# Mathematica Balkanica 

# Hyperbolic Fourth-R Quadratic Equation and Holomorphic Fourth-R Polynomials 

Lilia N. Apostolova

Presented at $6^{\text {th }}$ International Conference "TMSF" 2011"
The algebra $\mathbf{R}\left(1, j, j^{2}, j^{3}\right), j^{4}=-1$ of the fourth- $\mathbf{R}$ numbers, or in other words the algebra of the double-complex numbers $\mathbf{C}(1, j)$ and the corresponding functions, were studied in the papers of S. Dimiev and al. (see [1], [2], [3], [4]). The hyperbolic fourth-R numbers form other similar to $\mathbf{C}(1, j)$ algebra with zero divisors. In this note the square roots of hyperbolic fourth- $\mathbf{R}$ numbers and hyperbolic complex numbers are found. The quadratic equation with hyperbolic fourth-R coefficients and variables is solved. The Cauchy-Riemann system for holomorphicity of fourth-R functions is recalled. Holomorphic homogeneous polynomials of fourth- $\mathbf{R}$ variables are listed.

MSC 2010: 30C10, 32A30, 30G35
Key Words: algebra of fourth-R numbers, algebra of hyperbolic fourth- $\mathbf{R}$ numbers, hyperbolic fourth-R quadratic equation, holomorphic fourth- $\mathbf{R}$ function, holomorphic fourthR polynomial

## 1. Fourth-R numbers and hyperbolic fourth-R numbers

The algebra of fourth- $\mathbf{R}$ numbers is defined as follows

$$
\mathbf{R}\left(1, j, j^{2}, j^{3}\right)=\left\{x=x_{0}+j x_{1}+j^{2} x_{2}+j^{3} x_{3}, j^{4}=-1\right\}
$$

where $x_{0}, x_{1}, x_{2}, x_{3}$ are real numbers and $j$ is a formal symbol with the property $j^{4}=-1, j^{0}=1, j \notin \mathbf{C}$. The addition and multiplication with scalar are componentwise, and multiplication of fourth- $\mathbf{R}$ numbers is made by the rule of opening of brackets, using the identities for the symbol $j$, namely

$$
\begin{gathered}
x y=x_{0} y_{0}-x_{1} y_{3}-x_{2} y_{2}-x_{3} y_{1}+\left(x_{0} y_{1}+x_{1} y_{0}-x_{2} y_{3}-x_{3} y_{2}\right) j \\
+\left(x_{0} y_{2}+x_{1} y_{1}+x_{2} y_{0}-x_{3} y_{3}\right) j^{2}+\left(x_{0} y_{3}+x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{0}\right) j^{3} .
\end{gathered}
$$

This algebra is associative and commutative one, but it has zero divisors. Such are for example the numbers $x\left(1+j^{2}+\sqrt{2} j\right)$ and $x\left(1+j^{2}-\sqrt{2} j\right)$ for each
fourth- $\mathbf{R}$ number $x$. The algebra $\mathbf{R}\left(1, j, j^{2}, j^{3}\right)$ is isomorphic to the algebra of double-complex numbers $\mathbf{C}(1, j)$, which consists of couples of complex numbers $(z, w)=z+j w$ with specific multiplication, ruled by the same formal symbol $j$. More precisely,

$$
\mathbf{C}(1, j)=\left\{\alpha=z+j w, j^{4}=-1, z, w \in \mathbf{C}\right\}
$$

i.e. $\quad z, w$ are complex numbers and $j$ is a formal symbol with the property $j^{4}=-1, j^{0}=1, j \notin \mathbf{C}$.

The algebra of the hyperbolic fourth- $\mathbf{R}$ numbers is the following one

$$
\mathbf{R}\left(1, j, j^{2}, j^{3}\right)=\left\{x=x_{0}+j x_{1}+j^{2} x_{2}+j^{3} x_{3}, j^{4}=+1\right\}
$$

where $x_{0}, x_{1}, x_{2}, x_{3}$ are real numbers and $j$ is a formal symbol with the property $j^{4}=+1, j^{0}=1, j \notin \mathbf{C}$. It is endowed with a structure of a commutative and associative algebra with respect to the (open brackets) multiplication using the identities $j^{k+4}=j^{k}, k=0,1, \ldots$ and $j^{0}=1, j^{4}=+1$ for the symbol $j$ :

