Mathematica Balkanica

New Series Vol. 26, 2012, Fasc. 1-2

Hermite Series with Polar Singularities

Georgi S. Boychev

Presented at 6th International Conference "TMSF' 2011"
Series in Hermite polynomials with poles on the boundaries of their regions of convergence are considered.

MSC 2010: 33C45, 40G05
Key Words: Hermite polynomials, Hermite series, poles

1. Introduction

Definition 1. The polynomials $\left\{H_{n}(z)\right\}_{n=0}^{+\infty}$ defined by equalities

$$
H_{n}(z)=(-1)^{n} \exp \left(z^{2}\right) \frac{d^{n}}{d z^{n}}\left\{\exp \left(-z^{2}\right)\right\}, n=0,1,2, \ldots ; z \in \mathbb{C},
$$

where \mathbb{C} is the complex plane, are called Hermite polynomials.
Let $\lambda(z)=\sqrt{2} \exp \left(z^{2} / 2\right)$ and $c_{n}(z)=(2 n / e)^{n / 2} \cos \left[(2 n+1)^{1 / 2} z-n \pi / 2\right]$. Then the asymptotic formula for the Hermite polynomials $(n \geq 1)$ [1, Chapter III, (2.2)] yield that

$$
\begin{equation*}
H_{n}(z)=\lambda(z) c_{n}(z)\left\{1+h_{n}(z)\right\}, \tag{1.1}
\end{equation*}
$$

where $\left\{h_{n}(z)\right\}_{n=1}^{+\infty}$ are holomorphic functions in the open set $G=\mathbb{C} \backslash(-\infty,+\infty)$ and

$$
h_{n}(z)=O\left(n^{-1 / 2}\right) \quad(n \rightarrow+\infty)
$$

uniformly on every compact subset of G.
Definition 2. The series of the kind

$$
\begin{equation*}
\sum_{n=0}^{+\infty} a_{n} H_{n}(z), \tag{1.2}
\end{equation*}
$$

we shall call Hermite series.
Let $0<\tau<+\infty$ and define $S(\tau)=\{z \in \mathbb{C}:|\Im z|<\tau\}$ and $S^{*}(\tau)=$ $\mathbb{C} \backslash \overline{S(\tau)}$. We assume $S(0)=\emptyset, S(\infty)=\mathbb{C}, S^{*}(0)=\mathbb{C} \backslash \mathbb{R}$ and $S^{*}(\infty)=\emptyset$. Then:

Theorem 1. If

$$
\begin{equation*}
\tau=\max \left\{0,-\lim _{n \rightarrow+\infty} \sup (2 n+1)^{-1 / 2} \log \left|(2 n / e)^{n / 2} a_{n}\right|\right\} \tag{1.3}
\end{equation*}
$$

then the series (1.2) is absolutely uniformly convergent on every compact subset of the set $S(\tau)$ and diverges in $S^{*}(\tau)$ ([1], Theorem IV.3.1, b)).

Remark 1. The equality (1.3) can be regarded as a formula of CauchyHadamard type for the series of kind (1.2).

Remark 2. In the proof of Theorem 1 it is used the asymptotic formula (1.1).

In [2] we prove the following
Theorem 2. Let $z_{0} \in G$ and $a_{n} H_{n}\left(z_{0}\right)=O\left(n^{p}\right)(n \rightarrow+\infty)$, where $p \geq-1$. Then the series (1.2) is absolutely convergent in the strip $S\left(\left|\Im z_{0}\right|\right)$.

Remark 3. If the conditions of Theorem 2 are satisfied, then the series (1.2) is absolutely uniformly convergent on every compact subset of the strip $S\left(\left|\Im z_{0}\right|\right)$ and the sum of this series is a complex function holomorphic in $S\left(\left|\Im z_{0}\right|\right)$.

2. The main result

The basic result is given by the following
Theorem 3. Let $z_{0} \in G$ and $a_{n} H_{n}\left(z_{0}\right)=o\left(n^{p}\right)(n \rightarrow+\infty)$, where p is a nonnegative integer. If $f(z)$ is the sum of the series (1.2) in the strip $S\left(\tau_{0}\right)$ with $\tau_{0}=\left|\Im z_{0}\right|$ and $f(z)$ has a pole of order m on $\partial S\left(\tau_{0}\right)$, then $m \leq 2 p+1$.

Proof. Suppose that there is a point $\zeta \in \partial S\left(\tau_{0}\right)$ such that the function $f(z)$ has a pole at ζ of order m and $m>2 p+1$. Then

$$
\begin{equation*}
m \geq 2 p+2 \tag{2.1}
\end{equation*}
$$

Since the Hermite polynomials have no zeros outside real line, we can write that

$$
g(z)=(z-\zeta)^{m} f(z)=(z-\zeta)^{m} \sum_{n=0}^{+\infty} a_{n} H_{n}\left(z_{0}\right) \frac{H_{n}(z)}{H_{n}\left(z_{0}\right)}
$$

where $z \in S\left(\tau_{0}\right) \backslash(-\infty,+\infty)$. Hence,
$|g(z)| \leq\left|(z-\zeta)^{m} \sum_{n=0}^{N} a_{n} H_{n}(z)\right|+\left|(z-\zeta)^{m} \sum_{n=N+1}^{+\infty} a_{n} H_{n}(\zeta) \frac{H_{n}(z)}{H_{n}(\zeta)}\right|=g_{N, 1}(z)+g_{N, 2}(z)$
whatever the non-negative integer N can be.
Let $\varepsilon>0$. Then it follows that exists a positive N_{0} such that

Hermite Series with ...

