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This paper deals with inverse problems related to the solutions of the Helmholtz equa-
tion

L0,ku0 = u0xx + u0yy + ku0 = 0 (k = const. > 0)

for domains of two types. The generalized axial-symmetric Helmholtz equation

Lν,ku = uxx + uyy +
2ν

y
uy + ku = 0 (ν, k = const. > 0)

is also considered. The inversion formulae obtained here may be used to reduce the boundary
value problems for these equations to the boundary value problems of the theory of analytic
functions. Solution of a radiation problem is given as an example.
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1. Introduction

The Helmholtz equation often arises in the study of physical problems
involving partial differential equations in both space and time [6], [7]. The
Helmholtz equation plays an important role in problems of electromagnetic ra-
diation, seismology and acoustics [1], [2].

Let G be a simply connected domain in the complex plane z = x + iy,
and symmetrical with respect to the real axis. Further, let fm(z) (m = 0, 1) be
two arbitrary analytical functions in G, representing the initial condition. The
imaginary parts of these functions are zero. Consider the Helmholtz equation

L0,ku0 = u0xx + u0yy + ku0 = 0 (k > 0), (1)
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and the axial symmetric Helmholtz equation

Lν,ku = uxx + uyy +
2ν

y
uy + ku = 0 (ν and k are positive constants). (2)

Then the function defined by the following formula

u0(x, y) = Re


f0(z) +

√
k

2
(z − z̄)

∫ z

a
f0(t)

J1

(√
k(t− z)(t− z̄)

)
√

(t− z)(t− z̄)
dt




+Jm

∫ z

a
f1(t)J0

(√
k(t− z)(t− z̄)

)
dt (3)

is a regular solution of equation (1) in G; here a is an arbitrary point on d = G∩
{y = 0} , the integration takes place along the rectifiable contour Γ ⊂ G∩{y = 0}
or Γ ⊂ G

⋂{y < 0} and Jv(..) is the Bessel function of first kind of order ν, [6].
Let us note that (3) gives the general integral representation of all regular

solutions of the equation (1) in G, involving two arbitrary analytical functions.
Definition 1. The domain G1 which is symmetrical with respect to the

real axis belongs to class A if it contains a segment connecting any two of its
points with the same abscissa.

Definition 2. The domain G2 which is symmetrical with respect to the
real axis belongs to class B if it contains a segment of line leading from ∞ to
arbitrary point z parallel to Oy.

Let us consider the domain G1 in (3) with contour - the vertical segment
connecting the point z = x with the point z = x + iy, then we get the inte-
gral representation of solutions of the Helmholtz equation (1) with the help of
analytical functions fm(z) = φm(x, y) + iψm(x, y) (m = 0, 1):

u0(x, y) = φ0(x, y)− ky

∫ y

0

J1

(√
k(y2 − τ2)

)
√

k(y2 − τ2)
φ0(x, τ)dτ

+
∫ y

0
J0

(√
k(y2 − τ2)

)
φ1(x, τ)dτ. (4)

If fm(z) are analytical functions in the domain G2 and

fm(z) cos
√

kz · z− 1
2 = O

(
1
|z|ε

)
, z →∞, (5)

with contour of integration - the segment connecting the points z and z̄ and pass-
ing through ∞, we get the integral representation of the solutions of equation
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(1) in the following form:

u0(x, y) = φ0(x, y)− ky

∫ ∞

y
φo(x, τ)

I1
(√

k(τ2 − y2)
)

√
k(τ2 − y2)

dτ +
∫ ∞

y

(
∂φ1(x, τ)

∂x

+
√

kφ1(x, τ) I0
(√

k (τ2 − y2)
)

dτ, φ0 = Ref0(z). (6)

Let us suppose f1(z) = 0 in (4) and (6). If the domain G belongs simul-
taneously to the class A and to the class B (e.g., semi-plane), f0(z) is analytical
function in G as

Jm f0(z)|z=x = 0,

the condition (5) is valid. Then the solutions of equation (1), defined by (4)
and (6) respectively, coincide. This fact is important for solving boundary value
problems.

