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We provide both a spectral and an internal characterizations of arbitrary I-favorable
spaces with respect to co-zero sets. As a corollary we establish that any product of compact
I-favorable spaces with respect to co-zero sets is also I-favorable with respect to co-zero sets.
We also prove that every C*-embedded I-favorable with respect to co-zero sets subspace of an
extremally disconnected space is extremally disconnected.
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1. Introduction

In this paper we assume that the topological spaces are Tychonoff and the
single-valued maps are continuous. Moreover, all inverse systems are supposed
to have surjective bonding maps.

P. Daniels, K. Kunen and H. Zhou [2] introduced the so called open-open
game between two players, and the spaces with a winning strategy for the first
player were called I-favorable. Recently A. Kucharski and S. Plewik (see (3], [4]
and [5]) investigated the connection of I-favorable spaces and skeletal maps. In
particular, they proved in [4] that the class of compact I-favorable spaces and
the skeletal maps are adequate in the sense of E. Shchepin [8].

On the other hand, the author announced [13, Theorem 3.1(iii)] a char-
acterization of the class of spaces admitting a lattice (8] of skeletal maps (the
skeletal maps in [13] were called ad-open maps) as dense subset of the limit
spaces of o-complete almost continuous inverse systems with skeletal projec-
tions. Moreover, an internal characterization of the above class was also an-
nounced [13, Theorem 3.1(ii)]. In this paper we are going to show that the later
class coincides with that one of I-favorable spaces with respect to co-zero sets,
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and to provide the proof of these charucterizations. Therefore, we obtain both
a spectral and an internal characterizations of I-favorable spaces with respect
to co-zero sets.

The following theorem is our main result:

Theorem 1.1. For a space X the following conditions are equivalent:
(i) X is I-favorable with respect to co-zero sets;
(ii) Every C*-embedding of X in another space is w-regular;

(iii) X 1is skeletally generated.

We say that a subspace X C Y is w-reqularly embedded in Y [13] if there
exists a m-base B for X and a function e: B — Ty, where Ty is the topology of
Y, such that:

(1) e(U) N X is a dense subset of U;
(2) e(U)Nne(V) =@ provided UNV = 2.

It is easily seen that the above definition doesn’t change if B is either a base for
X orB="Tx.

A space X is skeletally generated if there exists an inverse system S =
{Xa,p2, A} of separable metric spaces X, such that:

(3) All bonding maps p’g are surjective and skeletal;

(4) The index set A is o-complete (every countable chain in A has a supremum
in A);

(5) For every countable chain {ay : n > 1} C A with 8 = sup{ay,, : n > 1} the
space X is a (dense) subset of im{Xq,,p3n*'};

(6) X is embedded in limS such that pa (X) = X, for each o, where pq : limS —
X, is the a-th limit projection;

(7) For every bounded continuous function f: X — R there exists « € A and
a continuous function g: X, — R with f = g o (ps|X).

We say that an inverse system S satisfying conditions (3) — (6) is almost o-
continuous. Let us note that condition (6) implies that X is a dense subset of

imS.
There exists a similarity between I-favorable spaces with respect to co-
zero sets and k-metrizable compacta [9]. Item (ii) is analogical to Shirokov’s
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[12] external characterization of k-metrizable compacta, while the definition of
skeletally generated spaces resembles that one of openly generated compacta
[10]. Moreover, according to Shapiro’s result [12], every continuous image of a
k-metrizable compactum is skeletally generated, so it is I-favorable with respect
to co-zero sets. So, next question seems reasonable.

Question. Is there any characterization of k-metrizable compacta in terms of
a game between two players?

It is shown in [2, Corollary 1.7] that the product of I-favorable spaces is
also I-favorable. Next corollary shows that a similar result is true for I-favorable
spaces with respect to co-zero sets.

Corollary 1.2. Any product of compact I-favorable spaces with respect
to co-zero sets is also 1-favorable with respect to co-zero sets.

Corollary 1.3 below is similar to a result of Bereznickii [1] about specially
embedded subset of extremally disconnected spaces. .

Corollary 1.3. Let X be a C*-embedded subset of an extremally dis-
connected space. If X is I-favorable with respect to co-zero sets, then it is also
extremally disconnected.