$$
\left|a_{n} H_{n}\left(z_{0}\right)\right|<\varepsilon n^{p}
$$

for $n>N_{0}$. Then for $N>N_{0}$ we obtain that

$$
\begin{equation*}
g_{N, 2}(z) \leq \varepsilon|z-\zeta|^{m} \sum_{n=N+1}^{+\infty} n^{p}\left|\frac{H_{n}(z)}{H_{n}\left(z_{0}\right)}\right| \tag{2.2}
\end{equation*}
$$

Let $\max \left(0, \tau_{0}-1\right)<\delta<\tau_{0}$ and $D(\zeta ; \delta)=\{z \in \mathbb{C}: \Re z=\Re \zeta\} \cap\{z \in$ $\left.S\left(\tau_{0}\right)-(-\infty,+\infty):|\Im z| \geq \delta\right\}$. Since $\overline{D(\zeta ; \delta)}$ is a compact subset of G, the asymptotic formula (1.1) yields that

$$
\frac{H_{n}(z)}{H_{n}\left(z_{0}\right)}=O\left\{\exp \left(-\sqrt{2 n+1}\left(\tau_{0}-|\Im z|\right)\right\}, \quad n \rightarrow+\infty\right.
$$

uniformly on $D(\zeta ; \delta)$. Then,

$$
\begin{gathered}
\sum_{n=N+1}^{+\infty} n^{p}\left|\frac{H_{n}(z)}{H_{n}\left(z_{0}\right)}\right|=O\left\{\sum_{n=N+1}^{+\infty} n^{p} \exp \left[-\sqrt{2 n+1}\left(\tau_{0}-|\Im z|\right)\right]\right\} \\
=O\left(\int_{1}^{+\infty} t^{p} \exp \left[-\left(\tau_{0}-|\Im z|\right) \sqrt{2 t+1}\right] \mathrm{d} t\right)
\end{gathered}
$$

It is not difficult to prove that

$$
\int_{1}^{+\infty} t^{p} \exp \left[-\left(\tau_{0}-|\Im z|\right) \sqrt{2 t+1}\right] \mathrm{d} t \leq M\left(\tau_{o}-|\Im z|\right)^{-2 p-2}
$$

where M is a constant not depending of N. Hence,

$$
\sum_{n=N+1}^{+\infty} n^{p}\left|\frac{H_{n}(z)}{H_{n}\left(z_{0}\right)}\right| \leq K\left(\tau_{o}-|\Im z|\right)^{-2 p-2}, \quad z \in D(\zeta ; \delta)
$$

where K is a constant not depending of N. Then from (2.2) it follows that

$$
g_{N, 2}(z) \leq \varepsilon K|z-\zeta|^{m}\left(\tau_{0}-|\Im z|\right)^{-2 p-2} .
$$

Obviously, $|z-\zeta|^{m}=\left(\tau_{0}-|\Im z|\right)^{m}$ for $z \in D(\zeta ; \delta)$. Using (2.1) and the inequality $\tau_{0}-|\Im z|<1$, we obtain that

$$
\begin{equation*}
g_{N, 2}(z) \leq \varepsilon K \tag{2.3}
\end{equation*}
$$

for each $N>N_{0}$ and $z \in D(\zeta ; \delta)$. Let such N be fixed, then there exists a positive constant L such that

$$
g_{N, 1}(z) \leq L\left(\tau_{0}-|\Im z|\right)^{m}
$$

for $z \in D(\zeta ; \delta)$. Moreover let $\left(\tau_{0}-|\Im z|\right)^{m}<\varepsilon$. Then

$$
\begin{equation*}
g_{N, 1}(z) \leq \varepsilon L \tag{2.4}
\end{equation*}
$$

From the inequalities (2.3) and (2.4) it follows that

$$
|g(z)| \leq \varepsilon(K+L)
$$

for $z \in D(\zeta ; \delta)$ and sufficiently closed to ζ. This means that

$$
\lim _{z \rightarrow \zeta}(z-\zeta)^{m} f(z)=0, \quad z \in D(\zeta ; \delta)
$$

However, this contradicts the assumption that the function $f(z)$ has a pole of order m at the point ζ. This completes the proof of Theorem 3 .

Corollary. Let $z_{0} \in G, \lim _{n \rightarrow+\infty} a_{n} H_{n}\left(z_{0}\right)=0$ and $f(z)$ is the sum of (1.2) in the strip $S\left(\tau_{0}\right)$, where $\tau_{0}=\left|\Im z_{0}\right|$. If the function $f(z)$ has a pole on $\partial S\left(\tau_{0}\right)$, then it is a simple pole.

Finally we shall note that the following assertion holds:
Theorem 4. Let $z_{0} \in G$ and $a_{n} H_{n}\left(z_{0}\right)=O\left(n^{p}\right)(n \rightarrow+\infty)$, where p is a nonnegative integer. If $f(z)$ is the sum of the series (1.2) in the strip $S\left(\tau_{0}\right)$ with $\tau_{0}=\left|\Im z_{0}\right|$ and $f(z)$ has a pole of order m on $\partial S\left(\tau_{0}\right)$, then $m \leq 2 p+2$.

Acknowledgements. The author wishes to thank Professor Peter Rusev for his most helpful comments on the preparation of this paper.

References

[1] P. Rusev, Classical Orthogonal Polynomials and Their Associated Functions in Complex Plane. Marin Drinov Acad. Publ. House, Sofia (2005).
[2] G. Boychev, On Hermite series in complex plane. Compt. rend. Acad. bulg. Sci. 61, No 6 (2008), 689-694.

Trakia University

Stara Zagora - 6000, BULGARIA
e-mail: GBoychev@hotmail.com