$$
\begin{gathered}
x y=x_{0} y_{0}+x_{1} y_{3}+x_{2} y_{2}+x_{3} y_{1}+\left(x_{0} y_{1}+x_{1} y_{0}+x_{2} y_{3}+x_{3} y_{2}\right) j \\
+\left(x_{0} y_{2}+x_{1} y_{1}+x_{2} y_{0}+x_{3} y_{3}\right) j^{2}+\left(x_{0} y_{3}+x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{0}\right) j^{3}
\end{gathered}
$$

where $x=x_{0}+j x_{1}+j^{2} x_{2}+j^{3} x_{3}$ and $y=y_{0}+j y_{1}+j^{2} y_{2}+j^{3} y_{3}, x_{k}, y_{k} \in \mathbf{R}$ for $k=0,1,2,3$. Here the addition and the multiplication with scalar from $\mathbf{R}$ are componentwise. This algebra has divisors of zero, too.

The idea of fourth-R numbers, in more general form, appears for the first time in the framework of Kazan geometric school [5] with formal level for $j$. A matrix representation of the formal symbols $j, j^{2}, j^{3}, j^{4}$ was developed in [3], [4] and in definite form, separating the hyperbolic case $j^{4}=+1$ from the elliptic one $j^{4}=-1$, in [1].

## 2. Hyperbolic fourth-R square roots and hyperbolic fourth-R

 quadratic equationFirst we shall consider the hyperbolic fourth-R square root

$$
\begin{equation*}
\sqrt{m_{0}+j m_{1}+j^{2} m_{2}+j^{3} m_{3}} \tag{1}
\end{equation*}
$$

of the hyperbolic fourth-R number $m=m_{0}+j m_{1}+j^{2} m_{2}+j^{3} m_{3} \in \mathbf{R}\left(1, j, j^{2}, j^{3}\right)$, $j^{4}=+1, m_{k} \in \mathbf{R}$ for $k=0,1,2,3$. For this purpose we shall consider the quadratic equation

$$
\begin{equation*}
a^{2}=m_{0}+j m_{1}+j^{2} m_{2}+j^{3} m_{3} \tag{2}
\end{equation*}
$$

where $a=a_{0}+j a_{1}+j^{2} a_{2}+j^{3} a_{3} \in \mathbf{R}\left(1, j, j^{2}, j^{3}\right) j^{4}=+1, a_{k} \in \mathbf{R}$ for $k=0,1,2,3$ is a hyperbolic fourth- $\mathbf{R}$ number. The equation (2) is equivalent to the following system of four second degree equations with real variables:

$$
\begin{align*}
\text { I) } a_{0}^{2}+a_{2}^{2}+2 a_{1} a_{3}=m_{0}, & \text { II) } 2 a_{0} a_{1}+2 a_{2} a_{3}=m_{1}  \tag{3}\\
\text { III) } 2 a_{0} a_{2}+a_{3}^{2}+a_{1}^{2}=m_{2}, & \text { IV) } 2 a_{0} a_{3}+2 a_{1} a_{2}=m_{3}
\end{align*}
$$

which arises from the equalities $a^{2}=\left(a_{0}+j a_{1}+j^{2} a_{2}+j^{3} a_{3}\right)^{2}=a_{0}^{2}+a_{2}^{2}+$ $2 a_{1} a_{3}+j\left(2 a_{0} a_{1}+2 a_{2} a_{3}\right)+j^{2}\left(2 a_{0} a_{2}+a_{3}^{2}+a_{1}^{2}\right)+j^{3}\left(2 a_{0} a_{3}+2 a_{1} a_{2}\right)=m_{0}+j m_{1}+$ $j^{2} m_{2}+j^{3} m_{3}$.

The sums and the differences of the equations I) and III), and II) and IV) in (3), respectively, gives the following system of four real quadratic equations

$$
\begin{equation*}
\text { i) }\left(a_{0}+a_{2}\right)^{2}+\left(a_{1}+a_{3}\right)^{2}=m_{0}+m_{2} \tag{4}
\end{equation*}
$$

ii) $2\left(a_{0}+a_{2}\right)\left(a_{1}+a_{3}\right)=m_{1}+m_{3}$.
iii) $\left(a_{0}-a_{2}\right)^{2}-\left(a_{1}-a_{3}\right)^{2}=m_{0}-m_{2}$,
iv) $2\left(a_{0}-a_{2}\right)\left(a_{1}-a_{3}\right)=m_{1}-m_{3}$.

