Mathematica Balkanica

New Series Vol. 25, 2011, Fasc. 1-2

External Characterization of I-Favorable Spaces

Vesko Valov

Presented by P. Kenderov

We provide both a spectral and an internal characterizations of arbitrary I-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact I-favorable spaces with respect to co-zero sets is also I-favorable with respect to co-zero sets. We also prove that every C^* -embedded I-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.

1991 AMS Math. Subj. Class.: Primary 54C10; Secondary 54F65

 $\label{lem:keywords} \textit{Keywords and phrases: } \text{compact spaces, continuous inverse systems, I-favorable spaces, } \\ \text{skeletal maps}$

1. Introduction

In this paper we assume that the topological spaces are Tychonoff and the single-valued maps are continuous. Moreover, all inverse systems are supposed to have surjective bonding maps.

P. Daniels, K. Kunen and H. Zhou [2] introduced the so called open-open game between two players, and the spaces with a winning strategy for the first player were called I-favorable. Recently A. Kucharski and S. Plewik (see [3], [4] and [5]) investigated the connection of I-favorable spaces and skeletal maps. In particular, they proved in [4] that the class of compact I-favorable spaces and the skeletal maps are adequate in the sense of E. Shchepin [8].

On the other hand, the author announced [13, Theorem 3.1(iii)] a characterization of the class of spaces admitting a lattice [8] of skeletal maps (the skeletal maps in [13] were called ad-open maps) as dense subset of the limit spaces of σ -complete almost continuous inverse systems with skeletal projections. Moreover, an internal characterization of the above class was also announced [13, Theorem 3.1(ii)]. In this paper we are going to show that the later class coincides with that one of I-favorable spaces with respect to co-zero sets,

and to provide the proof of these characterizations. Therefore, we obtain both a spectral and an internal characterizations of I-favorable spaces with respect to co-zero sets.

The following theorem is our main result:

Theorem 1.1. For a space X the following conditions are equivalent:

- (i) X is I-favorable with respect to co-zero sets;
- (ii) Every C^* -embedding of X in another space is π -regular;
- (iii) X is skeletally generated.

We say that a subspace $X \subset Y$ is π -regularly embedded in Y [13] if there exists a π -base \mathcal{B} for X and a function $e \colon \mathcal{B} \to \mathcal{T}_Y$, where \mathcal{T}_Y is the topology of Y, such that:

- (1) $e(U) \cap X$ is a dense subset of U;
- (2) $e(U) \cap e(V) = \emptyset$ provided $U \cap V = \emptyset$.

It is easily seen that the above definition doesn't change if \mathcal{B} is either a base for X or $\mathcal{B} = \mathcal{T}_X$.

A space X is skeletally generated if there exists an inverse system $S = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ of separable metric spaces X_{α} such that:

- (3) All bonding maps p_{α}^{β} are surjective and skeletal;
- (4) The index set A is σ -complete (every countable chain in A has a supremum in A);
- (5) For every countable chain $\{\alpha_n : n \geq 1\} \subset A$ with $\beta = \sup\{\alpha_n : n \geq 1\}$ the space X_{β} is a (dense) subset of $\varprojlim\{X_{\alpha_n}, p_{\alpha_n}^{\alpha_{n+1}}\}$;
- (6) X is embedded in $\varprojlim S$ such that $p_{\alpha}(X) = X_{\alpha}$ for each α , where $p_{\alpha} : \varprojlim S \to X_{\alpha}$ is the α -th limit projection;
- (7) For every bounded continuous function $f: X \to \mathbb{R}$ there exists $\alpha \in A$ and a continuous function $g: X_{\alpha} \to \mathbb{R}$ with $f = g \circ (p_{\alpha}|X)$.

We say that an inverse system S satisfying conditions (3) - (6) is almost σ -continuous. Let us note that condition (6) implies that X is a dense subset of $\varprojlim S$.

There exists a similarity between I-favorable spaces with respect to cozero sets and κ -metrizable compacta [9]. Item (ii) is analogical to Shirokov's [12] external characterization of κ -metrizable compacta, while the definition of skeletally generated spaces resembles that one of openly generated compacta [10]. Moreover, according to Shapiro's result [12], every continuous image of a κ -metrizable compactum is skeletally generated, so it is I-favorable with respect to co-zero sets. So, next question seems reasonable.

Question. Is there any characterization of κ -metrizable compacta in terms of a game between two players?

It is shown in [2, Corollary 1.7] that the product of I-favorable spaces is also I-favorable. Next corollary shows that a similar result is true for I-favorable spaces with respect to co-zero sets.

Corollary 1.2. Any product of compact I-favorable spaces with respect to co-zero sets is also I-favorable with respect to co-zero sets.

Corollary 1.3 below is similar to a result of Bereznickii [1] about specially embedded subset of extremally disconnected spaces.

Corollary 1.3. Let X be a C*-embedded subset of an extremally disconnected space. If X is I-favorable with respect to co-zero sets, then it is also extremally disconnected.

2. I-favorable spaces with respect to co-zero sets

In this section we consider a modification of the open-open game when the players are choosing co-zero sets only. Let us describe this game. Players are playing in a topological space X. Player I choose a non-empty co-zero set $A_0 \subset X$, then Player II choose a non-empty co-zero set $B_0 \subset A_0$. At the n-th round Player I choose a non-empty co-zero set $A_n \subset X$ and the Player II is replying by choosing a non-empty co-zero set $B_n \subset A_n$. Player I wins if the union $B_0 \cup B_1 \cup ...$ is dense in X, otherwise Player II wins. The space X is called I-favorable with respect to co-zero sets if Player I has a winning strategy. Denote by Σ_X the family of all non-empty co-zero sets in X. A winning strategy, see [3], is a function $\sigma: \bigcup \{\Sigma_X^n : n \geq 0\} \to \Sigma_X$ such that for each game

$$(\sigma(\emptyset), B_0, \sigma(B_0), B_1, \sigma(B_0, B_1), B_2, ..., B_n, \sigma(B_0, B_1, ..., B_n), B_{n+1}, ,,)$$

where B_k and $\sigma(\varnothing)$ belong to Σ_X and $B_{k+1} \subset \sigma(B_0, B_1, ..., B_k)$ for every $k \geq 0$, the union $\bigcup_{n\geq 0} B_n$ is dense in X. For example, every space with a countable π -base \mathcal{B} of co-zero sets is I-favorable with respect to co-zero sets (the strategy for Player I is to keep choosing every member of \mathcal{B} , see [2, Theorem 1.1]). Let us mention that if in the above game the players are choosing arbitrary open

subsets of X and Player I has a winning strategy, then X is called I-favorable, see [2].

Proposition 2.1 If X is I-favorable with respect to co-zero sets, so is βX .

Proof. Let $\sigma: \bigcup \{\Sigma_X^n: n \geq 0\} \to \Sigma_X$ be a winning strategy for Player I. Observe that for every co-zero set U in X there exists a co-zero set c(U) in βX with $c(U) \cap X = U$. Now define a function $\overline{\sigma}: \bigcup \{\Sigma_{\beta X}^n: n \geq 0\} \to \Sigma_{\beta X}$ by

$$\overline{\sigma}(U_1,..,U_n) = c(\sigma(U_1 \cap X,..,U_n \cap X)).$$

Suppose

$$(\overline{\sigma}(\varnothing), U_0, \overline{\sigma}(U_0), U_1, \overline{\sigma}(U_0, U_1), ..., U_n, \overline{\sigma}(U_0, U_1, ..., U_n), U_{n+1, ,, ,})$$

is a sequence such that $\overline{\sigma}(\varnothing)$ and all U_k belong to $\Sigma_{\beta X}$ with $U_{k+1} \subset \overline{\sigma}(U_0,U_1,..,U_k)$ for each $k \geq 0$. Consequently, $U_{k+1} \cap X \subset \sigma(U_0 \cap X,..,U_k \cap X)$, $k \geq 0$. So, the set $X \cap \bigcup_{k \geq 0} U_k$ is dense in X which implies that $\bigcup_{k \geq 0} U_k$ is dense βX . Therefore, βX is I-favorable with respect to co-zero sets.

A map $f: X \to Y$ is said to be skeletal if the closure $\overline{f(U)}$ of f(U) in Y has a non-empty interior in Y for every open set $U \subset X$. The proof of next lemma is standard.

Lemma 2.2. For a map $f: X \to Y$ the following are equivalent:

- (i) f is skeletal;
- (ii) $\overline{f(U)}$ is regularly closed in Y, i.e., its interior $\overline{f(U)}$ in Y is dense in $\overline{f(U)}$ for every open $U \subset X$;
- (iii) Every open $U \subset X$ contains an open set V_U such that $f(V_U)$ is dense in some open subset of Y.

