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Nonautonomous problems are important especially as a transient case between the
linear and the nonlinear theory. We study the nonautonomous linear problem for the fractional
evolution equation

Dα
t u(t) + A(t)u(t) = f(t), a.a. t ∈ (0, T ),

where Dα
t is the Riemann-Liouville fractional derivative of order α ∈ (0, 1), {A(t)}t∈[0,T ] is

a family of linear closed operators densely defined on a Banach space X and the forcing
function f(t) ∈ Lp(0, T ; X). Strict Lp solvability of this problem is proved for a suitable
class of operators A(t). The proof is based on Lp regularity estimates for the corresponding
autonomous problem.
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1. Introduction

The notion of maximal Lp regularity plays an important role in the func-
tional analytic approach to parabolic partial differential equations. Many initial
and boundary value problems can be reduced to an abstract Cauchy problem of
the form

u′(t) + Au(t) = f(t), t ∈ I, u(0) = 0, (1)

where I = (0, T ), T > 0, −A generates a bounded analytic semigroup on a
Banach space X and f and u are X-valued functions defined on I. It is well
known that (1) has a strong solution for all locally Bochner integrable f , but
in many applications we need that u′ has the same “smoothness” as f . This
property is called maximal regularity. In particular, one says that problem (1)
has maximal Lp regularity on I if for every f ∈ Lp(I; X) there exists one and
only one u ∈ Lp(I; D(A)) ∩W 1,p(I;X) satisfying (1). Here
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W 1,p(I;X) = {f | ∃ϕ ∈ Lp(I; X) : f(t) =
∫ t

0
ϕ(τ)dτ, t ∈ I}

are the Sobolev spaces. From the closed graph theorem it follows easily that if
there is Lp regularity then there exists C > 0 such that

‖u‖Lp + ‖u′‖Lp + ‖Au‖Lp ≤ C‖f‖Lp . (2)

The theory of strongly continuous semigroups could suggest that it is
more natural to study the continuous regularity of (1), i.e. the existence and
uniqueness of a solution u ∈ C(I;D(A)) ∩ C1(I; X) for any continuous f . But
Baillon [1] proved that if there is continuous regularity for an unbounded opera-
tor A that generates a C0 semigroup, then the space X must contain a subspace
isomorphic to c0, the space of sequences converging to 0. This fact implies that
X cannot be reflexive. On the other hand there are good results of Lp regularity
in some reflexive spaces. Because of this many authors choose to work with Lp

functions instead of continuous functions when study regularity.
There is a vast amount of literature on sufficient conditions for maximal

Lp regularity of (1) (see e.g. [10] for a survey). It appears that for most classical
differential operators that may be of interest, there is maximal Lp regularity
of this problem. Recently, necessary and sufficient conditions for maximal Lp

regularity was obtained in terms of R-boundedness (see e.g. ([9]).
The maximal Lp regularity is an important tool in treating evolution

equations more complex than the basic Cauchy problem (1), such as fractional
order equations, Volterra equations, nonautonomous (A depends on time) and
quasilinear (A depends on the unknown function u) equations.

In this article we apply maximal Lp regularity to study nonautonomous
fractional order equations. More precisely, consider the following problem for
the fractional differential equation of order α ∈ (0, 1)

Dα
t u(t) + A(t)u(t) = f(t), a.a. t ∈ I = (0, T ),

(J1−α
t u)(0) = x0.

(3)

Here Dα
t denotes the Riemann-Liouville fractional derivative of order α ∈ (0, 1) :

Dα
t =

d

dt
J1−α

t

and Jβ
t is the Riemann-Liouville fractional integral:

Jβ
t f(t) =

1
Γ(β)

∫ t

0
(t− s)β−1f(s) ds, β > 0, t > 0,

{A(t)}t∈[0,T ] is a family of closed densely defined linear operators on a Banach
space X and f ∈ Lp(0, T ; X), 1 < p < ∞. We assume moreover that the domain
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of A(t) does not depend on t: D(A(t)) = D(A(0)) = X1 and 0 ∈ ρ(A(t)). To
avoid trivialities, we consider only unbounded operators A(t).

Definition 1. We say that problem (3) has maximal Lp-regularity if
for every f ∈ Lp(I; X) there exists one and only one u(t) such that

u ∈ Lp(I; X1), J1−α
t u ∈ W 1,p(I; X) (4)

and (3) is satisfied with x0 = 0. The function u with these properties (but with
x0 not necessarily zero) is said to be a strict Lp solution of (3).