Then the sum of the equations i) and ii) and the difference between i) and ii) in (4) gives, respectively,
a) $\left(a_{0}+a_{2}+a_{1}+a_{3}\right)^{2}=m_{0}+m_{1}+m_{2}+m_{3}$
b) $\left(a_{0}+a_{2}-a_{1}-a_{3}\right)^{2}=m_{0}-m_{1}+m_{2}-m_{3}$.

The necessary condition for existing of the square root

$$
\begin{equation*}
m_{0}+m_{2} \geq\left|m_{1}+m_{3}\right| \tag{6}
\end{equation*}
$$

arises from (5).
Let us introduce the variables $X$ and $Y$ in the following way:

$$
\begin{equation*}
X:=a_{0}-a_{2}, \quad Y:=a_{1}-a_{3} \tag{7}
\end{equation*}
$$

The equations iii) and iv) from (4) in these variables seems as follows:

$$
\begin{equation*}
X^{2}-Y^{2}=m_{0}-m_{2}, \quad 2 X Y=m_{1}-m_{3} \tag{8}
\end{equation*}
$$

Solving this auxiliary system, we obtain the equations

$$
\begin{equation*}
Y=\frac{m_{1}-m_{3}}{2 X}, \quad X^{2}-\frac{\left(m_{1}-m_{3}\right)^{2}}{4 X^{2}}=m_{0}-m_{2}, \quad \text { for } \quad m_{1} \neq m_{3} \tag{9}
\end{equation*}
$$

The equation of fourth degree $4 X^{4}-4\left(m_{0}-m_{2}\right) X^{2}=\left(m_{1}-m_{3}\right)^{2}$ can be written also as $\left(2 X^{2}-m_{0}+m_{2}\right)^{2}=\left(m_{1}-m_{3}\right)^{2}+\left(m_{0}-m_{2}\right)^{2}$, from where we obtain

$$
\begin{equation*}
2 X^{2}=m_{0}-m_{2} \pm \sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}} \tag{10}
\end{equation*}
$$

As we look for the real solutions of the system (3) of 4 equations of second degree, the sign minus in the formula (10) does not give a solution. So we obtain the following two real solutions for $X$ and two real solutions for $Y$, respectively,

$$
\begin{array}{r}
X=\varepsilon \frac{1}{\sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}+m_{0}-m_{2}}  \tag{11}\\
Y=\varepsilon \operatorname{sign}\left(m_{1}-m_{3}\right) \frac{1}{\sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}-\left(m_{0}-m_{2}\right)}
\end{array}
$$

where $\varepsilon= \pm 1$.
We consider again the system of equations (5). As the condition (6) holds, it is fulfilled $m_{0}+m_{1}+m_{2}+m_{3} \geq 0$ and $m_{0}-m_{1}+m_{2}-m_{3} \geq 0$ and

$$
\begin{gather*}
a_{0}+a_{2}+a_{1}+a_{3}=\varepsilon_{1} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}  \tag{12}\\
a_{0}+a_{2}-a_{1}-a_{3}=\varepsilon_{2} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}}
\end{gather*}
$$

where $\varepsilon_{1}, \varepsilon_{2}= \pm 1$ and the roots in the right hand sides are the arithmetic roots of the corresponding real nonnegative numbers.