If in addition f is closed, the above three conditions are equivalent to f(U) has a non-empty interior in Y for every open $U \subset X$.

A space X is said to be an almost limit of the inverse system $S = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ if X can be embedded in $\varprojlim S$ such that $p_{\alpha}(X) = X_{\alpha}$ for each α . We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$. Let $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \tau\}$ be a well ordered inverse system with (surjective) bonding maps p_{α}^{β} , where τ is a given cardinal. We say that S is almost continuous if for every limit cardinal $\gamma < \tau$ the space X_{γ} is naturally embedded in the limit space $\varprojlim \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \gamma\}$. If always $X_{\gamma} = \varprojlim \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \gamma\}$, S is called continuous.

Lemma 2.3. Let $X = a - \varprojlim \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ such that all bonding maps p_{α}^{β} are skeletal. Then all p_{α} and the restrictions $p_{\alpha}|X:X\to X_{\alpha}$ are also skeletal.

Proof. Since X is dense in $\varprojlim\{X_{\alpha}, p_{\alpha}^{\beta}, A\}$, p_{α} is skeletal iff so is $p_{\alpha}|X$, $\alpha \in A$. To prove that a given p_{α} is skeletal, let $U \subset \varprojlim\{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ be an open set. We are going to show that $\operatorname{Int}\overline{p_{\alpha}(U)} \neq \varnothing$ (both, the interior and the closure are in X_{α}). We can suppose that $U = p_{\beta}^{-1}(V)$ for some β with $V \subset X_{\beta}$ being open. Moreover, since A is directed, there exists $\gamma \in A$ with $\beta < \gamma$ and $\alpha < \gamma$. Then, $p_{\alpha}(U) = p_{\alpha}^{\gamma}(W)$, where $W = (p_{\beta}^{\gamma})^{-1}(V)$. Finally, because p_{α}^{γ} is skeletal, $\operatorname{Int}\overline{p_{\alpha}(U)} \neq \varnothing$.

Lemma 2.4. Every skeletally generated space is I-favorable with respect to co-zero sets.

Proof. Let $X = a - \varprojlim S$, where $S = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ satisfies conditions (3)-(7). Condition (7) implies that for every co-zero set $U \subset X$ there exists $\alpha \in A$ and a co-zero set $V \subset X_{\alpha}$ with $U = p_{\alpha}^{-1}(V)$. So, Σ_X is the family of all $p_{\alpha}^{-1}(V)$, where $\alpha \in A$ and V is open in X_{α} . Using this observation, we can apply the arguments from the proof of [5, Theorem 2] to define a winning strategy $\sigma : \bigcup \{\Sigma_X^n : n \geq 0\} \to \Sigma_X$.

We are going to show that every compactum X which is I-favorable with respect to co-zero sets can be represented as a limit of a continuous system with skeletal bonding maps and I-favorable spaces with respect to co-zero sets of weight less than the weight w(X) of X.

Let us introduced few notations. Suppose $X \subset \mathbb{I}^A$ is a compact space and $B \subset A$. Let $\pi_B \colon \mathbb{I}^A \to \mathbb{I}^B$ be the natural projection and p_B be restriction map $\pi_B|X$. Let also $X_B = p_B(X)$. If $U \subset X$ we write $B \in k(U)$ to denote that $p_B^{-1}(p_B(U)) = U$. For every co-zero set $U \subset X$ there exist a countable $B \subset A$ such that $B \in k(U)$ with p(U) being a co-zero set in X_B . A base \mathcal{B} for the topology of $X \subset \mathbb{I}^A$ consisting of co-zero sets is called *special* if for every finite $B \subset A$ the family $\{p_B(U) : U \in \mathcal{B}, B \in k(U)\}$ is a base for $p_B(X)$.

Proposition 2.5. Let $X \subset \mathbb{I}^A$ be a compactum and \mathcal{B} a special base for X. If $\sigma: \bigcup \{\mathcal{B}^n : n \geq 0\} \to \mathcal{B}$ is a function such that for each game

$$(\sigma(\emptyset), U_0, \sigma(U_0), U_1, \sigma(U_0, U_1), U_2, ..., U_n, \sigma(U_0, U_1, ..., U_n), U_{n+1}, ,,),$$

where $\sigma(\emptyset) \in \mathcal{B}$, $U_i \in \mathcal{B}$ and $U_{i+1} \subset \sigma(U_0, U_1), U_2, ..., U_i)$ for all $i \geq 0$, the union $\bigcup_{n\geq 0} U_n$ is dense in X, then X is skeletally generated.

Proof. For any finite set $B \subset A$ fix a countable family $\lambda_B \subset \mathcal{B}$ such that $\{p_B(U) : U \in \lambda_B\}$ is a base for X_B and $B \in k(U)$ for every $U \in \lambda_B$. Let

 $\gamma_B = \bigcup \{\lambda_H : H \subset B\}$ and Γ be the family of all countable sets $B \subset A$ satisfying the following condition:

• If $C \subset B$ is finite and $U_0, U_1, ..., U_n \in \gamma_C, n \geq 0$, then $B \in k(\sigma(U_0, U_1, ..., U_n))$.

Obviously, if $B_1 \subset B_2 \subset ...$ is a chain in Γ , then $\bigcup_{i\geq 1} B_i \in \Gamma$. We claim that $X = \varprojlim \{X_B, p_B^C, B \subset C, \Gamma\}$. It suffices to show that every countable subset of A is contained in an element of Γ . To this end, let $B_0 \subset A$ be countable. Construct by induction countable sets $B(m) \subset A$ such that for all $m \geq 0$ we have:

- $B_0 \subset B(m) \subset B(m+1)$;
- $B(m+1) \in k(\sigma(U_0, U_1, ..., U_n))$, where $U_0, U_1, ..., U_n \in \gamma_C$ with $n \geq 0$ and $C \subset B(m)$ finite.

Suppose $B(j), j \leq m$, are already constructed for some $m \geq 1$. For every finite $C \subset B(m)$ and $U_0, U_1, ..., U_n \in \gamma_C$ there exist a countable set $B(U_0, U_1, ..., U_n) \subset A$ with $B(U_0, U_1, ..., U_n) \in k(\sigma(U_0, U_1, ..., U_n))$. Let B(m+1) be the union of B(m) and all $B(U_0, U_1, ..., U_n)$, where $U_0, U_1, ..., U_n \in \gamma_C$ with C being a finite subset of B(m) and $n \geq 0$. Obviously B(m+1) is countable and satisfies the required conditions. This completes the inductive step. Finally, $B_{\infty} = \bigcup_{m=0}^{\infty} B(m)$ belongs to Γ . Hence, $X = \varprojlim_{m=0}^{\infty} \{X_B, p_B^C, B \subset C, \Gamma\}$.

Next two claims complete the proof of Proposition 2.5.

Claim 1. If $B \in \Gamma$, then for each open $V \subset X$ there exists a finite set $C \subset B$ and a finite family $U_0, U_1, ..., U_n \in \gamma_C$ such that $p_B(U) \cap p_B(V) \neq \emptyset$ for any $U \in \gamma_H$, where $H \subset B$ is finite and $U \subset \sigma(U_0, U_1, ..., U_n)$.

Assume Claim 1 does not hold. Then there exists an open set $V \subset X$ such that for any finite $C \subset B$ and any $U_0, U_1, ..., U_n \in \gamma_C$ there exists finite $H \subset B$ and $U \in \gamma_H$ such that $U \subset \sigma(U_0, U_1, ..., U_n)$ and $p_B(U) \cap p_B(V) = \varnothing$. This allows us to construct by induction a sequence $\{C(m)\}_{m \geq 0}$ of finite subsets of B and families $\{U_0, U_1, ..., U_m\} \subset \gamma_{C(m)}$ such that $U_m \subset \sigma(U_0, U_1, ..., U_{m-1})$ and $p_B(U_m) \cap p_B(V) = \varnothing$. Indeed, we take $\sigma(\varnothing) \in B$ with $B \in k(\sigma(\varnothing))$ and suppose the sets C(1), ..., C(m) and the families $\{U_0, U_1, ..., U_m\} \subset \gamma_{C(m)}$ satisfying the above conditions are already constructed. Consequently, there exists $U_{m+1} \in \gamma_D$, where $D \subset B$ is finite, such that $U_{m+1} \subset \sigma(U_0, U_1, ..., U_m)$ and $p_B(U_{m+1}) \cap p_B(V) = \varnothing$. Observe that both $\{U_0, U_1, ..., U_m\} \subset \gamma_{C(m)}$ and

 $U_{m+1} \in \gamma_D$ implies the inclusion $\{U_0, U_1, ..., U_m, U_{m+1}\} \subset \gamma_{C(m+1)}$, where $C(m+1) = C(m) \cup D$. This completes the inductive step. So, we obtained a sequence

$$\sigma(\varnothing), U_0, \sigma(U_0), U_1, \sigma(U_0, U_1), U_2, ..., U_n, \sigma(U_0, U_1, ..., U_n), U_{n+1}, ...$$

from \mathcal{B} such that $U_{i+1} \subset \sigma(U_0, U_1, U_2, ..., U_i)$, $B \in k(U_i)$ and $p_B(U_i) \cap p_B(V) = \emptyset$ for all i. The last two conditions yields $U_i \cap V = \emptyset$ for all $i \geq 0$ which contradicts the density of the set $\bigcup_{i>0} U_i$ in X.