Our goal is to prove the existence of unique strict Lp solution of (3) under
suitable assumptions on the operators A(t) and on the space, to which the initial
condition belongs.

2. Preliminaries

First we give briefly some notations and definitions. Let X, Y are Banach
spaces. By B(X, Y ) we denote the Banach space of all bounded linear operators
from X to Y ; B(X) := B(X,X) for short.

We call an operator A : D(A) ⊂ X → X sectorial if D(A) and R(A) are
dense in X, (−∞, 0) ⊂ ρ(A) and

sup
t>0

‖t(t + A)−1‖B(X) < ∞.

For a sectorial operator A denote

φA := sup{φ ∈ [0, π]| sup
| arg λ|≤φ,λ6=0

‖λ(λI + A)−1‖B(X) < ∞},

KA(φ) := sup
| arg λ|≤φ,λ6=0

‖λ(λI + A)−1‖B(X), φ < φA.

The number ωA := π − φA is called spectral angle of A.
A family of operators τ ⊂ B(X) is called randomized bounded or R-

bounded (see e.g. [9]), if there exists a constant M < ∞ such that for all
{Tj}N

j=1 ⊂ τ , {xj}N
j=1 ⊂ X, N ∈ N

∫ 1

0

∥∥∥∥∥∥

N∑

j=0

rj(s)Tjxj

∥∥∥∥∥∥
X

ds ≤ M

∫ 1

0

∥∥∥∥∥∥

N∑

j=0

rj(s)xj

∥∥∥∥∥∥
X

ds,

where rj is a sequence of independent, symmetric {1,−1}valued random vari-
ables on [0, 1], e.g. rj(t) = sgn(sin(2jπt)) - the Rademacher function. The
smallest constant M , for which this inequality holds, is called R-bound of τ and
is denoted by R{τ}.

This definition can be considered as a strengthening of the property of
uniform boundedness of the family τ . Note that in a Hilbert space every norm-
bounded set τ is R-bounded.
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Next, define a notion which combines the two concepts: of R-boundedness
and sectoriality. A sectorial operator A is called R-sectorial, if it satisfies

R{t(tI + A)−1| t > 0} < ∞.

In analogy to sectorial operators define
RA(φ) := R{λ(λI + A)−1| | arg λ| ≤ φ, λ 6= 0}.

Then the R-angle of A is defined as
ωR

A := inf{φ ∈ (0, π)| RA(π − φ) < ∞}.
It is immediate that ωA < ωR

A .

For sectorial operators A in X with 0 ∈ ρ(A), γ ∈ (0, 1), p ∈ (0,∞)
define the spaces

DA(γ, p) := {x ∈ X| ‖x‖DA(γ,p) < ∞},
where

‖x‖DA(γ,p) :=
{∫ ∞

0
(tγ‖A(tI + A)−1x‖X)p dt

t

} 1
p

.

These spaces coincide up to the equivalence of norms with the real interpolation
spaces and the inclusions hold (see [5]):

D(A) ↪→ DA(γ, p) ↪→ DA(γ′, p) ↪→ X, 0 < γ′ < γ < 1.

Recall that a Banach space X is said to belong to the class HT if the
Hilbert transform H defined by

(Hf)(t) = lim
ε→0+

∫

|s|≥ε
f(t− s)

ds

πs
, t ∈ R, f ∈ C∞

0 (R; X),

where C∞
0 (R;X) is the space of rapidly decreasing functions, extends to a

bounded linear operator on Lp(R;X) for p ∈ (1,∞). Examples of HT spaces
are all closed subspaces and quotient spaces of a Lq(Ω, µ) space with 1 < q < ∞
(see e. g. [4]).

Consider first the autonomous problem, that is problem (3) where the
operator A does not depend on time:

Dα
t u(t) + Au(t) = f(t), a.a. t ∈ (0, T ),

(J1−α
t u)(0) = x0.