From the system (12), we obtain

$$
\begin{align*}
& a_{0}+a_{2}=\frac{\varepsilon_{1}}{2} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}+\frac{\varepsilon_{2}}{2} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}}  \tag{13}\\
& a_{1}+a_{3}=\frac{\varepsilon_{1}}{2} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}-\frac{\varepsilon_{2}}{2} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}}
\end{align*}
$$

where $\varepsilon_{1}, \varepsilon_{2}= \pm 1$.
The following real numbers $a_{0}, a_{1}, a_{2}$ and $a_{3}$ are obtained by the expression for $X$ and $Y$ in (7) and the equalities (13)

$$
\begin{aligned}
& a_{0}\left(\varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)=\frac{\varepsilon_{1}}{4} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}+\frac{\varepsilon_{2}}{4} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}} \\
& +\frac{\varepsilon}{2 \sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}+m_{0}-m_{2}}, \\
& a_{1}\left(\varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)=\frac{\varepsilon_{1}}{4} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}-\frac{\varepsilon_{2}}{4} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}} \\
& +\frac{\varepsilon \operatorname{sign}\left(m_{1}-m_{3}\right)}{2 \sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}-\left(m_{0}-m_{2}\right)}, \\
& a_{2}\left(\varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)=\frac{\varepsilon_{1}}{4} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}+\frac{\varepsilon_{2}}{4} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}} \\
& -\frac{\varepsilon}{2 \sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}+m_{0}-m_{2}}
\end{aligned}
$$

and

$$
a_{3}\left(\varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)=\frac{\varepsilon_{1}}{4} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}}-\frac{\varepsilon_{2}}{4} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}}
$$

$$
-\frac{\varepsilon \operatorname{sign}\left(m_{1}-m_{3}\right)}{2 \sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}-\left(m_{0}-m_{2}\right)}
$$

where $\varepsilon, \varepsilon_{1}$ and $\varepsilon_{2}= \pm 1$ and $\operatorname{sign}(x)$ denotes the real-valued function of real variable: $\operatorname{sign}(x)=\left\{\begin{array}{ccc}1 & \text { when } & x>0, \\ 0 & \text { when } & x=0, \\ -1 & \text { when } & x<0 .\end{array}\right.$

So we obtain the formula for the square root in the case $m_{1} \neq m_{3}$ as follows:

$$
\begin{gathered}
a\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=\sqrt{m_{0}+j m_{1}+j^{2} m_{2}+j^{3} m_{3}} \\
=\frac{\varepsilon_{1}\left(1+j+j^{2}+j^{3}\right)}{4} \sqrt{m_{0}+m_{1}+m_{2}+m_{3}} \\
+\frac{\varepsilon_{2}\left(1-j+j^{2}-j^{3}\right)}{4} \sqrt{m_{0}-m_{1}+m_{2}-m_{3}} \\
+\frac{\varepsilon\left(1-j^{2}\right)}{2 \sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}+m_{0}-m_{2}} \\
+\frac{\varepsilon j\left(1-j^{2}\right) \operatorname{sign}\left(m_{1}-m_{3}\right)}{2 \sqrt{2}} \sqrt{\sqrt{\left(m_{0}-m_{2}\right)^{2}+\left(m_{1}-m_{3}\right)^{2}}-\left(m_{0}-m_{2}\right)} .
\end{gathered}
$$

Remark 1. The case $m_{1}=m_{3}=0$ is consider in part 3 below. In the case $m_{1}=m_{3} \neq 0$ we obtain the following square roots of the fourth- $\mathbf{R}$ number $m_{0}+j^{2} m_{2}+j\left(1+j^{2}\right) m_{1}$ :

$$
\begin{gathered}
a\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=\sqrt{m_{0}+j^{2} m_{2}+j\left(1+j^{2}\right) m_{1}} \\
=\frac{\varepsilon j\left(1-j^{2}\right)}{2} \sqrt{m_{2}-m_{0}}+\frac{\varepsilon_{1}\left(1+j^{2}\right)}{2 \sqrt{2}} \sqrt{m_{0}+m_{2}+\varepsilon_{2} \sqrt{\left(m_{0}+m_{2}\right)^{2}-4 m_{1}^{2}}} \\
+\frac{\varepsilon_{1} j\left(1-j^{2}\right) \operatorname{sign} m_{1}}{2 \sqrt{2}} \sqrt{m_{0}+m_{2}-\varepsilon_{2} \sqrt{\left(m_{0}+m_{2}\right)^{2}-4 m_{1}^{2}}}
\end{gathered}
$$