Claim 2. p_B is a skeletal map for each $B \in \Gamma$.

Suppose $V \subset X$ is open. Then there a finite set $C \subset B$ and a family $U_0, U_1, ..., U_n \in \gamma_C$ satisfying the conditions from Claim 1. Since $B \in k(\sigma(U_0, U_1, ..., U_m))$, $p_B(\sigma(U_0, U_1, ..., U_m))$ is open in X_B . Hence, it suffices to show the inclusion $p_B(\sigma(U_0, U_1, ..., U_m)) \subset \overline{p_B(V)}$. Assuming the contrary, we obtain that $p_B(\sigma(U_0, U_1, ..., U_m)) \setminus \overline{p_B(V)}$ is a non-empty open subset of X_B . Moreover, $\bigcup \{p_B(\gamma_C) : C \subset B \text{ is finite}\}$ is a base for X_B . Therefore, there is $U \in \gamma_C$ with $C \subset B$ finite such that $p_B(U)$ is contained in $p_B(\sigma(U_0, U_1, ..., U_m)) \setminus \overline{p_B(V)}$. Consequently, $U \subset \sigma(U_0, U_1, ..., U_m)$ and $p_B(U) \cap p_B(V) = \emptyset$, a contradiction.

Theorem 2.6. Let X be a compact I-favorable space with respect to cozero sets and $w(X) = \tau$ is uncountable. Then there exists a continuous inverse system $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \tau\}$ of compact I-favorable spaces X_{α} with respect to co-zero sets and skeletal bonding maps p_{α}^{β} such that $w(X_{\alpha}) < \tau$ for each $\alpha < \tau$ and $X = \varprojlim S$.

Proof. Let $\sigma: \bigcup \{\Sigma_X^n: n \geq 0\} \to \Sigma_X$, where Σ_X is the family of all cozero sets in X, be a winning strategy for Player I. We embed X in a Tychonoff cube \mathbb{I}^A with $|A| = \tau$ and fix a base $\{U_\alpha: \alpha < \tau\}$ for X of cardinality τ which consists of co-zero sets such that for each α there exists a finite set H_α with $H_\alpha \in k(U_\alpha)$. For any finite set $C \subset A$ let γ_C be a fixed countable base for X_C . Observe that for every $U \in \Sigma_X$ there exists a countable set $B(U) \subset A$ such that $B(U) \in k(U)$ and $p_{B(U)}(U)$ is a co-zero set in $X_{B(U)}$. This follows from the fact that each continuous function f on X can be represented in the form $f = g \circ p_B$ with $B \subset A$ countable and g being a continuous function on X_B . We identify A with all infinite cardinals $\alpha < \tau$ and construct by transfinite induction subsets $A(\alpha) \subset A$ and families $U(\alpha) \subset \Sigma_X$ satisfying the following conditions:

- (8) $|A(\alpha)| \le \alpha$ and $|\mathcal{U}(\alpha)| \le \alpha$;
- (9) $A(\alpha) \in k(U)$ for all $U \in \mathcal{U}(\alpha)$;

- (10) $p_C^{-1}(\gamma_C) \subset \mathcal{U}(\alpha)$ for each finite $C \subset A(\alpha)$;
- (11) $\{U_{\beta}: \beta < \alpha\} \subset \mathcal{U}(\alpha)$ and $\{\beta: \beta < \alpha\} \subset A(\alpha)$;
- (12) $\sigma(U_1,..,U_n) \in \mathcal{U}(\alpha)$ for every finite family $\{U_1,..,U_n\} \subset \mathcal{U}(\alpha)$;
- (13) $A(\alpha) = \bigcup \{A(\beta) : \beta < \alpha\}$ and $\mathcal{U}(\alpha) = \bigcup \{\mathcal{U}(\beta) : \beta < \alpha\}$ for all limit cardinals α .

Suppose all $A(\beta)$ and $\mathcal{U}(\beta)$, $\beta < \alpha$, have already been constructed for some $\alpha < \tau$. If α is a limit cardinal, we put $A(\alpha) = \bigcup \{A(\beta) : \beta < \alpha\}$ and $\mathcal{U}(\alpha) = \bigcup \{\mathcal{U}(\beta) : \beta < \alpha\}$. If $\alpha = \beta+1$, we construct by induction a sequence $\{C(m)\}_{m\geq 0}$ of subsets of A, and a sequence $\{\mathcal{V}_m\}_{m\geq 0}$ of co-zero families in X such that:

- $C_0 = A(\beta) \cup \{\beta\}$ and $\mathcal{V}_0 = \mathcal{U}(\beta) \cup \{U_\beta\}$;
- $C(m+1) = C(m) \bigcup \{B(U) : U \in \mathcal{V}_m\};$
- $V_{2m+1} = V_{2m} \bigcup \{ \sigma(U_1, ..., U_s) : U_1, ..., U_s \in V_{2m}, s \ge 1 \};$
- $V_{2m+2} = V_{2m+1} \bigcup \{p_C^{-1}(\gamma_C) : C \subset C(2m+1) \text{ is finite}\}.$

Now, we define $A(\alpha) = \bigcup_{m \geq 0} C(m)$ and $\mathcal{U}(\alpha) = \bigcup_{m \geq 0} \mathcal{V}_m$. It is easily seen that $A(\alpha)$ and $\mathcal{U}(\alpha)$ satisfy conditions (8)-(13).

For every $\alpha < \tau$ let $X_{\alpha} = X_{A(\alpha)}$ and $p_{\alpha} = p_{A(\alpha)}$. Moreover, if $\alpha < \beta$, we have $A(\alpha) \subset A(\beta)$. In such a situation let $p_{\alpha}^{\beta} = p_{A(\alpha)}^{A(\beta)}$. Since $A = \bigcup_{\alpha < \tau} A(\alpha)$, we obtain a continuous inverse system $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \tau\}$ whose limit is X. Observe also that each X_{α} is of weight $< \tau$ because $p_{\alpha}(\mathcal{U}(\alpha))$ is a base for X_{α} (see condition (10)).

Claim 3. Each X_{α} is I-favorable with respect to co-zero sets.

Indeed, by conditions (9)-(10), $\mathcal{B}_{\alpha} = p_{\alpha}(\mathcal{U}(\alpha))$ is a special base for X_{α} consisting of co-zero sets. We define a function $\sigma_{\alpha} : \bigcup \{\mathcal{B}_{\alpha}^{n} : n \geq 0\} \to \mathcal{B}_{\alpha}$ by

$$\sigma_{\alpha}(p_{\alpha}(U_0), p_{\alpha}(U_1), .., p_{\alpha}(U_n)) = p_{\alpha}(\sigma(U_0, U_1, .., U_n)).$$

This definition is correct because of conditions (9) and (12). Condition (9) implies that σ_{α} satisfies the hypotheses of Proposition 2.5. Hence, according to this proposition, X_{α} is skeletally generated. Finally, by Lemma 2.4, X_{α} is I-favorable with respect to co-zero sets.

Claim 4. All bonding maps p_{α}^{β} are skeletal.

It suffices to show that all p_{α} are skeletal. And this is really true because each family $\mathcal{U}(\alpha)$ is stable with respect to σ , see (12). Hence, by [3, Lemma 9], for every open set $V \subset X$ there exists $W \in \mathcal{U}(\alpha)$ such that whenever $U \subset W$ and $U \in \mathcal{U}(\alpha)$ we have $V \cap U \neq \emptyset$. The last statement yields that p_{α} is skeletal. Indeed, let $V \subset X$ be open, and $W \in \mathcal{U}(\alpha)$ be as above. Then $p_{\alpha}(W)$ is a co-zero set in X_{α} because of condition (9). We claim that $p_{\alpha}(W) \subset p_{\alpha}(V)$. Otherwise, $p_{\alpha}(W) \setminus p_{\alpha}(V)$ would be a non-empty open subset of X_{α} . So, $p_{\alpha}(U) \subset p_{\alpha}(W) \setminus p_{\alpha}(V)$ for some $U \in \mathcal{U}(\alpha)$ (recall that $p_{\alpha}(\mathcal{U}(\alpha))$ is a base for X_{α}). Since, by (9), $p_{\alpha}^{-1}(p_{\alpha}(U)) = U$ and $p_{\alpha}^{-1}(p_{\alpha}(W)) = W$, we obtain $U \subset W$ and $U \cap V = \emptyset$ which is a contradiction.