(5)

The study of the existence of unique strict Lp solution of this problem can
be divided in two parts. For x0 = 0, f(t) 6= 0, recent generalizations of the
Michlin multiplier theorems (see [7], [12]) can be applied to prove maximal Lp

regularity. For the case of zero forcing function direct estimates are obtained
provided x0 belong to appropriate interpolation spaces (see [3]). Combining
these two techniques the following result is proven in [2], Theorem 4.16:
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Theorem 1. Suppose that α ∈ (0, 1), 1 < p < ∞, X is a Banach space
of class HT , A is an R-sectorial operator in X with 0 ∈ ρ(A) and with R-angle
ωR

A, satisfying

ωR
A < π(1− α/2) (6)

and f ∈ Lp(I; X). Then the following statements hold:

(a) if 1 < p < 1
1−α , then there is a unique strict Lp solution u of (5) iff

x0 ∈ DA(p−1
αp , p);

(b) if p ≥ 1
1−α then (5) has a unique strict Lp solution iff x0 = 0.

In both cases the following estimate is satisfied (for (b) we set x0 = 0):

‖u‖Lp(I;X)+‖Dα
t u‖Lp(I;X) +‖Au‖Lp(I;X) ≤ M(‖x0‖DA( p−1

αp
,p)+‖f‖Lp(I;X)). (7)

The constant M depends on X, α, p, ωA and KA(θ) for some θ ∈ (απ/2, π−ωA)
and on RA(απ/2), but does not depend on T and on the individual operator A.

3. The nonautonomous problem

Now we are ready to study the nonautonomous problem (3). First we
suppose that the corresponding autonomous problems with A = A(s), where
s ∈ [0, T ] is fixed, are strictly solvable in Lp(0, T ;X) with estimates, uniform
on s ∈ [0, T ]. On the base of these assumptions we will solve (3) inductively,
dividing the interval [0, T ] in sufficiently small intervals. This approach was
introduced in [8] in the case α = 1 and it is used in e.g. [6], [11] for studying of
some fractional equations.

Let us suppose that the family of operators A(t) satisfies the following
properties:

(A1) D(A(t)) = D(A(0)) =: X1 and 0 ∈ ρ(A(t)) for any t ∈ [0, T ];
A(.) ∈ C(0, T ;B(X1, X)) .

We equip X1 with the graph norm ‖x‖X1 := ‖Ax‖X . It follows from
(A1) and the compactness of [0, T ] that the graph norms of the operators A(t)
are uniformly equivalent, i.e. there exist constants a1 and a2 such that for each
x ∈ X1 and t ∈ [0, T ] we have

a1‖x‖X1 ≤ ‖A(t)x‖X ≤ a2‖x‖X1 . (8)

Denote by ρA,T (s) the modulus of continuity of the continuous function A(t),
that is

ρA,T (s) := sup
t1,t2∈[0,T ], |t1−t2|≤s

‖A(t1)−A(t2)‖B(X1,X).
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(A2) For any t ∈ [0, T ] A(t) is sectorial with spectral angle

ωA(t) < (1− α/2)π. (9)

(A3) There exist a subspace Z0 ↪→ X such that for any x0 ∈ Z0, f ∈
Lp(0, T ; X) and for any fixed s ∈ [0, T ] the problem

Dα
t u(t) + A(s)u(t) = f(t), a.a. t ∈ (0, T ),

(J1−α
t u)(0) = x0,

(10)

has a strict Lp solution u(t), satisfying the estimate:

‖u‖Lp(0,T ;X1) ≤ M(‖f‖Lp(0,T ;X) + ‖x0‖Z0), (11)
where the constant M does not change for different values of s ∈ [0, T ].

Under these assumptions we have the following result on strict Lp solv-
ability of the nonautonomous problem (3):

Proposition 1. Let α ∈ (0, 1) and assume that (A1), (A2) and (A3)
hold. Then for any x0 ∈ Z0, f ∈ Lp(0, T ;X), there exists a unique strict Lp

solution of (3) and the following estimate holds:

‖u‖Lp(0,T ;X1) ≤ N(‖f‖Lp(0,T ;X) + ‖x0‖Z0), (12)

where N depends only on M .