in the case $m_{2}>\left|m_{0}\right|, m_{0}+m_{2}>2\left|m_{1}\right|$ and

$$
\begin{gathered}
a\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=\sqrt{m_{0}+j^{2} m_{2}+j\left(1+j^{2}\right) m_{1}} \\
=\frac{\varepsilon\left(1+j^{2}\right)}{2} \sqrt{m_{0}-m_{2}}+\frac{\varepsilon_{1} j\left(1+j^{2}\right)}{2 \sqrt{2}} \sqrt{m_{0}+m_{2}+\varepsilon_{2} \sqrt{\left(m_{0}+m_{2}\right)^{2}-4 m_{1}^{2}}} \\
+\frac{\varepsilon_{1}\left(1-j^{2}\right) \operatorname{sign} m_{1}}{2 \sqrt{2}} \sqrt{m_{0}+m_{2}-\varepsilon_{2} \sqrt{\left(m_{0}+m_{2}\right)^{2}-4 m_{1}^{2}}}
\end{gathered}
$$

in the case $m_{0}>\left|m_{2}\right|, m_{0}+m_{2}>2\left|m_{1}\right|$, where the numbers $\varepsilon_{1}, \varepsilon_{2}$ and $\varepsilon$ are equal to $\pm 1$.

In the case $m_{0}=m_{1}=m_{2}=m_{3}>0$, the square root $\sqrt{m_{0}\left(1+j+j^{2}+j^{3}\right)}$ is equal to $\varepsilon \frac{m_{0}}{2}\left(1+j+j^{2}+j^{3}\right)$.

In other cases square root of the corresponding fourth- $\mathbf{R}$ number does not exist.

Theorem 1. The quadratic equation

$$
x^{2}+p x+q=0
$$

with hyperbolic fourth $\mathbf{- R}$ coefficients $p, q \in \mathbf{R}\left(1, j, j^{2}, j^{3}\right), j^{4}=+1, p=p_{0}+$ $j p_{1}+j^{2} p_{2}+j^{3} p_{3}, \quad q=q_{0}+j q_{1}+j^{2} q_{2}+j^{3} q_{3}, \quad p_{k}, q_{k} \in \mathbf{R}$ for $k=0,1,2,3$, which satisfies the conditions
$\left(p_{0}+p_{1}+p_{2}+p_{3}\right)^{2} \geq 4\left(q_{0}+q_{1}+q_{2}+q_{3}\right),\left(p_{0}-p_{1}+p_{2}-p_{3}\right)^{2} \geq 4\left(q_{0}-q_{1}+q_{2}-q_{3}\right)$
has the following solutions

$$
x_{+}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=-\frac{p}{2}+a\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right) \quad \text { and } \quad x_{-}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=-\frac{p}{2}-a\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)
$$

where

$$
a\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon\right)=\sqrt{\frac{p^{2}}{4}-q}
$$

are the given above hyperbolic fourth- $\mathbf{R}$ square roots of the discriminant $\frac{p^{2}}{4}-q$.

## 3. Hyperbolic complex square root

Let us consider the hyperbolic complex numbers, forming two dimensional commutative, associative algebra with zero divisors

$$
\tilde{\mathbf{C}}:=\left\{x_{0}+j^{2} x_{2}, j^{4}=1, x_{0}, x_{2} \in \mathbf{R}\right\} .
$$

The algebra $\tilde{\mathbf{C}}$ has as zero divisors the elements $x+j^{2} x$ and $x-j^{2} x$, where $x \in \mathbf{R}$. Let us consider the quadratic equation $\left(a_{0}+j^{2} a_{2}\right)^{2}=m_{0}+j^{2} m_{2}$, i.e. this is the equation (2) with conditions $a_{1}=a_{3}=0$ and $m_{1}=m_{3}=0$. It is equivalent to the system of two equation of second order

$$
\begin{equation*}
a_{0}^{2}+a_{2}^{2}=m_{0}, \quad 2 a_{0} a_{2}=m_{2} \tag{14}
\end{equation*}
$$

Then, for the hyperbolic complex square roots are obtained the equations

$$
\begin{equation*}
\left(a_{0}+a_{2}\right)^{2}=m_{0}+m_{2}, \quad\left(a_{0}-a_{2}\right)^{2}=m_{0}-m_{2} . \tag{15}
\end{equation*}
$$

So $m_{0}+m_{2} \geq 0$ and $m_{0}-m_{2} \geq 0$, i.e. $m_{0} \geq\left|m_{2}\right|$, is a necessary condition for the existing of the square root of the hyperbolic complex number $m_{0}+j^{2} m_{2}$.