3. Proof of Theorem 1.1 and Corollaries 1.2 - 1.3

Suppose $X = a - \varprojlim S$ with $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \tau\}$ being almost continuous, and $H \subset X$. The set

$$q(H) = \{\alpha : \operatorname{Int} \left(\left((p_{\alpha}^{\alpha+1})^{-1} (\overline{p_{\alpha}(H)}) \right) \backslash \overline{p_{\alpha+1}(H)} \right) \neq \emptyset \}$$

is called a rank of H.

Lemma 3.1. Let $X = a - \varprojlim S$ and $U \subset X$ be open, where $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \tau\}$ is almost continuous with skeletal bonding maps. Then we have:

- (i) $\alpha \notin q(U)$ if and only if $(p_{\alpha}^{\alpha+1})^{-1}(\operatorname{Int} \overline{p_{\alpha}(U)}) \subset \overline{p_{\alpha+1}(U)};$
- (ii) $q(U) \cap [\alpha, \tau) = \emptyset$ provided $U = p_{\alpha}^{-1}(V)$ for some open $V \subset X_{\alpha}$.

Proof. The first item follows directly from the definition of q(U). For the second one, suppose $\beta \in q(U)$ for some $\beta \geq \alpha$. Then $W = (p_{\beta}^{\beta+1})^{-1}(\operatorname{Int}\overline{p_{\beta}(U)}) \backslash \overline{p_{\beta+1}(U)} \neq \emptyset$ is open in $X_{\beta+1}$. Since $p_{\beta}^{\beta+1}$ is skeletal, $\operatorname{Int}\overline{p_{\beta}^{\beta+1}(W)}$ is a non-empty open subset of X_{β} which is contained in $\overline{p_{\beta}(U)}$. Observe that $p_{\beta}(U)$ is open in X_{β} because $p_{\beta}(U) = (p_{\beta}^{\alpha})^{-1}(V)$. Hence, $p_{\beta}(U) \cap p_{\beta}^{\beta+1}(W) \neq \emptyset$. The last relation implies $W \cap p_{\beta+1}(U) \neq \emptyset$ since $p_{\beta+1}(U) = (p_{\alpha}^{\beta+1})^{-1}(V) = (p_{\alpha}^{\beta+1})^{-1}(p_{\beta}(U))$. On the other hand, $W \cap p_{\beta+1}(U) = \emptyset$, a contradiction.

Lemma 3.2. Let $S = \{X_{\alpha}, p_{\alpha}^{\beta}, 1 \leq \alpha < \beta < \tau\}$ be an inverse system with skeletal bonding maps and $X = \varprojlim S$. Suppose $U \subset X$ is open such that $(p_1^{\alpha})^{-1}(\operatorname{Int}\overline{p_1(U)}) \subset \operatorname{Int}\overline{p_{\alpha}(U)}$ for all $\alpha < \tau$. Then $p_1^{-1}(\operatorname{Int}\overline{p_1(U)}) \subset \overline{U}$.

Proof. Suppose $W=p_1^{-1}\big(\mathrm{Int}\overline{p_1(U)}\big)\backslash\overline{U}\neq\varnothing$. Then there exists $\mu<\tau$ and open $V\subset X_\mu$ with $p_\mu^{-1}(V)\subset W$. Hence $p_1^\mu(V)\subset\mathrm{Int}\overline{p_1(U)}$, so $V\subset (p_1^\mu)^{-1}\big(\mathrm{Int}\overline{p_1(U)}\big)\subset\mathrm{Int}\overline{p_\mu(U)}$. The last inclusion implies that $p_\mu^{-1}(V)$ meets $\overline{p_\alpha(U)}$, a contradiction.

Lemma 3.3. Let $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \tau\}$ be a continuous inverse system with skeletal bonding maps and $X = \varprojlim S$. Assume $U, V \subset X$ are open with q(U) and q(V) finite and $\overline{U} \cap \overline{V} = \emptyset$. If $q(U) \cap q(V) \cap [\gamma, \tau) = \emptyset$ for some $\gamma < \tau$, then $\operatorname{Int} p_{\gamma}(\overline{U})$ and $\operatorname{Int} p_{\gamma}(\overline{V})$ are disjoint.

Proof. Suppose $\operatorname{Int}\overline{p_{\gamma}(U)}\cap\operatorname{Int}\overline{p_{\gamma}(V)}\neq\varnothing$. We are going to show by transfinite induction that $\operatorname{Int}\overline{p_{\beta}(U)}\cap\operatorname{Int}\overline{p_{\beta}(V)}\neq\varnothing$ for all $\beta\geq\gamma$. Assume this is done for all $\beta\in(\gamma,\alpha)$ with $\alpha<\tau$. If α is not a limit cardinal, then $\alpha-1$ belongs to at least one of the sets $\underline{q}(U)$ and $\underline{q}(V)$. Suppose $\alpha-1\not\in \underline{q}(V)$. Hence, $(p_{\alpha-1}^{\alpha})^{-1}(\operatorname{Int}\overline{p_{\alpha-1}(V)})\subset\operatorname{Int}\overline{p_{\alpha}(V)}$ (see Lemma 3.1(i)). Because of our assumption, $\operatorname{Int}\overline{p_{\alpha-1}(U)}\cap\operatorname{Int}\overline{p_{\alpha-1}(V)}\neq\varnothing$. Moreover, $p_{\alpha-1}^{\alpha}(\overline{p_{\alpha}(U)})$ is dense in $\overline{p_{\alpha-1}(U)}$. Hence, $\operatorname{Int}\overline{p_{\alpha-1}(V)}$ meets $p_{\alpha-1}^{\alpha}(\overline{p_{\alpha}(U)})$. This yields $\operatorname{Int}\overline{p_{\alpha}(V)}\cap\overline{p_{\alpha}(U)}\neq\varnothing$. Finally, since by Lemma 2.2(ii) $\overline{p_{\alpha}(U)}$ is the closure of its interior, $\operatorname{Int}\overline{p_{\alpha}(V)}\cap\operatorname{Int}\overline{p_{\alpha}(U)}\neq\varnothing$.

Suppose $\alpha > \gamma$ is a limit cardinal. Since $q(U) \cap q(V)$ is a finite set, there exists $\lambda \in (\gamma, \alpha)$ such that $\beta \not\in \underline{q(U)} \cap q(V)$ for every $\beta \in [\lambda, \alpha)$. Then for all $\beta \in [\lambda, \alpha)$ we have $(p_{\beta}^{\beta+1})^{-1}(\operatorname{Int}\overline{p_{\beta}(U)}) \subset \operatorname{Int}\overline{p_{\beta+1}(U)}$ and $(p_{\beta}^{\beta+1})^{-1}(\operatorname{Int}\overline{p_{\beta}(V)}) \subset \operatorname{Int}\overline{p_{\beta+1}(V)}$. This allows us to find points $x_{\beta} \in \operatorname{Int}\overline{p_{\beta}(U)} \cap \operatorname{Int}\overline{p_{\beta}(V)}$, $\beta \in [\lambda, \alpha)$, such that $p_{\theta}^{\beta}(x_{\beta}) = x_{\theta}$ for all $\lambda \leq \theta \leq \beta < \alpha$. Because X_{α} is the limit space of the inverse system $S_{\lambda}^{\alpha} = \{X_{\theta}, p_{\theta}^{\beta}, \lambda \leq \theta \leq \beta < \alpha\}$, we obtain a point $x_{\alpha} \in X_{\alpha}$ with $p_{\theta}^{\alpha}(x_{\alpha}) = x_{\theta}$, $\theta \in [\gamma, \alpha)$. Next claim implies $x_{\alpha} \in \operatorname{Int}\overline{p_{\alpha}(U)} \cap \operatorname{Int}\overline{p_{\alpha}(V)}$ which completes the induction.

Claim 5. For all $\theta \in [\lambda, \alpha)$ we have $(p_{\theta}^{\alpha})^{-1}(\operatorname{Int}\overline{p_{\theta}(V)}) \subset \operatorname{Int}\overline{p_{\alpha}(V)}$ and $(p_{\theta}^{\alpha})^{-1}(\operatorname{Int}\overline{p_{\theta}(U)}) \subset \operatorname{Int}\overline{p_{\alpha}(U)}$.

