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Hermite Series with Polar Singularities
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Series in Hermite polynomials with poles on the boundaries of their regions of conver-
gence are considered.
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1. Introduction
Definition 1. The polynomials {H,(2)},% defined by equalities

dn
Hy(z) = (-1)" eXP(Zz)dﬁ{eXP(—ZZ)}a n=0,1,2 ...; z€C,
z
where C is the complex plane, are called Hermite polynomials.

Let A\(2) = v2exp(22/2) and ¢, (2) = (2n/e)™? cos|(2n + 1)1/2z — nx /2].
Then the asymptotic formula for the Hermite polynomials (n > 1) [1, Chapter
1L, (2.2)] yield that
Hy(z) = AM2)en(2){1 + hn(2)}, (1.1)
where {h,(2)},:> are holomorphic functions in the open set G = C\(—o0, +00)
and
ha(2) =0(n™?)  (n — +00)

uniformly on every compact subset of G.

Definition 2. The series of the kind
+oo
Z aan(Z), (1'2)
n=0

we shall call Hermite series.

Let 0 < 7 < 400 and define S(1) = {z € C: |Sz| < 7} and S*(7) =
C\S(7) . We assume S(0) =0, S(oc0) = C,S*(0) = C\R and S*(c0) = 0. Then:
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Theorem 1. If
7 = max{0, — lirf sup (2n+1)"Y2 log | (2n/e)"?a,|} (1.3)
n—rod

then the series (1.2) is absolutely uniformly convergent on every compact subset
of the set S(t) and diverges in S*(7) ([1], Theorem IV.3.1, b)).

Remark 1. The equality (1.3) can be regarded as a formula of Cauchy-
Hadamard type for the series of kind (1.2).

Remark 2. In the proof of Theorem 1 it is used the asymptotic formula
(1.1).

In [2] we prove the following

Theorem 2. Let zp € G and apnH,(z0) = O(nP)(n — +00), where
p > —1. Then the series (1.2) is absolutely convergent in the strip S(|Szol).

Remark 3. If the conditions of Theorem 2 are satisfied, then the
series (1.2) is absolutely uniformly convergent on every compact subset of the
strip S(|Szo|) and the sum of this series is a complex function holomorphic in

S(1S20]).

2. The main result

The basic result is given by the following

Theorem 3. Let zg € G and apHy(z0) = o(nP)(n — +00), where p is
a nonnegative integer. If f(z) is the sum of the series (1.2) in the strip S(7o)
with o = |Szo| and f(z) has a pole of order m on 9S(7y), then m < 2p + 1.

Proof. Suppose that there is a point { € 9S5(79) such that the function
f(2) has a pole at ¢ of order m and m > 2p + 1. Then

m > 2p+ 2. (2.1)

Since the Hermite polynomials have no zeros outside real line, we can

write that

=(z=-0O"f(z)=(z— m+°°a 2z i (2)
g(Z) - ( C) f( ) - ( C) T;) an( O)Hn(zﬂ)7
where z € S(79)\(—00, +00). Hence,
N +o00 p
9 <103 an (10" 3 an Q)4 =) a2
n=0 n=N+1 n

whatever the non-negative integer N can be.
Let € > 0. Then it follows that exists a positive Ny such that
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lanHp(20)| < en?

for n > Ny. Then for N > Ny we obtain that

= H,(z)
i < —( m E p . 2.2

Let max(0,790 — 1) < d < 19 and D((;0) = {z € C: Rz = R(} Nn{z €
S(m9) — (=00, +00) : |Sz| > 0} . Since D((;6) is a compact subset of G, the
asymptotic formula (1.1) yields that

Hn(2) = Ofexp(—V2n + 1(10 — [Sz])}, n — +o0,
Hn(ZO)
uniformly on D((;d). Then,
—+00
Z np|5 O{ Z nP exp[—v2n + 1(m0 — |Sz])]}
n=N+1 ”( n=N+1

+o0o
_ 0(/1 7 exp|— (70 — |S2))V2 + 1]dt).

It is not difficult to prove that

+0o0
/ 2 expl— (10 — |32 )2+ 1)dt < M(r, — |S2])~22,
1
where M is a constant not depending of N. Hence,
= H,(2) —2p—2
>, | < K(7o = [S2]) 772, 2 € D(¢39),
n=N+1 H”(ZO)

where K is a constant not depending of N. Then from (2.2) it follows that

9N,2(Z) <eKlz—{|™(10 — |%Z|)—2p—2‘

Obviously, |z — (™ = (10 — |Sz])™ for z € D((;6). Using (2.1) and the
inequality 79 — |Sz| < 1, we obtain that
gn2(z) <eK (2.3)
for each N > Ny and z € D((;0). Let such N be fixed, then there exists a
positive constant L such that

gna(z) < Limo — [Sz[)™,
for z € D((;0). Moreover let (19 — |3z])™ < . Then
gn1(z) <eL (2.4)
From the inequalities (2.3) and (2.4) it follows that
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l9(2)| < e(K + L)

for z € D((;6) and sufficiently closed to ¢. This means that
lim (=~ O"f() =0, =€ DG

However, this contradicts the assumption that the function f(z) has a
pole of order m at the point (. This completes the proof of Theorem 3. ]
Corollary. Let zg € G, liril anH,(20) = 0 and f(z) is the sum of
n——r+oo
(1.2) in the strip S(m0), where 19 = |Szo|. If the function f(z) has a pole on
0S(70), then it is a simple pole.

Finally we shall note that the following assertion holds:

Theorem 4. Let 29 € G and a,Hy(20) = O(n?)(n — 400), where p is
a nonnegative integer. If f(z) is the sum of the series (1.2) in the strip S(7p)
with o = |Szo| and f(2) has a pole of order m on 9S(1y), then m < 2p + 2.
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