2. Solution of integral equations

Now we consider the inverse problems related to the solutions of the
Helmholtz equations (4) and (6).

Theorem 1. The integral representation (4) is an integral equation of
Volterra type, and its solution can be expressed as follows:

φ0(x, y) = u0(x, y) + ky

∫ y

0
uo(x, τ)

I1
(√

k(y2 − τ2)
)

√
k(y2 − τ2)

dτ, (7)

where Iν (x) is the modified Bessel function of the first kind.

Using the Carson-Laplace transform [8] and the convolution theorem, we
get the above result.

Theorem 2. Let f0(z) satisfies the following condition

f0(z) cos
√

kzz−
1
2 = O

(|z|−ε) , |z| → ∞, (8)

then the solution of the integral equation (6) has the following form:

φ0(x, y) = u0(x, y)− ky

∫ ∞

y
uo(x, τ)

J1

(√
k(τ2 − y2)

)
√

k(τ2 − y2)
dτ, (9)

(φ0(x, y) = Ref0(z)) .
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The above result can be easily derived by using the Carson-Laplace trans-
form [8] and the convolution theorem

∫ ∞

x
f(y)g(y − x)dy

•←→• − f̃(p)g̃(−p)
p

.

3. Inverse problems
related to the generalized Helmholtz equation

Let G be a simply connected domain in the complex plane z = x+ iy, G
be symmetrical with respect to the real axis, f̃0(z) be an arbitrary analytical
function in G, then the function

u(x, y) = −iCν

(
z − z̄

2i

)1−2ν ∫ z

z̄
f̃0(σ) 0F1

(
v;−k

4
(z − σ)(z̄ − σ)

)

× [(z − δ)(z̄ − δ)]v−1 dσ (10)

is a regular solution of the Helmholtz equation (2) and satisfies the condition

u(x, 0) = f̃0(x),

where

Cv =
Γ

(
v + 1

2

)

Γ(v)Γ
(

1
2

) , 0F1(v; z) = Γ(v)(i
√

z)−v+1Jv−1(2i
√

z).

The formula (10) establishes the one-to-one correspondence between the
regular solutions of equation (2) as k > 0 and the analytical functions in G. The
integrand involves the hypergeometric function, [5], [6].

Theorem 3. Let the integral representation of the solutions of equation
(3) in G1 has the form

u(x, y) =
Γ

(
v + 1

2

)
√

π
y1−2vk

1−v
2 2v

∫ y

0
Re

[
f̃0(x + iτ)

]

× Jv−1

(√
k(y2 − τ2)

) (
y2 − τ2

) v−1
2 dτ, (11)
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then the solution of the integral equation (11) has the following form:

Re (f0(x + iy)) =





2m−vk
v−m

2

Γ(v)Cv

d
dy

∫ y
0

dm[τ2v−1u(x,τ)]
(dτ2)m

(
y2 − τ2

)m−v
2 τ

×Im−v

(√
k(y2 − τ2)

)
dτ, m = [v], v − 1 6= n;

1
n!Cvy

dn+1[y2v−1u(x,y)]
(dy2)n+1 +

√
ky

n!Cv

∫ y
0

dn+1[τ2v−1u(x,τ)]
(dτ2)n+1

× I1
(√

k(y2−τ2)
)

√
y2−τ2

τdτ, v − 1 = n.

(12)

Here v > 0, u(x, y) ∈ C2(y 6= 0), u(x,±0) is a restricted function, and
as 0 < v < 1

2 we have

lim
y→0

|y|2v uy(x, y) = 0.

P r o o f. Using the fact, that u0(x, y) is the solution of equation (1) and
the fact that

u(x, y) = 2Cvy
1−2v

∫ y

0
u0(x, y)

(
y2 − τ2

)v−1
dτ (13)

is the solution of equation (2), we get (12).