Fix $\theta \in [\lambda, \alpha)$ and let Λ be the set of all $\beta \in [\theta, \alpha)$ such that $(p_{\theta}^{\beta})^{-1}(\operatorname{Int}\overline{p_{\theta}(U)}) \backslash \overline{p_{\beta}(U)} \neq \varnothing$. Suppose that $\Lambda \neq \varnothing$ and denote by ν the minimal element of Λ . Therefore $W_{\nu} = (p_{\theta}^{\nu})^{-1}(\operatorname{Int}\overline{p_{\theta}(U)}) \backslash \overline{p_{\nu}(U)} \neq \varnothing$. Observe that $\nu > \theta$ because $\theta \notin q(U)$. Moreover, ν is a limit cardinal. Indeed, otherwise $(p_{\theta}^{\nu-1})^{-1}(\operatorname{Int}\overline{p_{\theta}(U)}) \subset \operatorname{Int}\overline{p_{\nu-1}(U)}$. On the other hand $\nu - 1 \notin q(U)$ yields $(p_{\nu-1}^{\nu})^{-1}(\operatorname{Int}\overline{p_{\nu-1}(U)}) \subset \operatorname{Int}\overline{p_{\nu}(U)}$. Hence, $(p_{\theta}^{\nu})^{-1}(\operatorname{Int}\overline{p_{\theta}(U)}) \subset \operatorname{Int}\overline{p_{\nu}(U)}$, a contradiction. So, X_{ν} is the limit of the inverse system $S_{\theta}^{\nu} = \{X_{\beta}, p_{\beta}^{\mu}, \theta \leq \beta \leq A_{\beta}, p_{\beta}^{\mu}\}$

 $\mu < \nu$. Now, we apply Lemma 3.2 to the system S_{ν} and the set $\overline{\ln p_{\nu}(U)}$, to conclude that $(p_{\theta}^{\nu})^{-1}(\overline{\ln p_{\theta}(U)}) \subset \overline{p_{\nu}(U)}$ which contradicts $W_{\nu} \neq \varnothing$. Consequently, $\Lambda = \varnothing$ and $(p_{\theta}^{\beta})^{-1}(\overline{\ln p_{\theta}(U)}) \subset \overline{p_{\beta}(U)}$ for all $\beta \in [\theta, \alpha)$. We can apply again Lemma 3.2 to the system $S_{\theta}^{\alpha} = \{X_{\mu}, p_{\mu}^{\beta}, \theta \leq \mu \leq \beta < \alpha\}$ and the set $\overline{\ln p_{\alpha}(U)}$ to obtain that $(p_{\theta}^{\alpha})^{-1}(\overline{\ln p_{\theta}(U)}) \subset \overline{\ln p_{\alpha}(U)}$. Similarly, we can show that $(p_{\theta}^{\alpha})^{-1}(\overline{\ln p_{\theta}(V)}) \subset \overline{\ln p_{\alpha}(V)}$ which completes the proof of Claim 5.

Therefore, $\operatorname{Int}_{\overline{p_{\beta}}(\overline{U})} \cap \operatorname{Int}_{\overline{p_{\beta}}(\overline{V})} \neq \emptyset$ for all $\beta \in [\gamma, \tau)$. To finish the proof of this lemma, take $\lambda(0) \in (\gamma, \tau)$ such that $(q(U) \cup q(V)) \cap [\lambda(0), \tau) = \emptyset$. Repeating the arguments from Claim 5, we can show that $(p_{\lambda(0)}^{\alpha})^{-1}(\operatorname{Int}_{\overline{p_{\lambda(0)}}(\overline{U})}) \subset \operatorname{Int}_{\overline{p_{\alpha}}(\overline{U})}$ and $(p_{\lambda(0)}^{\alpha})^{-1}(\operatorname{Int}_{\overline{p_{\lambda(0)}}(\overline{V})}) \subset \operatorname{Int}_{\overline{p_{\alpha}}(\overline{V})}$ for all $\alpha \in [\lambda(0), \tau)$. Then apply Lemma 3.2 to the inverse system $S_{\lambda(0)} = \{X_{\mu}, p_{\mu}^{\beta}, \lambda(0) \leq \mu \leq \beta < \tau\}$ and the set U to obtain that $p_{\lambda(0)}^{-1}(\operatorname{Int}_{\overline{p_{\lambda(0)}}(\overline{U})}) \subset \operatorname{Int}_{\overline{U}}$. Similarly, we have $p_{\lambda(0)}^{-1}(\operatorname{Int}_{\overline{p_{\lambda(0)}}(\overline{V})}) \subset \operatorname{Int}_{\overline{V}}$. Since $\operatorname{Int}_{\overline{p_{\lambda(0)}}(\overline{U})} \cap \operatorname{Int}_{\overline{p_{\gamma}}(\overline{U})} \cap \operatorname{Int}_{\overline{p_{\gamma}}(\overline{V})} = \emptyset$. the last two inclusions imply $\overline{U} \cap \overline{V} \neq \emptyset$, a contradiction. Hence, $\operatorname{Int}_{\overline{p_{\gamma}}(\overline{U})} \cap \operatorname{Int}_{\overline{p_{\gamma}}(\overline{V})} = \emptyset$.

Next proposition was announced in [13]:

Proposition 3.4. [13, Proposition 3.2] Let $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \tau\}$ be an almost continuous inverse system with skeletal bonding maps such that $X = a - \varprojlim S$. Then the family of all open subsets of X having a finite rank is a π -base for X.

Proof. First, following the proof of [8, Section 3, Lemma 2], we are going to show by transfinite induction that for every $\alpha < \tau$ the open subsets $U \subset X$ with $q(U) \cap [1, \alpha]$ being finite form a π -base for X. Obviously, this is true for finite α , and it holds for $\alpha+1$ provided it is true for α . So, it remains to prove this statement for a limit cardinal α if it is true for any $\beta < \alpha$. Suppose $G \subset X$ is open. Let $S_{\alpha} = \{X_{\gamma}, p_{\gamma}^{\beta}, \gamma < \beta < \alpha\}$, $Y_{\alpha} = \varprojlim S_{\alpha}$ and $\tilde{p}_{\gamma}^{\alpha} \colon Y_{\alpha} \to X_{\gamma}$ are the limit projections of S_{α} . Obviously, X_{α} is naturally embedded as a dense subset of Y_{α} and each $\tilde{p}_{\gamma}^{\alpha}$ restricted on X_{α} is p_{γ}^{α} . Then, by Lemma 2.3, $\operatorname{Int}_{\overline{p_{\alpha}}(G)}$ is non-empty and open in X_{α} (here both interior and closure are taken in X_{α}). So, there exists $\gamma < \alpha$ and an open set $U_{\gamma} \subset X_{\gamma}$ with $(\tilde{p}_{\gamma}^{\alpha})^{-1}(U_{\gamma}) \subset \operatorname{Int}_{Y_{\alpha}} \overline{p_{\alpha}(G)}^{Y_{\alpha}}$. Consequently, $(p_{\gamma}^{\alpha})^{-1}(U_{\gamma}) \subset \operatorname{Int}_{\overline{p_{\alpha}}(G)}$. We can suppose that $U_{\gamma} = \operatorname{Int}_{\overline{U_{\gamma}}}$. Then, according to the inductive assumption, $p_{\gamma}^{-1}(U_{\gamma}) \cap G$ contains an open set $W \subset X$ such that $q(W) \cap [1, \gamma]$ is finite. So, $W_{\gamma} = \operatorname{Int}_{\overline{p_{\gamma}}(W)} \neq \emptyset$ and it is contained in U_{γ} . Hence, $p_{\gamma}^{-1}(W_{\gamma}) \cap G$ is a non-empty open subset of X contained in G.

Claim 6.
$$q(p_{\gamma}^{-1}(W_{\gamma}) \cap G) \cap [1, \alpha] = q(W) \cap [1, \gamma)$$
.