2. I-favorable spaces with respect to co-zero sets

In this section we consider a modification of the open-open game when
the players are choosing co-zero sets only. Let us describe this game. Players
are playing in a topological space X. Player I choose a non-empty co-zero set
Ap C X, then Player II choose a non-empty co-zero set By C Ap. At the n-
th round Player I choose a non-empty co-zero set A, C X and the Player II
is replying by choosing a non-empty co-zero set B, C Ap. Player I wins if the
union BoU B U... is dense in X, otherwise Player II wins. The space X is called
I-favorable with respect to co-zero sets if Player I has a winning strategy. Denote
by ©x the family of all non-empty co-zero sets in X. A winning strategy, see
(3], is a function o : |J{E% : n > 0} — X x such that for each game

(U(Q), Bo, J(BO)r BI)U(BOa Bl)’ B, ..., BmU(Bo, By, .. Bn)a B+, n)’

where By, and o(9) belong to £x and Bg4+1 C o(Bo, By, .., Bg) for every k > 0,
the union J,;>o Bn is dense in X. For example, every space with a countable
m-base B of co-zero sets is I-favorable with respect to co-zero sets (the strategy
for Player I is to keep choosing every member of B, see [2, Theorem 1.1]). Let
us mention that if in the above game the players are choosing arbitrary open
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subsets of X and Player I has a winning strategy, then X is called I-favorable,
see [2].

Proposition 2.1 If X is I-favorable with respect to co-zero sets, so is
BX.

Proof. Let o : |[J{Z% : n > 0} = £x be a winning strategy for Player
L. Observe that for every co-zero set U in X there exists a co-zero set ¢(U) in
BX with ¢(U)N X = U. Now define a function 7 : U{ng :n >0} = Xgx by

F(U1,..,Un) = ¢(0(U1 N X, .., Up N X)).
Suppose
(—U-(g)’ UO, E(UO), UI>E(U01 Ul)r ceey Una E(Uo, Ula .y Un), Un+1, Ix )

is a sequence such that (@) and all Uy belong to Tgx with Upyy C
5(Uo, Uy, ., Uk) for each k > 0. Consequently, Ux11NX C o(UpNX,..,UprNX),
k > 0. So, the set X N ;5o Uk is dense in X which implies that |J,~q Uk is
dense BX. Therefore, 8X is I-favorable with respect to co-zero sets. =

A map f: X — Y is said to be skeletal if the closure f(U) of f(U) in
Y has a non-empty interior in Y for every open set U C X. The proof of next
lemma is standard.

Lemma 2.2. For amap f: X =Y the following are equivalent:

(i) f is skeletal;

(i) f(U) is regularly closed in Y, i.e., its interior Intf(U) in Y is dense in
f(U) for every open U C X;

(iii) Every open U C X contains an open set Vy such that f (Vu) is dense in
some open subset of Y.

If in addition f is closed, the above three conditions are equivalent to f(U) has
a non-empty interior in Y for every open U C X.

A space X is said to be an almost limit of the inverse system S =
{Xa,p2, A} if X can be embedded in JmS such that pa(X) = Xq for each o
We denote this by X = a— imS, and it implies that X is a dense subset of IimS.
Let S = {Xa, P2, 0 < B < 7} be a well ordered inverse system with (surjective)
bonding maps pg, where 7 is a given cardinal. We say that S is almost continu-
ous if for every limit cardinal y < 7 the space X, is naturally embedded in the

limit space @{Xa,pg,a < B <~} If always X, = yLn{Xa,pg,a <B<~}4L S
is called continuous.
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Lemma 2.3. Let X = a—@{Xa,ﬂ, A} such that all bonding maps po
are skeletal. Then all po and the restrictions po|X : X — Xqo are also skeletal.

Proof. Since X is dense in an{Xa,pg,A}, Do is skeletal iff so is pa|X,
a € A. To prove that a given p, is skeletal, let U C ;ir_n{Xa,pg, A} be an open

set. We are going to show that Intp,(U) # @ (both, the interior and the closure
are in X,). We can suppose that U = pgl(V) for some B with V' C Xz being
open. Moreover, since A is directed, there exists v € A with 8 < v and a < 7.
Then, po(U) = p&(W), where W = (p})~'(V). Finally, because pg is skeletal,

Intp,(U) # @. =

Lemma 2.4. Every skeletally generated space is I-favorable with respect
to co-zero sets.