Theorem 4. If the domain G belongs to the class B, the function f̃0(z)
satisfies the condition

f̃0(z)z
2v−1

2 cos
(√

k
(
z − vπ

2
+

π

4

))
= O

(
1
|z|ε

)
, |z| → ∞, (14)

and (10) has the following form:

u(x, y) =
Γ

(
v + 1

2

)
√

π
2vy1−2vk

1−v
2

∫ y

∞
Re

[
f̃0(x + iτ)e−iπ(v−1)

]

×Iv−1

(√
k(τ2 − y2)

) (
τ2 − y2

) 1−v
2 dτ, (15)

then the solution of equation (15) has the following form:

Re
[(

f̃0(x + iy)
)

e−iπ(v−1)
]

=

=





(−1)m2m−vk
v−m

2

Γ(v)Cv

d
dy

∫∞
y

dm[τ2v−1u(x,τ)]
(dτ2)m

(
τ2 − y2

)m−v
2 τ

×Im−v

(√
k(τ2 − y2)

)
dτ, m = [v], v − 1 6= n;

(−1)n

n!Cv
y

dn+1[y2v−1u(x,y)]
(dy2)n+1 + (−1)n

√
ky

n!Cv

∫∞
y

dn+1[τ2v−1u(x,τ)]
(dτ2)n+1

× I1
(√

k(τ2−y2)
)

√
τ2−y2

τdτ, v − 1 = n.

(16)
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P r o o f. The formula (16) is established by an appeal to the relation
(9), and also by the help of an assertion that when u0(x, y) is the solution of
equation (1), then

u(x, y) = 2Cvy
1−2v

∫ ∞

y
u0(x, τ)

(
τ2 − y2

)v−1
dτ

is the solution of equation (2).

4. Particular cases

If we replace
√

k by i
√

k in (2), and set v = 1
2 , then we get the following

equation
∂2ũ

∂x2
+

∂2ũ

∂y2
+

1
y

∂ũ

∂y
− kũ = 0, k > 0. (17)

Then formulae (11) and (12) will take the following form as solution of the
equation (17) and its inversion formula:

ũ(x, y) =
2
π

∫ y

0
Re

[
f̃0(x + iτ)

] ch
(√

k (y2 − τ2)
)

√
y2 − τ2

dτ, (18)

Re
[
f̃0(x + iy)

]
=

∂

∂y

∫ y

0
ũ(x, τ)

cos
(√

k (y2 − τ2)
)

√
y2 − τ2

τdτ. (19)

Similarly, (15) and (16) reduce to the following, as solution of equation
(17) and its inverse:

ũ(x, y) =
2
π

∫ ∞

y
Jm

[
f̃0(x + iτ)

] cos
(√

k (τ2 − y2)
)

√
τ2 − y2

dτ, (20)

Jm

[
f̃0(x + iy)

]
= − ∂

∂y

∫ ∞

y
ũ(x, τ)

ch
(√

k (τ2 − y2)
)

√
τ2 − y2

τdτ. (21)

Here

ch
(√

kz
)

f̃0(z) = O
(

1
|z|ε

)
, |z| → ∞. (22)

Let us consider the following
Example. Find the concentration of the (radioactive) radiation in the

semi-space X > 0. This radiation is due to the distribution of the radioactive
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substance with constant concentration H0 in the circle of radius a on the plane
X = 0, with the condition that the remainder of plane is impenetrable. The
radiation measurement is very important in several fields, see e.g. [1]–[4].

Here we have the Helmholtz equation (17), where ũ(x, y) represents the
radiation field and k is distribution constant.

Taking into account the axis symmetry, we have the following boundary
value problem:

Find the solution of the Helmholtz equation (17) in the semi-plane x > 0
with the boundary conditions:

ũ(0, y) = H0, |y| ≤ a, (23)

∂ũ(0, y)
∂x

= 0, |y| > a. (24)

The solution of this problem can be derived from (18).
Let us introduce the function

Ω(z) = u0(x, y) + iυ0(x, y) = f̃0(z)ch
√

kz.

Since f̃0(z) satisfies the condition (22), then by help of the formulae (19)
and (21) we obtain

u0(x, y)|x=0 =

{
H0 cos2

(√
ky

)
, |y| ≤ a,

0 , |y| > a.