Indeed, for every $\beta \leq \gamma$ we have $\overline{p_{\beta}(p_{\gamma}^{-1}(W_{\gamma}) \cap G)} = \overline{p_{\beta}(W)}$. This implies

(14)
$$q(W) \cap [1, \gamma) = q(p_{\gamma}^{-1}(W_{\gamma}) \cap G) \cap [1, \gamma).$$

Moreover, if $\beta \in [\gamma, \alpha)$, then

$$\overline{p_{\beta}(p_{\gamma}^{-1}(W_{\gamma})\cap G)} = \overline{p_{\beta}(p_{\gamma}^{-1}(W_{\gamma}))}$$

because $W_{\gamma} \subset U_{\gamma}$ and $(p_{\gamma}^{\alpha})^{-1}(U_{\gamma}) \subset \overline{p_{\alpha}(G)}$. Hence,

(15)
$$q(p_{\gamma}^{-1}(W_{\gamma}) \cap G) \cap [\gamma, \alpha) = q(p_{\gamma}^{-1}(W_{\gamma})) \cap [\gamma, \alpha).$$

Obviously, by Lemma 3.1(ii), $q(p_{\gamma}^{-1}(W_{\gamma})) \cap [\gamma, \alpha) = \emptyset$. Then the combination of (14) and (15) provides the proof of the claim.

Therefore, for every $\alpha < \tau$ the open sets $W \subset X$ with $q(W) \cap [1, \alpha]$ finite form a π -base for X. Now, we can finish the proof of the proposition. If $V \subset X$ is open we find a set $G \subset V$ with $G = p_{\beta}^{-1}(G_{\beta})$, where G_{β} is open in X_{β} . Then there exists an open set $W \subset G$ such that $q(W) \cap [1, \beta]$ is finite. Let $W_{\beta} = \overline{\text{Int}p_{\beta}(W)}$ and $U = p_{\beta}^{-1}(W_{\beta} \cap G_{\beta})$. It is easily seen that $\overline{p_{\nu}(U)} = \overline{p_{\nu}(W)}$ for all $\nu \leq \beta$. This yields that $q(U) \cap [1, \beta) = q(W) \cap [1, \beta)$. On the other hand, by Lemma 3.1(ii), $q(\overline{U}) \cap [\beta, \tau) = \emptyset$. Hence q(U) is finite.

Proposition 3.5. Let X be a compact I-favorable space with respect to co-zero sets. Then every embedding of X in another space is π -regular.

Proof. We are going to prove this proposition by transfinite induction with respect to the weight w(X). This is true if X is metrizable, see for example $[6, \S 21, XI, Theorem 2]$. Assume the proposition is true for any compact space Y of weight $<\tau$ such that Y is I-favorable with respect to co-zero sets, where τ is an uncountable cardinal. Suppose X is compact I-favorable with respect to co-zero sets and $w(X) = \tau$. Then, by Theorem 2.6, X is the limit space of a continuous inverse system $S = \{X_{\alpha}, p_{\alpha}^{\beta}, \alpha < \beta < \tau\}$ such that all X_{α} are compact I-favorable with respect to co-zero sets spaces of weight $<\tau$ and all bonding maps are surjective and skeletal. If suffices to show that there exists a π -regular embedding of X in a Tychonoff cube \mathbb{I}^A for some card(A).

By Proposition 3.4, X has a π -base \mathcal{B} consisting of open sets $U \subset X$ with finite rank. For every $U \in \mathcal{B}$ let $\Omega(U) = \{\alpha_0, \alpha, \alpha + 1 : \alpha \in q(U)\}$, where $\alpha_0 < \tau$ is fixed. Obviously, X is a subset of $\prod \{X_\alpha : \alpha < \tau\}$. For every $U \in \mathcal{B}$ we consider the open set $\Gamma(U) \subset \prod \{X_\alpha : \alpha < \tau\}$ defined by

$$\Gamma(U) = \prod \{ \operatorname{Int} \overline{p_{\alpha}(U)} : \alpha \in \Omega(U) \} \times \prod \{ X_{\alpha} : \alpha \notin \Omega(U) \}.$$

Claim 7. $\Gamma(U_1) \cap \Gamma(U_2) = \varnothing$ whenever $\overline{U_1} \cap \overline{U_2} = \varnothing$. Moreover, there exists $\beta \in \Omega(U_1) \cap \Omega(U_2)$ with $\overline{p_{\beta}(U_1)} \cap \overline{p_{\beta}(U_2)} = \varnothing$.

Let $\beta = \max\{\Omega(U_1) \cap \Omega(U_2)\}$. Then β is either α_0 or $\max\{q(U_1) \cap q(U_2)\} + 1$. In both cases $q(U_1) \cap q(U_2) \cap [\beta, \tau) = \emptyset$. According to Lemma 3.3, $\operatorname{Int}_{p_{\beta}}(U_1) \cap \operatorname{Int}_{p_{\beta}}(U_2) = \emptyset$. Since $\beta \in \Omega(U_1) \cap \Omega(U_2)$, $\Gamma(U_1) \cap \Gamma(U_2) = \emptyset$.

Suppose $U \subset X$ is open. Since all p_{α} and p_{α}^{β} are closed skeletal maps (see Lemma 2.2 and Lemma 2.3), $U_{\alpha} = \text{Int} p_{\alpha}(U)$ is a non-empty subset of X_{α} for every α .

Claim 8. $\bigcap \{p_{\alpha}^{-1}(U_{\alpha}) \cap U : \alpha \in \Delta\} \neq \emptyset$ for every finite set $\Delta \subset \{\alpha : \alpha < \tau\}$.

Obviously, this is true if $|\Delta| = 1$. Suppose it is true for all Δ with $|\Delta| \leq n$ for some n, and let $\{\alpha_1, ..., \alpha_n, \alpha_{n+1}\}$ be a finite set of n+1 cardinals $< \tau$. Then $V = \bigcap_{i \leq n} p_{\alpha_i}^{-1}(U_{\alpha_i}) \cap U \neq \emptyset$. Since $p_{\alpha_{n+1}}$ is skeletal, $W = \text{Int} p_{\alpha_{n+1}}(V)$ is a non-

empty subset of $X_{\alpha_{n+1}}$, so $W \subset U_{\alpha_{n+1}}$. Consequently $\bigcap_{i \leq n+1} p_{\alpha_i}^{-1}(U_{\alpha_i}) \cap U \neq \emptyset$.

Claim 9. $\Gamma(U) \cap X$ is a non-empty subset of \overline{U} for all $U \in \mathcal{B}$.

We are going to show first that $\Gamma(U) \cap X \neq \emptyset$ for all $U \in \mathcal{B}$. Indeed, we fix such U and let $\Omega(U) = \{\alpha_i : i \leq k\}$ with $\alpha_i \leq \alpha_j$ for $i \leq j$. By Claim 8, there exists $x \in \bigcap_{i \leq k} p_{\alpha_i}^{-1}(U_{\alpha_i}) \cap U$. So, $p_{\alpha_i}(x) \in U_{\alpha_i}$ for all $i \leq k$. This implies $x \in \Gamma(U) \cap X$.

To show that $\Gamma(\underline{U}) \cap X \subset \overline{U}$, let $x \in \Gamma(U) \cap X$. Define $\beta(U) = \max q(U) + 1$. Then $p_{\beta(U)}(x) \in \operatorname{Int} \overline{p_{\beta(U)}(U)}$. Since $\alpha \notin q(U)$ for all $\alpha \geq \beta(U)$, the arguments from Claim 5 show that $(p_{\beta(U)}^{\alpha})^{-1} (\operatorname{Int} \overline{p_{\beta(U)}(U)}) \subset \operatorname{Int} \overline{p_{\alpha}(U)}$ for $\alpha \geq \beta(U)$. Hence, applying Lemma 3.2 to the inverse system $S_U = \{X_{\alpha}, p_{\alpha}^{\beta}, \beta(U) \leq \alpha \leq \beta < \tau\}$ and the set U, we obtain $x \in p_{\beta(U)}^{-1} (\operatorname{Int} \overline{p_{\beta(U)}(U)}) \subset \overline{U}$. This completes the proof of Claim 9.

According to our assumption, each X_{α} is π -regularly embedded in $\mathbb{I}^{A(\alpha)}$ for some $A(\alpha)$. So, there exists a π -regular operator $e_{\alpha}: \mathcal{T}_{X_{\alpha}} \to \mathcal{T}_{\mathbb{I}^{A(\alpha)}}$. For every $U \in \mathcal{B}$ consider the open set $\theta_1(U) \subset \prod \{\mathbb{I}^{A(\alpha)} : \alpha < \tau\}$,

$$\theta_1(U) = \prod \{ e_{\alpha} \big(\mathrm{Int} \overline{p_{\alpha}(U)} \big) : \alpha \in \Omega(U) \} \times \prod \{ \mathbb{I}^{A(\alpha)} : \alpha \not \in \Omega(U) \}.$$

Now, we define a function θ from $\mathcal B$ to the topology of $\prod\{\mathbb I^{A(\alpha)}: \alpha<\tau\}$ by

$$\theta(G) = \bigcup \{\theta_1(U) : U \in \mathcal{B} \text{ and } \overline{U} \subset G\}.$$

Let us show that θ is π -regular. It follows from Claim 7 that $\theta(G_1) \cap \theta(G_2) = \emptyset$ provided $G_1 \cap G_2 = \emptyset$. It is easily seen that $\theta(G) \cap X = \bigcup \{\Gamma(U) \cap X : U \in \mathcal{B} \text{ and } \overline{U} \subset G\}$. According to Claim 9, each $\Gamma(U) \cap X$ is a non-empty subset of \overline{U} . Hence, $\theta(G) \cap X$ is a non-empty dense subset of G. So, X is π -regularly embedded in \mathbb{I}^A , where A is the union of all $A(\alpha)$, $\alpha < \tau$.