Proof. Let X = a — limS, where § = {Xa,pg,A} satisfies conditions
(3)-(7). Condition (7) implies that for every co-zero set U C X there exists
a € A and a co-zero set V C X, with U = p71(V). So, Lx is the family
of all p7'(V), where @ € A and V is open in X,. Using this observation, we
can apply the arguments from the proof of [5, Theorem 2| to define a winning
strategy o : [ J{Z% : n > 0} = Zx. u

We are going to show that every compactum X which is I-favorable with
respect to co-zero sets can be represented as a limit of a continuous system
with skeletal bonding maps and I-favorable spaces with respect to co-zero sets
of weight less than the weight w(X) of X.

Let us introduced few notations. Suppose X C I4 is a compact space
and B C A. Let mg: I4 — IB be the natural projection and pg be restriction
map 7g|X. Let also Xp = pp(X). If U C X we write B € k(U) to denote that
pgl (pB(U)) = U. For every co-zero set U C X there exist a countable B C A
such that B € k(U) with p(U) being a co-zero set in Xp. A base B for the
topology of X C I4 consisting of co-zero sets is called special if for every finite
B C A the family {pg(U) : U € B, B € k(U)} is a base for pp(X).

Proposition 2.5. Let X C I4 be a compactum and B a special base for
X. Ifo: |J{B™ : n > 0} — B is a function such that for each game

(0’(@), UO’U(UO): UI)U(UOa Ul); U2) eeey Un,O'(UO, Ul) 2] Un)’ U‘n+ly ) 1))

where o(@) € B, U; € B and Ujy1 C o(Uo,Uh),Ua,...,Us;) for all i > 0, the
union UnZO U, is dense in X, then X is skeletally generated.

Proof. For any finite set B C A fix a countable family Ap C B such
that {pp(U) : U € Ap} is a base for Xp and B € k(U) for every U € Ap. Let
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v = U{A\w : H C B} and I be the family of all countable sets B C A satisfying
the following condition:

e If C Cc B is finite and Uy, U,..,.U, € ~vc, mn > 0, then
B € k(o(Uo, Un, -+ Un)).

Obviously, if By C By C .. is a chain in I', then U,-21 B; € I'. We claim that
X = ;Ln{X 8,05, B C C,T}. It suffices to show that every countable subset
of A is contained in an element of I'. To this end, let By C A be countable.

Construct by induction countable sets B(m) C A such that for all m > 0 we
have:

e By C B(m)C B(m+1);

e B(m + 1) € k(o(Uo, Un, ..,U,,)), where Uy, Uy, ..,U, € y¢ with n > 0 and
C C B(m) finite.

Suppose B(j), j < m, are already constructed for some m > 1. For
every finite C C B(m) and Uy, Us,..,U, € ~c there exist a countable set
B(Uo, Uy, ..,Uyn) C_A with B(Up, Uy, ..,Up) € k(o(Uo, U, ..,Un)). Let B(m +1)
be the union of B(m) and all B(Uy, Uy, ..,U,), where Uy, Uy, ..,Up € 7¢ with C
being a finite subset of B(m) and n > 0. Obviously B(m + 1) is countable and
satisfies the required conditions. This completes the inductive step. Finally,
Bo, = U3_oB(m) belongs to T'. Hence, X = im{Xp,p§, B C C,T}.

Next two claims complete the proof of Proposition 2.5.

Claim 1. If B € T, then for each open V. C X there ezxists a finite set
C C B and a finite family Uy, Uy, ..,Up € v¢ such that pg(U) Npp(V) # @ for
any U € vy, where H C B is finite and U C o(Up, Un, .., Un).

Assume Claim 1 does not hold. Then there exists an open set V C X
such that for any finite C C B and any Up, U, ..,U, € v¢ there exists finite
H C B and U € vpy such that U C o(Uy,Uy,..,U,) and pp(U) Npa(V) = 2.
This allows us to construct by induction a sequence {C(m)}m>0 of finite subsets
of B and families {Up, Uy, ..,Un} C Yc(m) such that Uy, C o(Uo, U, .., Umn-1)
and pp(Um) Npe(V) = @. Indeed, we take o(@) € B with B € k(o(2))
and suppose the sets C(1),...,C(m) and the families {Up, Uy, ..,Un} C Yc(m)
satisfying the above conditions are already constructed. Consequently, there
exists Um+1 € YD, where D C B is finite, such that Up41 C o(Up, U, ..,Unm)
and pg(Um+1) NpB(V) = @. Observe that both {Up,U1,..,Un} C Yc(m) and
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Um+1 € vp implies the inclusion {Uo, U1, ., Um, Um+1} C V¢ (m+1), Where C(m+
1) = C(m) U D. This completes the inductive step. So, we obtained a sequence

0(9)1 UO’ U(UO)a Ul) U(UO; U1)1 U?, ceey U‘m U(U07 Ul, 2 Un)) U’n.+la .

from B such that U;y, C o(Uo, U1, Us, ..., Ui), B € k(U;) and pp(Us)Npp(V) = @
for all 7. The last two conditions yields U;NV = & for all 7 > 0 which contradicts
the density of the set (J;5o Ui in X.