It is fulfilled

$$
a_{0}+a_{2}=\varepsilon_{1} \sqrt{m_{0}+m_{2}}, \quad a_{0}-a_{2}=\varepsilon_{2} \sqrt{m_{0}-m_{2}},
$$

where $\varepsilon_{1}$ and $\varepsilon_{2}= \pm 1$.
Then the asking square roots are the numbers

$$
a\left(\varepsilon_{1}, \varepsilon_{2}\right)=\frac{\varepsilon_{1}\left(1+j^{2}\right)}{2} \sqrt{m_{0}+m_{2}}+\frac{\varepsilon_{2}\left(1-j^{2}\right)}{2} \sqrt{m_{0}-m_{2}} .
$$

So we obtain four different hyperbolic complex square roots of the hyperbolic complex number $m_{0}+j^{2} m_{2}$ such that $m_{0} \geq\left|m_{2}\right|$.

## 4. Fourth-R holomorphy

The holomorphic fourth-R-functions

$$
f: \mathbf{R}\left(1, j, j^{2}, j^{3}\right) \rightarrow \mathbf{R}\left(1, j, j^{2}, j^{3}\right),
$$

$j^{4}=-1$, are defined in terms of the classical conditions about the differential $d f$. Namely, it is fulfilled

$$
d f=\frac{\partial f}{\partial \alpha} d \alpha+\frac{\partial f}{\partial \beta} d \beta+\frac{\partial f}{\partial \alpha^{*}} d \alpha+\frac{\partial f}{\partial \beta^{*}} d \beta^{*}
$$

where

$$
\begin{align*}
\frac{\partial f}{\partial \alpha}:=\frac{1}{2}\left(\frac{\partial f}{\partial x_{0}}-j^{2} \frac{\partial f}{\partial x_{2}}\right), & \frac{\partial f}{\partial \beta}:=\frac{1}{2}\left(\frac{\partial f}{\partial x_{1}}-j^{2} \frac{\partial f}{\partial x_{3}}\right),  \tag{16}\\
\frac{\partial f}{\partial \alpha^{*}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x_{0}}+j^{2} \frac{\partial f}{\partial x_{2}}\right), & \frac{\partial f}{\partial \beta^{*}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x_{1}}+j^{2} \frac{\partial f}{\partial x_{3}}\right),
\end{align*}
$$

where $j^{4}=-1$.
The condition for holomorphicity is the following equation

$$
\begin{equation*}
\frac{\partial f}{\partial \alpha^{*}} d \alpha^{*}+\frac{\partial f}{\partial \beta^{*}} d \beta^{*}=0 \tag{17}
\end{equation*}
$$

which implies the basic holomorphicity Cauchy-Riemann type system of PDE of first order (see [2]):

$$
\begin{equation*}
\frac{\partial f}{\partial x_{0}}+j^{2} \frac{\partial f}{\partial x_{2}}=0, \quad \frac{\partial f}{\partial x_{1}}+j^{2} \frac{\partial f}{\partial x_{3}}=0, \quad x_{k} \in \mathbf{R}, \quad j^{4}=-1 . \tag{18}
\end{equation*}
$$

## 5. Holomorphic homogeneous fourth-R polynomials

### 5.1. Holomorphic homogeneous fourth-R polynomials of first degree

Theorem 2. A homogeneous fourth-R polynomial of first degree $P$ is holomorphic, iff it is of the kind

$$
\begin{equation*}
P=P\left(x_{0}+j^{2} x_{2}\right)+Q\left(x_{1}+j^{2} x_{3}\right), \tag{19}
\end{equation*}
$$

where $P, Q \in \mathbf{R}\left(1, j, j^{2}, j^{3}\right), j^{4}=-1$.