Lemma 3.6. Suppose $X = \varprojlim S$, where $S = \{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ is an almost σ -complete inverse system with open bonding maps and second countable spaces X_{α} . Then X is ccc and for every open $U \subset X$ there exists $\alpha \in A$ such that $p_{\beta}^{-1}(p_{\beta}(\overline{U})) = \overline{U}$. Moreover, any continuous function f on X can be represented in the form $f = g \circ p_{\alpha}$ for some $\alpha \in A$ and a continuous function g on X_{α} .

Proof. More general statement was announce in [14], for the sake of completeness we provide a proof. Denote by \mathcal{B} a base of X consisting of all open sets of the form $p_{\beta}^{-1}(W_{\beta})$, $\beta \in A$, where $W_{\beta} \subset X_{\beta}$ is open. Let $U \subset X$ be open and $\mathcal{B}(U) = \{V \in \mathcal{B} : V \subset U\}$. We construct by induction an increasing sequence $\{\beta_n\} \subset A$ and countable families $\mathcal{B}_n(U) \subset \mathcal{B}(U)$, $n \geq 1$, satisfying the following conditions:

- $(i)_n \ \mathcal{B}_n(U) \subset \mathcal{B}_{n+1}(U)$ for each n;
- $(ii)_n$ The family $\{p_{\beta_n}(W): W \in \mathcal{B}_n(U)\}$ is dense in $p_{\beta_n}(U)$;
- $(iii)_n \ p_{\beta_{n+1}}^{-1}(p_{\beta_{n+1}}(W)) = W \text{ for all } n \ge 1 \text{ and } W \in \mathcal{B}_n(U).$

Fix an arbitrary $\beta_1 \in A$ and choose a countable family $\mathcal{B}_1(U) \subset \mathcal{B}(U)$ such that $\{p_{\beta_1}(W) : W \in \mathcal{B}_1(U)\}$ is dense in $p_{\beta_1}(U)$ (this can be done because X_{β_1} is second countable). Suppose β_k and $\mathcal{B}_k(U)$ are already constructed for all $k \leq n$. The family $\mathcal{B}_n(U)$ is countable and for each $W \in \mathcal{B}_n(U)$ there exists $\beta_W \in A$ with $p_{\beta_W}^{-1}(p_{\beta_W}(W)) = W$. Moreover, A is σ -complete. So, we can find $\beta_{n+1} \geq \beta_n$ satisfying item $(iii)_n$. Next, we choose a countable family $\mathcal{B}_{n+1} \subset \mathcal{B}$ containing \mathcal{B}_n and satisfying condition $(ii)_n$. This completes the induction. Finally, let $\beta = \sup\{\beta_n : n \geq 1\}$ and $\mathcal{B}_0 = \bigcup_{n \geq 1} \mathcal{B}_n$. It is easily seen that $\{p_{\beta}(W) : W \in \mathcal{B}_0\}$ is dense in $p_{\beta}(U)$ and $p_{\beta}^{-1}(p_{\beta}(W)) = W$ for all $W \in \mathcal{B}_0$. Since p_{β} is open, this implies that $\bigcup \mathcal{B}_0$ is dense in U and $p_{\beta}^{-1}(p_{\beta}(\overline{U})) = \overline{U}$.

Suppose now $f: X \to \mathbb{R}$ is a continuous function. Choose a countable base \mathcal{U} of \mathbb{R} . For each $U \in \mathcal{U}$ there exists $\beta(U) \in A$ such that $p_{\beta(U)}^{-1}(p_{\beta(U)}(\overline{U})) = \overline{U}$. Let $\beta = \sup\{\beta(U): U \in \mathcal{U}\}$. Then $p_{\beta}^{-1}(p_{\beta}(\overline{U})) = \overline{U}$ for all $U \in \mathcal{U}$. The last equalities imply that if $p_{\beta}(x) = p_{\beta}(y)$ for some $x, y \in X$, then f(x) = f(y). So, the function $g: X_{\beta} \to \mathbb{R}$, $g(z) = f(p_{\beta}^{-1}(z))$, is well defined and $f = g \circ p_{\beta}$. Finally, since p_{β} is open, g is continuous.

Proposition 3.7. Let Y be a limit space of an almost σ -complete inverse system with open bonding maps and second countable spaces. Suppose X is a π -regularly C^* -embedded subspace of Y. Then X is skeletally generated.

Proof. Suppose $Y = \varprojlim S_Y$ and e: $\mathcal{T}_X \to \mathcal{T}_Y$ is a π -regular operator, where $S_Y = \{Y_\alpha, \pi_\alpha^\beta, A\}$ is an almost σ -complete inverse system with open bonding maps and second countable spaces Y_α . Then the limit projections $\pi_\alpha \colon Y \to Y_\alpha$ are also open.

Let \mathcal{A}_{β} be a countable open base for Y_{β} . We say that $\beta \in A$ is e-admissible if

(16)
$$\pi_{\beta}^{-1}\left(\pi_{\beta}\left(\overline{e(\pi_{\beta}^{-1}(V)\cap X)}\right)\right) = \overline{e(\pi_{\beta}^{-1}(V)\cap X)}$$

for every $V \in \mathcal{A}_{\beta}$. We also denote $X_{\beta} = \pi_{\beta}(X)$.

Claim 10. The map $p_{\beta} = \pi_{\beta}|X$ is skeletal for every e-admissible $\beta \in A$.

The proof of this claim is extracted from the proof of [11, Lemma 9]. Let $U \subset X$ be open in X. Because π_{β} is open, it suffices to show that $\pi_{\beta}(\operatorname{e}(U)) \cap X_{\beta} \subset \overline{\pi_{\beta}(U)}^{X_{\beta}}$. Suppose there exists a point $z \in \pi_{\beta}(\operatorname{e}(U)) \cap X_{\beta} \setminus \overline{\pi_{\beta}(U)}^{X_{\beta}}$ and take $V \in \mathcal{A}_{\beta}$ containing z such that $V \cap \overline{\pi_{\beta}(U)} = \emptyset$ (here $\overline{\pi_{\beta}(U)}$ is the closure in Y_{β}). Since β is e-admissible, $\pi_{\beta}^{-1}(\pi_{\beta}(\overline{\operatorname{e}(U_1)})) = \overline{\operatorname{e}(U_1)}$, where $U_1 = \pi_{\beta}^{-1}(V) \cap X$. Obviously, $U_1 \cap U = \emptyset$ and $\pi_{\beta}(U_1) = V \cap X_{\beta}$. Because $\operatorname{e}(U_1) \cap X$ is dense in U_1 , we have $\overline{\pi_{\beta}(\operatorname{e}(U_1) \cap X)} = \overline{\pi_{\beta}(U_1)} = \overline{V \cap X_{\beta}}$. Since $\overline{\pi_{\beta}(\operatorname{e}(U_1))}$ is closed in Y_{β} (recall that π_{β} being open is a quotient map), $z \in \pi_{\beta}\overline{\operatorname{e}(U_1)} \cap \pi_{\beta}(\operatorname{e}(U))$ which implies $\overline{\operatorname{e}(U_1)} \cap \operatorname{e}(U) \neq \emptyset$. So, $\operatorname{e}(U_1) \cap \operatorname{e}(U) \neq \emptyset$, and consequently, $U \cap U_1 \neq \emptyset$. This contradiction completes the proof of Claim 10.

Claim 11. Let $\{\beta_n\}_{n\geq 1}$ be an increasing sequence of elements of A such that each β_{n+1} satisfies the equality (16) with $V \in \mathcal{A}_{\beta_n}$. Then $\sup\{\beta_n : n \geq 1\}$ is e-admissible. In particular, this is true if all β_n are e-admissible.

The proof of this claim follows from the definition of e-admissible sets.

Claim 12. For every $\gamma \in A$ there exists an e-admissible β with $\gamma < \beta$.