P r o o f. First note that (A3) holds also with T replaced by an arbitrary
T̂ ∈ [0, T ] and the same constant M in (11). To see this, consider the equation

Dα
t u(t) + A(s)u(t) = f(t), a.a. t ∈ [0, T̂ ], (13)

where f ∈ Lp(0, T̂ ; X) and define f0(t) = f(t) a.a. t ∈ [0, T̂ ] and f0(t) =
0 a.a. t ∈ [T̂ , T ]. If u0(t) is the unique solution of (10) with f replaced by f0,
then u(t) = u0(t), a.a. t ∈ [0, T̂ ], is the unique solution of (13) and by the
definition of Lp norms we conclude that we in fact have our claim:

‖u‖Lp(0,T̂ ;X1) ≤ M(‖f‖Lp(0,T̂ ;X) + ‖x0‖Z0). (14)

Take Tε such that
ρA,T (Tε) ≤ ε =

a1

2Ma2
. (15)

We solve first (3) for t ∈ [0, Tε]. Let v ∈ Vε := Lp(0, Tε;X) and consider the
equation

Dα
t u(t) + A(0)u(t) = f(t) + (A(0)−A(t))A(0)−1v(t), a.a. t ∈ [0, Tε] (16)

with initial condition (J1−α
t u)(0) = x0. Since the right-hand side is an element

of Vε we obtain by the strict solvability of (12) that there is a unique solution
u ∈ Vε such that A(0)u ∈ Vε. Therefore the mapping γ : v → A(0)u maps Vε

into itself and from the linearity of the equation, (14) and (8), we have
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‖γ(v1)− γ(v2)‖Lp(0,Tε;X) ≤ a2M‖(A(0)−A(t))A(0)−1(v1 − v2)‖Lp(0,Tε;X)

≤ a2

a1
M sup

t∈[0,Tε]
‖A(0)−A(t)‖B(X1,X)‖v1 − v2‖Lp(0,Tε;X)

=
a2

a1
MρA,T (Tε)‖v1 − v2‖Lp(0,Tε;X)

According to (15) the mapping γ is a contraction and there is a unique fixed
point. Thus, v = A(0)u and we get a solution of (3) on the interval [0, Tε].
Again by (14) and (8) we have for the solution u of (16) the following estimate

‖u‖Lp(0,Tε;X1) ≤ M(‖f + (A(0)−A(t))A(0)−1v‖Lp(0,Tε;X) + ‖x0‖Z0)

≤ M(‖f‖Lp(0,Tε;X) + ‖x0‖Z0) + MρA,T (Tε)‖u‖Lp(0,Tε;X1).

According to (15) MρA,T (Tε) ≤ a1
2a2

≤ 1
2 . Therefore,

‖u‖Lp(0,Tε;X1) ≤ 2M(‖f‖Lp(0,T ;X) + ‖x0‖Z0).

Next we work by induction. Suppose that T0 ∈ [0, T ] and that we have
found a solution u of (3) on [0, T0] which satisfies the inequality

‖u‖Lp(0,T0;X1) ≤ N(T0)(‖f‖Lp(0,T ;X) + ‖x0‖Z0). (17)

Let T̂ = min{T, T0 + Tε} and define the set

V := {v ∈ Lp(0, T̂ ; X)| v(t) = A(T0)u(t), a.a. t ∈ [0, T0]}.
For each v ∈ V we proceed to find a solution w of the equation

Dα
t w(t) + A(T0)w(t) = f(t) + (A(T0)−A(t))A(T0)−1v(t) (18)

with initial condition (J1−α
t w)(0) = x0. Since the right-hand side of (18) is

an element of Lp(0, T̂ ;X), from the strict solvability of (12) there is a unique
solution w ∈ Lp(0, T̂ ; X) such that A(T0)w ∈ Lp(0, T̂ ; X) and the uniqueness
guarantees A(T0)w ∈ V . Define the mapping G : V → V with Gv = A(T0)w.
By the linearity of (18) and applying (14) and (8), we obtain

‖G(v1)−G(v2)‖Lp(0,T̂ ;X) ≤ a2M‖(A(T0)−A(t))A(T0)−1(v1 − v2)‖Lp(0,T̂ ;X).

Since v1, v2 ∈ V then v1 − v2 = 0 a.e. on [0, T0] and the last inequality implies

‖G(v1)−G(v2)‖Lp(0,T̂ ;X) ≤
a2

a1
M sup

t∈[T0,T̂ ]

‖A(T0)−A(t)‖B(X1,X)‖v1−v2‖Lp(0,T̂ ;X)

≤ a2

a1
MρA,T (Tε)‖v1 − v2‖Lp(0,T̂ ;X).
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Hence, by (15) the mapping G is a contraction and has a unique fixed point,
thus A(T0)w = v on [0, T̂ ] and equation (18) reduces to (3). Thus we get a
solution of (3) on the interval [0, T̂ ]. If we take v0 ∈ V to be such that v0(t) = 0
a.e. on [T0, T̂ ], then ‖v0‖Lp(0,T̂ ;X) = ‖A(T0)u‖Lp(0,T0;X). Using inequalities (14),
(17) and (8) we obtain