Taking into account that

u0(0,−y) = u0(0, y),

and assume the validity of equality

|u0(0, y)| ≤ M

|y|ε , (ε,M = const. > 0),

using the K. Schwarz formula [9], we get

Ω(z) = u0(x, y) + iV0(x, y) = −H0

πi

∫ a

−a

cos2
(√

kt
)

t + iz
dt

=
H0

π
x

∫ a

0
cos2

(√
kt

)[
1

(t− y)2 + x2
+

1
(t− y)2 + x2

]
dt
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+i
H0

π

∫ a

0
cos2

(√
kt

)[
t− y

(t− y)2 + x2
− t + y

(t + y)2 + x2

]
dt.

Finally, the solution of the problem has the following form:

ũ(x, y) =
2
π2

H0x

∫ y

0

ch
(√

kx
)

cos
(√

kτ
)

ch2
√

kx cos2
√

kτ + sh2
√

kx sin2
√

kτ

×ch
√

k (y2 − τ2)√
y2 − τ2

dτ

∫ a

0
cos2

√
kt

[
1

(t− τ)2 + x2
+

1
(t + τ)2 + x2

]
dt

− 2
π2

H0

∫ y

0

sh
√

kx sin
√

kτ

ch2
√

kx cos2
√

kτ + sh2
√

kx sin2
√

kτ
(25)

×ch
√

k (y2 − τ2)√
y2 − τ2

dτ

∫ a

0
cos2

√
kt

[
t− τ

(τ − t)2 + x2
− t + τ

(t + τ)2 + x2

]
dt.

It is interesting to observe the behavior of the solution ũ(x, y) on the
singular line y = 0. Let us notice that ũ(x, y) has extremum (maximum) at the
point y = 0 (with x ); ũ(x, y) as the function of y has no extremum.

The formula (25) for y = 0 is:

ũ0(x, y) = H0
x

πch
√

kx

∫ a

0

cos2
√

kt

t2 + x2
dt. (26)

It is evident that the distribution of the radioactive emanation depends
on the height and decreases exponentially. Indeed:

ũ0(x, y) =
2H0

xπch
√

kx

∫ a

0
cos2

√
kt

[
1−

(
t

x

)2

+ 0
(

t

x

)2
]

dt

=
H̃0

xch(
√

kx)
,

where

H̃0 =
2H0

π

[
a

2
+

1
4
√

k
sin 2a

√
k

]
.

Let G be an arbitrary starlike region and z = 0, z∗ ∈ G∗ = {x− iy|x
+iy ∈ G} , τ be a real or complex variable, τ ∈ T, f(z, τ) be analytical in G and
continuous function in Ḡ.

Let us consider the following differential equation:

uxx + uyy +
2v

y
uy − su = 0, (27)
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where u = u(x, y, τ), and s depends only on τ .
According to (10), the solution of equation (27) can be expressed as

u(z, z∗, τ) = −iCk

(
z − z∗

2i

)1−2v ∫ z

z∗
f(σ, τ) 0F1

[
v;

s

4
(z − σ)(z∗ − σ)

]

× [(z − σ)(z∗ − σ)]v−1 dσ. (28)

Let z∗ = z̄, σ = x + iy cos t, i.e.

(z − σ)(z̄ − σ) = y2 sin2 t,

then we obtain

u(x, y, τ) = u(z, z̄, τ) = Cv

∫ π

0
f(x + iy cos t, τ) (29)

× 0F1

[
v;

3
4
y2 sin2 t

]
sin2v−1 tdt.

This can be written as:

u(z, z̄, τ) = CvΓ(v)
∫ π

0

∞∑

n=0

(y sin t)2n sin2v−1 t

(2n)!Γ(v + n)
(30)

×snf(x + iy cos t, τ)dt.

Thus, we have the following theorem.

Theorem 5. For all functions which are analytic in G, and if the series
in (30) converges uniformly for ∀z ∈ G, τ ∈ T0 ⊂ T , then the formula

u(z, z̄, τ) =
Γ

(
2v+1

2

)
√

π

∫ π

0
sin2v−1 t

∞∑

n=0

(y sin t)2n

(2n)!Γ(v + n)

× snf(x + iy cos t, τ)dt

gives the solution of equation (27) for ∀τ ∈ T0; z, z̄ belongs to the neighborhood
of z = 0, z̄ = 0.
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