We construct by induction an increasing sequence $\{\beta_n\}_{n\geq 1}$ such that $\beta_1 = \gamma$ and β_{n+1} satisfies the equality (16) with $V \in \mathcal{A}_{\beta_n}$ for all $n \geq 1$. Suppose β_n is already constructed. By Lemma 3.6, for each $V \in \mathcal{A}_{\beta_n}$ there exists $\beta(V) \in \mathcal{A}$ such that $\pi_{\beta(V)}^{-1}(\pi_{\beta(V)}(e(\pi_{\beta(V)}^{-1}(V) \cap X))) = e(\pi_{\beta(V)}^{-1}(V) \cap X)$ and $\beta(V) \geq \beta_n$.

Then $\beta_{n+1} = \sup\{\beta(V) : V \in \mathcal{A}_{\beta_n}\}$ is as desired (to be sure that β_{n+1} exists, we may assume that $\{\beta(V) : V \in \mathcal{A}_{\beta_n}\}$ is an increasing sequence). Finally, by Claim 11, $\beta = \sup\{\beta_n : n \geq 1\}$ is e-admissible.

Now, consider the set $\Lambda \subset A$ consisting of all e-admissible β with the order inherited from A. According to Claim 12, Λ is directed. Claim 11 yields Λ is σ -complete and, by Claim 10, all p_{β} are skeletal maps. Hence, the bonding maps $p_{\beta}^{\alpha} \colon X_{\alpha} \to X_{\beta}$, where $\beta, \alpha \in \Lambda$ and $X_{\alpha} = p_{\alpha}(X)$, are also skeletal. Moreover, the inverse system $S_X = \{X_{\alpha}, p_{\alpha}^{\beta}, \Lambda\}$ is σ -complete and $X = a - \varprojlim S_X$. It remains to show that the system S_X satisfies condition (7). So, let $f \colon X \to \mathbb{R}$ be a bounded continuous function. Next, extend f to a continuous function $\overline{f} \colon Y \to \mathbb{R}$ (recall that X is C^* -embedded in Y). Since any inverse σ -complete system with open projections and second countable spaces is factorizable (i.e., its limit space satisfies condition (7)), see Lemma 3.6, there exists $\alpha \in \Lambda$ and a continuous function $g \colon X_{\alpha} \to \mathbb{R}$ with $f = g \circ p_{\alpha}$. Therefore, X is skeletally generated.

Proof of Theorem 1.1. To prove implication $(i) \Rightarrow (ii)$, suppose X is I-favorable with respect to co-zero sets and X is C^* -embedded in a space Y. Then $\overline{X}^{\beta Y}$ is homeomorphic to βX . Since βX is also I-favorable with respect to co-zero sets (see Proposition 2.1), according to Proposition 3.5, βX is π -regularly embedded in βY . This yields that X is π -regularly embedded in Y.

 $(ii)\Rightarrow (iii)$ Let X be a C^* -embedded subset of some \mathbb{I}^A . Then X is π -regularly embedded in \mathbb{I}^A . Since \mathbb{I}^A is openly generated (it is the limit space of the continuous inverse system $\{\mathbb{I}^B,\pi_B^C,B\subset C\subset A\}$ with all B,C being countable subsets of A), we can apply Proposition 3.7 to conclude that X is skeletally generated.

Finally, the implication $(iii) \Rightarrow (i)$ follows from Lemma 2.4.

Proof of Corollary 1.2. Let X_{α} , $\alpha \in \Lambda$, be a family of compact I-favorable with respect to co-zero sets spaces and $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. We embed each X_{α} is a Tychonoff cube $\mathbb{I}^{A(\alpha)}$ and let $K = \prod_{\alpha \in \Lambda} \mathbb{I}^{A(\alpha)}$. By theorem 1.1(ii), there exists a π -regular operator $e_{\alpha}: \mathcal{T}_{X_{\alpha}} \to \mathcal{T}_{I^{A(\alpha)}}$ for each $\alpha \in \Lambda$. Let \mathcal{B} be the family of all standard open sets of the form $U = U_{\alpha(1)} \times ... \times U_{\alpha(k)} \times \prod\{X_{\alpha}: \alpha \neq \alpha_i, i = 1,...,k\}$, where each $U_{\alpha(i)} \subset X_{\alpha(i)}$ is open. For any such $U \in \mathcal{B}$ we define $\gamma(U) = e_{\alpha(1)}(U_{\alpha(1)}) \times ... \times e_{\alpha(k)}(U_{\alpha(k)}) \times \prod\{\mathbb{I}^{A(\alpha)}: \alpha \neq \alpha_i, i = 1,...,k\}$. Finally, we define a function $e: \mathcal{T}_X \to \mathcal{T}_K$ by the equality $e(W) = \bigcup\{\gamma(U): U \in \mathcal{B} \text{ and } U \subset W\}$. It is easily seen that e is π -regular. Since K is the limit space of a continuous σ -complete inverse system consisting of open bounding maps and compact metrizable spaces, by Proposition 3.7, X is skeletally generated. Hence, X is I-favorable with respect to co-zero sets.

Proof of Corollary 1.3. Suppose $X\subset Y$ a C^* -embedded I-favorable space with respect to co-zero sets, where Y is extremally disconnected. Then, by Theorem 1.1(ii), there exists a π -regular operator $e\colon \mathcal{T}_X\to \mathcal{T}_Y$. We need to show that the closure (in X) of every open subset of X is also open. Since Y is extremally disconnected, $\overline{e(U)}^Y$ is open in Y. So, the proof will be done if we prove that $\overline{e(U)}^Y\cap X=\overline{U}^X$ for all $U\in \mathcal{T}_X$. By (1), we have $\overline{U}^X\subset \overline{e(U)}^Y\cap X$. Assume there exists $x\in \overline{e(U)}^Y\cap X\backslash \overline{U}^X$ and choose $V\in \mathcal{T}_X$ with $V\subset \overline{e(U)}^Y\backslash \overline{U}^X$. Then $e(V)\cap \overline{e(U)}^Y\neq \emptyset$, so $e(V)\cap e(U)\neq \emptyset$. The last one contradicts $U\cap V=\emptyset$.

Acknowledgments. The author would like to express his gratitude to A. Kucharski and S. Plewik for providing their recent papers on I-favorable spaces, and for their critical remarks concerning the first version of this paper. Thanks also go to Prof. M. Choban for supplying me with the Bereznickii results from [1].

References

- [1] Ju. Bereznickii, On theory of absolutes, In: III Tiraspol Symposium on General Topology and its applications, Kishinev, Shtiinca, 1973, p. 13–15.
- [2] P. Daniels, K. Kunen and H. Zhou, On the open-open game, Fund. Math., 145, no. 3, 1994, 205-220.
- [3] A. Kucharski and S. Plewik, Inverse systems and *I*-favorable spaces, *Topology Appl.*, **156**, no. 1, 2008, 110–116.
- [4] A. Kucharski and S. Plewik, Game approach to universally Kuratowsk Ulam spaces, *Topology Appl.*, **154**, no. 2, 2007, 421–427.
- [5] A. Kucharski and S. Plewik, Skeletal maps and I-favorable spaces, arXiv:1003.2308v1 [math.GN] 11 Mar 2010.
- [6] K. Kuratowski, Topology, vol. I, Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw 1966.
- [7] L. Shapiro, On a spectral representation of images of κ -metrizable bicompacta, *Uspehi Mat. Nauk*, 37, no. 2, 1982, 245–246 (in Rusian).
- [8] E. Shchepin, Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys, 315, 1976, 155–191.
- [9] E. Shchepin, k-metrizable spaces, Math. USSR Izves., 14, no. 2, 1980, 407–440.
- [10] E. Shchepin, Functors and uncountable degrees of compacta, *Uspekhi Mat. Nauk*, **36**, no. 3, 1981, 3-62 (in Russian).

[11] L. Shapiro, On spaces co-absolute with a generalized Cantor discontinuum, *Doklady Akad. Nauk SSSR*, **288**, no. 6, 1986, 1322–1326 (in Russian).

- [12] L. Shirokov, An external characterization of Dugundji spaces and k-metrizable compacta, Dokl. Akad. Nauk SSSR, 263,no. 5, 1982, 1073–1077 (in Russian).
- [13] V. Valov, Some characterizations of the spaces with a lattice of d-open mappings, C. R. Acad. Bulgare Sci, 39, no. 9, 1986, 9-12.
- [14] V. Valov, A note on spaces with a lattice of d-open mappings, C. R. Acad. Bulgare Sci, 39, no. 8, 1986, 9-12.

Department of Computer Science and Mathematics,
Nipissing University,
100 College Drive,
P.O. Box 5002,
North Bay, ON, P1B 8L7, CANADA
E-mail: veskov@nipissingu.ca