‖w‖Lp(0,T̂ ;X1) ≤ M(‖f + (A(T0)−A(t))A(T0)−1v0‖Lp(0,T̂ ;X) + ‖x0‖Z0)

≤ M(1 +
a2

a1
ρA,T (Tε)N(T0))(‖f‖Lp(0,T ;X) + ‖x0‖Z0)

and (17) holds with T0 replaced by T̂ and N(T0) replaced by

N(T̂ ) = M(1 +
a2

a1
ρA,T (Tε)N(T0)).

Since this procedure can be repeated with the same Tε, we find a solution on
[0, T ] that satisfies the bound (12), where we have obtained by induction:

N = M
k∑

i=0

(
a2

a1
ρA,T (Tε)M)i,

where k ∈ N is the necessary number of steps k = [T/Tε] + 1. Applying (15) it
follows

N ≤ M
k∑

i=0

2−i < M
∞∑

i=0

2−i = 2M.

Suppose (A1) and (A2) are fulfilled. If the conditions of Theorem 1 are
satisfied, then problems (10) have strict Lp solutions and (11) are satisfied, where
the constant M depends on ωA(t) and KA(t)(θ) for some θ ∈ (απ/2, π − ωA(t))
and on RA(t)(απ/2). Therefore (A3) will hold if these quantities are uniformly
bounded for s ∈ [0, T ].

Clearly (A1) and (A2) imply that given s ∈ [0, T ], we have

‖(λI + A(s))−1‖B(X) ≤
K(s)

1 + |λ| , | arg λ| ≤ φs,

where απ/2 < φs < φA(s) = π − ωA(s) ≤ π. Moreover,

(λI + A(t))−1 = (λI + A(s))−1[I + (A(t)−A(s))A(0)−1A(0)(λI + A(s))−1]−1.

So, due to the compactness of [0, T ] there are constants K ≥ 0 and φ ∈ (απ/2, π]
such that

‖(λI + A(t))−1‖B(X) ≤
K

1 + |λ| , | arg λ| ≤ φ, t ∈ [0, T ].

Set ω = π − φ. In this way we proved that there exist constants ω and K such
that ωA(t) < ω < π(1− α/2) and KA(t)(π − ω) ≤ K for any t ∈ [0, T ].
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According to Theorem 1, the constant of maximal regularity M depends
also on RA(t)(απ/2). So, in order to obtain (A3) we have to require the uniform
boundedness of this quantity. Since in the Hilbert space case the R-boundedness
is equivalent to the uniform boundedness, then the constant of maximal regu-
larity depends only on KA(t)(θ).

Note also that DA(s)(δ, p) = DA(0)(δ, p) because D(A(s)) = D(A(0)).
Now if we apply Proposition 1 and Theorem 1 to the problem (3), having

in mind the above remarks, we obtain our main result:

Theorem 2. Suppose that α ∈ (0, 1), 1 < p < ∞, X is a Banach
space of class HT , {A(t)}t∈[0,T ] is a family of operators satisfying (A1) and
f ∈ Lp(I;X). Let moreover A(t) be R-sectorial operators with R-angles

ωR
A(t) < π(1− α/2) (19)

and RA(t)(απ/2) ≤ R for t ∈ [0, T ]. Let one of the following conditions be
satisfied

(a) 1 < p < 1
1−α and x0 ∈ DA(0)(

p−1
αp , p);

(b) p ≥ 1
1−α and x0 = 0.

Then problem (3) has a unique strict Lp solution u satisfying

‖u‖Lp(I;X1) ≤ N(‖x0‖DA(0)(
p−1
αp

,p) + ‖f‖Lp(I;X)).

The constant N depends on X, α, p, R, ω and K, but does not depend on T
and on the individual operators A(t).

Remark 1. The case α ∈ (1, 2) can be considered in a similar way.

Remark 2. Strict Lp solvability of nonautonomous problems is an
important tool in studying quasilinear problems:

Dα
t u + A(u)u = f,

where A(u) is a linear operator for any fixed u. A natural way of solving such
problems is by applying a fixed point argument to the equation

Dα
t u + A(v)u = f

with v fixed, which is in fact a nonautonomous linear problem.
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