Claim 2. pg is a skeletal map for each B € I.

Suppose V' C X is open. Then there a finite set C C B and a
family Up,Ui,.., U, € ~c satisfying the conditions from Claim 1. Since
B € k(o(Uo,Ui,..,Um)), pB(c(Uo,U1,..,Un)) is open in Xp. Hence, it suf-
fices to show the inclusion pg(o(Up, U, +Um)) C p(V). Assuming the con-
trary, we obtain that pg(c(Uo, Ui, ..,Um))\pa(V) is a non-empty open subset
of Xp. Moreover, | J{pp(yc) : C C Bis finite} is a base for Xp. There-
fore, there is U € ¢ with C C B finite such that pg(U) is contained in
pB(0(Uo, Ui, ..,Un))\pa(V). Consequently, U C o(Uo, Un, -.,Um) and pg(U) N
pp(V) = @, a contradiction. =

Theorem 2.6. Let X be a compact I-favorable space with respect to co-
zero sets and w(X) = T is uncountable. Then there exists a continuous inverse
system S = {Xa,pg,T} of compact I-favorable spaces X, with respect to co-zero
sets and skeletal bonding maps pg such that w(Xy) < 7 for each a < T and

szil_nS.

Proof. Let o : |J{E% : n > 0} = Xx, where Xx is the family of all co-
zero sets in X, be a winning strategy for Player I. We embed X in a Tychonoff
cube I* with |A| = 7 and fix a base {Uy : @ < 7} for X of cardinality 7 which
consists of co-zero sets such that for each « there exists a finite set H, with
H, € k(Uy). For any finite set C' C A let ¢ be a fixed countable base for X¢.
Observe that for every U € L x there exists a countable set B(U) C A such that
B(U) € k(U) and pp(u)(U) is a co-zero set in Xp(y). This follows from the fact
that each continuous function f on X can be represented in the form f = gopp
with B C A countable and g being a continuous function on Xpg. We identify A
with all infinite cardinals a < 7 and construct by transfinite induction subsets
A(a) C A and families U(a) C X x satisfying the following conditions:

(8) |A(a)| € a and |U(a)| £ oy
(9) A(a) € k(U) for all U € U(a);
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(10) pg'(vc) C U(e) for each finite C C A(a);

(11) {Us: B< a} CU(a) and {B: B < a} C A(a);

(12) o(Uy,..,U,) € U(a) for every finite family {U,..,U,} C U(a);

(13) A(e) = U{A(B) : B < a} and U(a) = U{U(B) : B < a} for all limit

cardinals a.

Suppose all A(3) and U(B), B < a, have already been constructed for some
a < 7. If a is a limit cardinal, we put A(a) = |J{A(B) : B < a} and U(a) =
U{U(B) : B < a}. If a = B+1, we construct by induction a sequence {C(m)}m>0
of subsets of A, and a sequence {Vp, }m>0 of co-zero families in X such that:

e Co=A(B)U{B} and Vo =U(B) U{Us};

e C(m+1)=Cm)U{BU) :U € V};

e Vomi1 = Vo U{o(Uy, .., Uy) : Ur, .., Us € Vo, s > 1};
® Vomy2 = Vams1 U{pc! (v¢) : C € C(2m + 1) is finite}.

Now, we define A(a) = |U,,50C(m) and U(a) = U,,50 Vm- It is easily
seen that A(a) and U(a) satisfy conditions (8)-(13).
For every a < 7 let Xoq = X4(q) and pa = pg(a)- Moreover, if a < 3, we

have A(a) C A(B). In such a situation let pg = pgg;. Since A = J oy Ala), we

obtain a continuous inverse system S = {Xa,pg,‘r} whose limit is X. Observe
also that each X, is of weight < 7 because p,(U(c)) is a base for X, (see
condition (10)).

Claim 3. Each X, is I-favorable with respect to co-zero sets.