Proof. Let us consider the homogeneous fourth-R valued polynomial of first degree

$$
P=A x_{0}+B x_{1}+C x_{2}+D x_{3},
$$

where $A, B, C, D \in \mathbf{R}\left(1, j, j^{2}, j^{3}\right), j^{4}=-1$ and $x_{0}, x_{1}, x_{2}$ and $x_{3}$ are real variables. The conditions for holomorphicity (18) gives the following equalities
$0=\frac{\partial\left(A x_{0}+B x_{1}+C x_{2}+D x_{3}\right)}{\partial x_{0}}+j^{2} \frac{\partial\left(A x_{0}+B x_{1}+C x_{2}+D x_{3}\right)}{\partial x_{2}}=A+j^{2} C$,
$0=\frac{\partial\left(A x_{0}+B x_{1}+C x_{2}+D x_{3}\right)}{\partial x_{1}}+j^{2} \frac{\partial\left(A x_{0}+B x_{1}+C x_{2}+D x_{3}\right)}{\partial x_{3}}=B+j^{2} D$.
So the holomorphic homogeneous polynomials of first degree are of the kind

$$
P=P\left(x_{0}+j^{2} x_{2}\right)+Q\left(x_{1}+j^{2} x_{3}\right)
$$

where $P=A=-j^{2} C$ and $Q=B=-j^{2} D$. Conversely, it is clear that such polynomials satisfy the system (18). This proves Theorem 2.

### 5.2. Holomorphic homogeneous fourth-R polynomials of degree $n$

Theorem 3. A homogeneous fourth-R polynomial $P$ of degree $n$ is holomorphic iff it is of the following kind

$$
\begin{equation*}
P=\sum_{k=0}^{n} C_{k}\left(x_{0}+j^{2} x_{2}\right)^{k}\left(x_{1}+j^{2} x_{3}\right)^{n-k} \tag{20}
\end{equation*}
$$

where $C_{k} \in \mathbf{R}\left(1, j, j^{2}, j^{3}\right), j^{4}=-1$, for $k=0,1, \ldots, n$.
Proof. First let us check that the polynomial of $n$-th degree

$$
P=\sum_{k=0}^{n} C_{k}\left(x_{0}+j^{2} x_{2}\right)^{k}\left(x_{1}+j^{2} x_{3}\right)^{n-k}
$$

satisfies the system (18). It is fulfilled

$$
\begin{aligned}
& \frac{\partial P}{\partial x_{0}}+j^{2} \frac{\partial P}{\partial x_{2}}=\sum_{k=0}^{n} k C_{k}\left(x_{0}+j^{2} x_{2}\right)^{k-1}\left(x_{1}+j^{2} x_{3}\right)^{n-k} \\
& \quad+j^{2} \sum_{k=0}^{n} k C_{k}\left(x_{0}+j^{2} x_{2}\right)^{k-1} j^{2}\left(x_{1}+j^{2} x_{3}\right)^{n-k}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial P}{\partial x_{1}}+j^{2} \frac{\partial P}{\partial x_{3}}=\sum_{k=0}^{n}(n-k) C_{k}\left(x_{0}+j^{2} x_{2}\right)^{k}\left(x_{1}+j^{2} x_{3}\right)^{n-k-1} \\
& \quad+j^{2} \sum_{k=0}^{n}(n-k) C_{k}\left(x_{0}+j^{2} x_{2}\right)^{k}\left(x_{1}+j^{2} x_{3}\right)^{n-k-1} j^{2}=0
\end{aligned}
$$

So all polynomials of the considered kind are solutions of the system (18).

Now let $P\left(x_{0}+j x_{1}+j^{2} x_{2}+j^{3} x_{3}\right)$ be a holomorphic homogeneous fourth$\mathbf{R}$ polynomial of degree $n$, i.e.

$$
P=\sum_{k=0}^{n} \sum_{l=0}^{n-k} \sum_{m=0}^{n-k-l} a_{k l m} x_{0}^{k} x_{1}^{l} x_{2}^{m} x_{3}^{n-k-l-m},
$$

and let it satisfy the system (18), from where

$$
\begin{gathered}
0=\frac{\partial P}{\partial x_{0}}+j^{2} \frac{\partial P}{\partial x_{2}}=\sum_{l=0}^{n} \sum_{k=0}^{n-l} \sum_{m=0}^{n-k-l} a_{k l m} k x_{0}^{k-1} x_{1}^{l} x_{2}^{m} x_{3}^{n-k-l-m} \\
+j^{2} \sum_{l=0}^{n} \sum_{k=0}^{n-l} \sum_{m=0}^{n-k-l} a_{k l m} m x_{0}^{k} x_{1}^{l} x_{2}^{m-1} x_{3}^{n-k-l-m} \\
=\sum_{l=0}^{n} \sum_{k=0}^{n-l-1} \sum_{m=0}^{n-k-l-1}\left((k+1) a_{k+1 l m}+j^{2}(m+1) a_{k l m+1}\right) x_{0}^{k} x_{1}^{l} x_{2}^{m} x_{3}^{n-k-l-m} .
\end{gathered}
$$

