l
D(σ, v)D′(σ, v) dv +

1

σ

∫ l

−l
dvD(σ, v)

∫ l

v
f ′(σv − σu)D′(σ, u) du

+
f(0+)

σ2

∫ l

−l
D(σ, v)D′(σ, v) dv +

1

σ

∫ l

−l
dv D(σ, v)

∫ v

−l
f ′(σv − σu)D′(σ, u) du =

= −f ′(0−)
1

σ

∫ l

−l
D2(σ, v) dv +

∫ l

−l
dv D(σ, v)

∫ l

v
f ′′(σv − σu)D(σ, u) du+

+ f ′(0+)
1

σ

∫ l

−l
D2(σ, v) dv +

∫ l

−l
dv D(σ, v)

∫ v

−l
f ′′(σv − σu)D(σ, u) du+ O(σ) =

= − f ′(0−) + f ′(0+) +
1

2

[
f ′′(0−) + f ′′(0+)

]
+ O(σ) = (h1 +m2) + O(σ).

Here the Taylor theorem is applied to the function f ′′ ∈ C1(R±) up to second
order to get its expansion about the point σ(v − u), obtaining thus

f ′′(σv − σu) = f ′′(0±) + O(σ).

Throughout the calculations, we have used that, due to D(.,−x) = D(., x), it
holds :∫ l

−l
D(σ, v)D′(σ, v) dv = 0 and

∫ l

−l
dv D(σ, v)

∫ v

−l
D(σ, u) du =

1

2
.

Proceeding similarly as above, we get for the second and third terms in (15) :

J2 =
− f(0−)

σ

∫ l

−l
vD(σ, v)D′(σ, v) dv +

f(0+)

σ

∫ l

−l
vD(σ, v)D′(σ, v) dv −

− 1

σ

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)D′(σ, u) du+

∫ v

−l
f(σv − σu)D′(σ, u) du

)
+

+

∫ l

−l
dv D(σ, v)

(∫ l

v
f ′(σv − σu)uD′(σ, u) du+

∫ v

−l
f ′(σv − σu)uD′(σ, u) du

)
=

=
1

2
f(0−)− 1

2
f(0+) + f(0−)

1

σ

∫ l

−l
D2(σ, v) dv − f(0+)

1

σ

∫ l

−l
D2(σ, v) dv −

− 2 f ′(0−)

∫ l

−l
dv D(σ, v)

∫ l

v
D(σ, u) du− 2 f ′(0+)

∫ l

−l
dv D(σ, v)

∫ v

−l
D(σ, u) du+

+ 2

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)uD′(σ, u) du+ 2

∫ v

−l
f(σv − σu)uD′(σ, u) du

)
=

=
3

2
f(0−)− 3

2
f(0+)− f ′(0−)− f ′(0+) + O(σ) = −

(
3

2
h0 + 2m1

)
+ O(σ).
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J3 =− 2

∫ l

−l
dv D(σ, v)

(∫ l

v
f(σv − σu)uD′(σ, u) du+

∫ v

−l
f(σv − σu)uD′(σ, u) du

)
−

− f(0−)

∫ l

−l
v2D(σ, v)D′(σ, v) dv + f(0+)

∫ l

−l
v2D(σ, v)D′(σ, v) dv + O(σ) =

=2 f(0−)

∫ l

−l
dv D(σ, v)

∫ l

v
D(σ, u) du+ f(0+)

∫ l

−l
dv D(σ, v)

∫ v

−l
D(σ, u) du+O(σ) =

= f(0−) + f(0+) + O(σ) = 2m0 + O(σ).

During the calculations of J2 and J3, we have used that∫ l

−l
vD2(σ, v) dv =

∫ l

−l
v2D(σ, v)D′(σ, v) dv = 0

and
1

σ

∫ l

−l
vD(σ, v)D′(σ, v) dv = −1

2
.

Thus we finally get

〈Fσ(x) . D′′σ(x), ψ(x)〉=(h1+m2)ψ(0)+

(
3

2
h0 + 2m1

)
ψ′(0)+m0 ψ

′′(0)+O(σ)

= (h1 +m2) 〈 δ, ψ 〉 −
(

3

2
h0 + 2m1

)
〈 δ′, ψ 〉+m0 〈 δ′′, ψ 〉+O(σ).

Then passing to the limit as σ → 0+ and applying Definition 2 (a), we obtain
(14).

Remarks. (1) In the particular case of infinitely-differentiable func-
tions, equations (12) and (14) are in consistence with the corresponding products
obtained in classical distribution theory. Indeed, for f ∈ C∞(R) and ψ ∈ D(R),
we have

〈 f . δ′, ψ 〉 = 〈 δ′, f ψ 〉 = −∂x ( f ψ) |x=0 , or else, f . δ′ = −f ′(0) δ+ f(0) δ′.

This clearly coincides with equation (12) since in this case m0 = f(0),m1 =
f ′(0), h0 = 0. Similar argument applies to equation (14).

(2) In the results obtained so far, we have restricted ourselves to studying
singularities at x = 0, but the considerations are clearly valid for any other
singular point.

Recall next that any function can be canonically represented as a sum of
its even and odd parts :

f(x) =
∑
σ=0,1

fσ(x), where f0(x) :=
1

2
[f(x)+f̌(x)] and f1(x) :=

1

2
[f(x)−f̌(x)]
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are indeed even and odd functions : fσ(−x) = (−1)σ fσ(x), σ = (0, 1). Then,
as consequences from the results of Theorems 1–2, we obtain this.

Corollary 1 . The even and odd parts F0(x), F1(x) of the generalized model
F (x) of each function f(x) ∈ C3

d(R \{0}) satisfy the equations :

F0(x) . D′(x) ≈ m0 δ
′(x), F1(x) . D′(x) ≈ −(h0 +m1) δ(x). (16)

F0(x) . D′′(x) ≈ (h1 +m2) δ+m0 δ
′′, F1(x) . D′′(x) ≈ −

(
3

2
h0 + 2m1

)
δ′. (17)

P r o o f. Rewrite equations (12) and (14) for the even and odd parts of
the model F (x). Then the above equations follow on the observation that the
derivative of an even/odd function is, respectively, odd/even function, and also
that h(f0) = m(f1) = 0.

Examples. The following equations can be obtained on replacing the
generalized model F (x) of the function f(x) ∈ C3

d(R \{0}) successively with:
(a) H in the first equation of (12) : H .D′ ≈ − δ + 1

2 δ
′.

(b) H in the first equation of (14) : H .D′′ ≈ − 3
2 δ
′ + 1

2 δ
′′.

(c) X+ in the first equation of (14) : X+ . D
′′ ≈ δ − δ′.

(d) |X| in the first equation of (17) : |X| . D′′ ≈ 2 δ.
(e) |X| sgnx in the second equation of (17) : |X|sgnx .D′′ ≈ − 2 δ.

Note that these equations coincide correspondingly with : (a) equation
(8) for p = 0, (b) equation (9) for p = 0, (c) equation (8) for p = 1, (d) the
first equation in (10) for p = 1, (e) the first equation in (11) for p = 1.
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