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1. Introduction

Definition 1. The polynomials {Hn(z)}+∞
n=0 defined by equalities

Hn(z) = (−1)n exp(z2)
dn

dzn
{exp(−z2)}, n = 0, 1, 2, . . . ; z ∈ C,

where C is the complex plane, are called Hermite polynomials.

Let λ(z) =
√

2 exp(z2/2) and cn(z) = (2n/e)n/2 cos[(2n + 1)1/2z−nπ/2].
Then the asymptotic formula for the Hermite polynomials (n ≥ 1) [1, Chapter
III, (2.2)] yield that

Hn(z) = λ(z)cn(z){1 + hn(z)}, (1.1)
where {hn(z)}+∞

n=1 are holomorphic functions in the open set G = C\(−∞, +∞)
and

hn(z) = O(n−1/2) (n → +∞)

uniformly on every compact subset of G.

Definition 2. The series of the kind
+∞∑

n=0

anHn(z), (1.2)

we shall call Hermite series.

Let 0 < τ < +∞ and define S(τ) = {z ∈ C : |=z| < τ} and S∗(τ) =
C\S(τ) . We assume S(0) = ∅, S(∞) = C, S∗(0) = C\R and S∗(∞) = ∅. Then:
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Theorem 1. If

τ = max{0,− lim
n→+∞ sup (2n + 1)−1/2 log | (2n/e)n/2an|} (1.3)

then the series (1.2) is absolutely uniformly convergent on every compact subset
of the set S(τ) and diverges in S∗(τ) ([1], Theorem IV.3.1, b)).

Remark 1. The equality (1.3) can be regarded as a formula of Cauchy-
Hadamard type for the series of kind (1.2).

Remark 2. In the proof of Theorem 1 it is used the asymptotic formula
(1.1).

In [2] we prove the following

Theorem 2. Let z0 ∈ G and anHn(z0) = O(np)(n → +∞), where
p ≥ −1. Then the series (1.2) is absolutely convergent in the strip S(|=z0|).

Remark 3. If the conditions of Theorem 2 are satisfied, then the
series (1.2) is absolutely uniformly convergent on every compact subset of the
strip S(|=z0|) and the sum of this series is a complex function holomorphic in
S(|=z0|).

2. The main result

The basic result is given by the following

Theorem 3. Let z0 ∈ G and anHn(z0) = o(np)(n → +∞), where p is
a nonnegative integer. If f(z) is the sum of the series (1.2) in the strip S(τ0)
with τ0 = |=z0| and f(z) has a pole of order m on ∂S(τ0), then m ≤ 2p + 1.

P r o o f. Suppose that there is a point ζ ∈ ∂S(τ0) such that the function
f(z) has a pole at ζ of order m and m > 2p + 1. Then

m ≥ 2p + 2. (2.1)
Since the Hermite polynomials have no zeros outside real line, we can

write that
g(z) = (z − ζ)mf(z) = (z − ζ)m

+∞∑

n=0

anHn(z0)
Hn(z)
Hn(z0)

,

where z ∈ S(τ0)\(−∞, +∞). Hence,

|g(z)|≤|(z−ζ)m
N∑

n=0

anHn(z)|+|(z−ζ)m
+∞∑

n=N+1

anHn(ζ)
Hn(z)
Hn(ζ)

|=gN,1(z)+gN,2(z)

whatever the non-negative integer N can be.
Let ε > 0. Then it follows that exists a positive N0 such that
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|anHn(z0)| < εnp

for n > N0. Then for N > N0 we obtain that

gN,2(z) ≤ ε|z − ζ|m
+∞∑

n=N+1

np| Hn(z)
Hn(z0)

|. (2.2)

Let max(0, τ0 − 1) < δ < τ0 and D(ζ; δ) = {z ∈ C : <z = <ζ} ∩ {z ∈
S(τ0) − (−∞, +∞) : |=z| ≥ δ} . Since D(ζ; δ) is a compact subset of G, the
asymptotic formula (1.1) yields that

Hn(z)
Hn(z0)

= O{exp(−√2n + 1(τ0 − |=z|)}, n → +∞,

uniformly on D(ζ; δ). Then,
+∞∑

n=N+1

np| Hn(z)
Hn(z0)

| = O{
+∞∑

n=N+1

np exp[−√2n + 1(τ0 − |=z|)]}

= O(
∫ +∞

1
tp exp[−(τ0 − |=z|)√2t + 1]dt).

It is not difficult to prove that
∫ +∞

1
tp exp[−(τ0 − |=z|)√2t + 1]dt ≤ M(τo − |=z|)−2p−2,

where M is a constant not depending of N. Hence,
+∞∑

n=N+1

np| Hn(z)
Hn(z0)

| ≤ K(τo − |=z|)−2p−2, z ∈ D(ζ; δ),

where K is a constant not depending of N. Then from (2.2) it follows that

gN,2(z) ≤ εK|z − ζ|m(τ0 − |=z|)−2p−2.

Obviously, |z − ζ|m = (τ0 − |=z|)m for z ∈ D(ζ; δ). Using (2.1) and the
inequality τ0 − |=z| < 1, we obtain that

gN,2(z) ≤ εK (2.3)

for each N > N0 and z ∈ D(ζ; δ). Let such N be fixed, then there exists a
positive constant L such that

gN,1(z) ≤ L(τ0 − |=z|)m,

for z ∈ D(ζ; δ). Moreover let (τ0 − |=z|)m < ε. Then
gN,1(z) ≤ εL. (2.4)

From the inequalities (2.3) and (2.4) it follows that
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|g(z)| ≤ ε(K + L)

for z ∈ D(ζ; δ) and sufficiently closed to ζ. This means that

lim
z→ζ

(z − ζ)mf(z) = 0, z ∈ D(ζ; δ).

However, this contradicts the assumption that the function f(z) has a
pole of order m at the point ζ. This completes the proof of Theorem 3.

Corollary. Let z0 ∈ G, lim
n→+∞ anHn(z0) = 0 and f(z) is the sum of

(1.2) in the strip S(τ0), where τ0 = |=z0|. If the function f(z) has a pole on
∂S(τ0), then it is a simple pole.

Finally we shall note that the following assertion holds:

Theorem 4. Let z0 ∈ G and anHn(z0) = O(np)(n → +∞), where p is
a nonnegative integer. If f(z) is the sum of the series (1.2) in the strip S(τ0)
with τ0 = |=z0| and f(z) has a pole of order m on ∂S(τ0), then m ≤ 2p + 2.
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