Then

$$
(k+1) a_{k+1 l m}+j^{2}(m+1) a_{k l m+1}=0
$$

and
$a_{k+1 l m}=-j^{2} \frac{m+1}{k+1} a_{k l m+1}$ for $k=0,1, \ldots, n-1$ and $m=0,1, \ldots, n-k-l-1$.
Repeating this calculation, we obtain

$$
a_{k l m}=\left(-j^{2}\right)^{k} \frac{(m+1)(m+2) \ldots(m+k)}{k(k-1) \ldots 1} a_{0 l m+k}=\binom{m+k}{k}\left(-j^{2}\right)^{k} a_{0 l m+k} .
$$

Setting $p=m+k$, the polynomial $P$ looks like as follows

$$
\begin{aligned}
P & =\sum_{l=0}^{n} \sum_{p=0}^{n-l} a_{0 l p} \sum_{k=0}^{p}\binom{p}{k}\left(-j^{2} x_{0}\right)^{k} x_{2}^{p-k} x_{1}^{l} x_{3}^{n-l-p} \\
& =\sum_{l=0}^{n} \sum_{p=0}^{n-l} a_{0 l p}\left(-j^{2}\right)^{p}\left(x_{0}+j^{2} x_{2}\right)^{p} x_{1}^{l} x_{3}^{n-l-p} .
\end{aligned}
$$

Using the second equation $\frac{\partial P}{\partial x_{1}}+j^{2} \frac{\partial P}{\partial x_{3}}=0$ from (18) for the so obtained polynomial $P$, we obtain a second term $\left(x_{1}+j^{2} x_{3}\right)^{n-p}$ for the variable $x_{1}+j^{2} x_{3}$ and this complete the proof of the theorem.

Remark. The algebra of a kind of quaternion polynomials was studied by the Bulgarian mathematician L. Tchakalov (1924) in [6].

## References

[1] L.N. Apostolova, S. Dimiev, M.S. Marinov, P. Stoev, Matrix $2^{n}$-real holomorphy, In: Applications of Mathematics in Engineering and Economics AMEE'10, Eds. G. Venkov, R. Kovacheva, and V. Pasheva, American Institute of Physics, AIP Conference Proceedings 1293 (2010), 165-176.
[2] S. Dimiev, Double complex analytic functions, In: Applied Complex and Quaternionic Approximation, Eds. R.K. Kovacheva, J. Lawrynowicz, and S. Marchiafava, Edizione Nova Cultura, Roma, 2009, 58-75.
[3] S. Dimiev, M.S. Marinov, Zh. Zhelev, Cyclic hyper-scalar systems, In: Trends in Differential Geometry, Complex Analysis and Mathematical Physics, Eds. K. Sekigawa, V.S. Gerdjikov, S. Dimiev, World Scientific, N. Jersey-London-Singapore-etc. (2009), 46-56.
[4] S. Dimiev, M.S. Marinov, P. Stoev, Matrix fourth-complex variables, In: Applications of Mathematics in Engineering and Economics - AMEE' 2009, Eds. G. Venkov, R. Kovacheva and V. Pasheva, AIP Conf. Proceedings 1184 (2009), 187-192.
[5] V.V. Vyshnevskiy, A.P. Shirokov, V.V. Shurygin, Spaces over Algebras, Izdatel'stvo Kazanskogo Universiteta, (1985) (in Russian).
[6] L. Tchakalov, On the tetranions of E. Ivanov, Ann. de l'Université de Sofia, Fac. de Phys.-Mat. 20 (1924), 89-120 (in Bulgarian, with German abstract).

Inst. of Mathematics and Inf., Bulgarian Academy of Sci.
Acad. G. Bonchev Str., Block 8
Sofia-1113, BULGARIA
e-mail: liliana@math.bas.bg
Received: November 10, 2011