Indeed, by conditions (9)-(10), B, = po(U(c)) is a special base for X,
consisting of co-zero sets. We define a function o, : |J{B% : n > 0} — B, by

Ta(Pa (UO)vpa(Ul)» "»pa(Un)) = Pa (U(Uo, Uy, .., Un))~

This definition is correct because of conditions (9) and (12). Condition (9)
implies that o, satisfies the hypotheses of Proposition 2.5. Hence, according
to this proposition, X, is skeletally generated. Finally, by Lemma 2.4, X, is
I-favorable with respect to co-zero sets.
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Claim 4. All bonding maps pg are skeletal.

It suffices to show that all p, are skeletal. And this is really true because

each family U (a) is stable with respect to o, see (12). Hence, by [3, Lemma 9],
for every open set V C X there exists W € U(a) such that whenever U C W
and U € U(a) we have VN U # @. The last statement yields that py is
skeletal. Indeed, let V C X be open, and W € U(a) be as above. Then
pa(W) is a co-zero set in X, because of condition (9). We claim that pa(W) C
Pa(V). Otherwise, pa(W)\pa(V') would be a non-empty open subset of Xq. So,
pa(U) C pa(W)\pa(V) for some U € U(c) (recall that po(U(a)) is a base for
X,). Since, by (9), p5'(Pa(U)) = U and p;!(pa(W)) = W, we obtain U C W
and U NV = & which is a contradiction. ]

3. Proof of Theorem 1.1 and Corollaries 1.2 - 1.3
Suppose X = a — limS with § = {Xa,pg,a < B < 7} being almost
continuous, and H C X. The set
q(H) = {a: Int(((p3*") "' (pa(H))) \Pat1(H)) # @}
is called a rank of H.
Lemma 3.1. Let X = a— gir_nS and U C X be open, where S =

{Xa,pg,a < B < 1} is almost continuous with skeletal bonding maps. Then we
have:

(i) o & q(U) if and only if (pg*') ™ (Intpa(U)) C pa+1(U);
(ii) q(U) N [a,7) = @ provided U = pz1 (V) for some open V C Xq.

Proof. The first item follows directly from the definition of g(U). For
the second one, suppose 8 € ¢q(U) for some B > a. Then W

(;[)'6+1 1(Intpg(U))\pg+1(U) # @ is open in Xgi1. Since pgﬂ is skele-
B

tal, Intpy” " (W) is a non-empty open subset of Xg which is contained in p,g(U).
Observe that pg(U) is open in X3 because pg(U) = (pg)‘l(V). Hence, pg(U) N
pﬂ“(W) # @. The last relation implies W N pg41(U) # @ since pg41(U) =

(p B“) (V) = (p5*") ' (pg(U)). On the other hand, W N pg1(U) = @, a
contradiction. ]

Lemma 3.2. Let S = {Xa,pg,l < a < B < 7} be an inverse system
with skeletal bonding maps and X = LiLnS. Suppose U C X is open such that

(%)~ (Intp;(U)) C Intpa(U) for all o < 7. Then py ' (Intpy(U)) C U.
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Proof. Suppose W = py!(Intp;(U))\U # @. Then there exists u < 7
and open V C X, with p;'(V) C W. Hence p(V) C Intp,(U), so V C
()"} (Intpy(U)) C Intp,(U). The last inclusion implies that p; ' (V) meets
pa(U), a contradiction. u

Lemma 3.3. Let S = {Xa,pg,a < B < 7} be a continuous inverse
system with skeletal bonding maps and X = E_IQS . Assume U,V C X are open
with q(U) and q(V) finite and UNV = @. If qU)Nq(V)N[y,7) = @ for some
vy < 7, then Intp,(U) and Intp, (V) are disjoint.

Proof. Suppose Intp,(U) N Intp, (V) # @. We are going to show by
transfinite induction that Intpg(U) N Intpg(V) # @ for all B > ~. Assume this
is done for all B € (v,a) with a < 7. If « is not a limit cardinal, then a — 1
belongs to at least one of the sets ¢(U) and ¢(V)). Suppose a — 1 ¢ ¢(V).
Hence, (p&_;)~! (Intpa—1(V)) C Intpa(V) (see Lemma 3.1(i)). Because of our
assumption, Intpa—1(U) N Intpa—1(V) # @. Moreover, pg_, (po(U)) is dense
in pa—1(U). Hence, Intpo—1(V) meets p&_; (po(U)). This yields Intpa(V) N
Pa(U) # 2. Finally, since by Lemma 2.2(ii) p,(U) is the closure of its interior,
Intpa (V) NIntp, (U) # 2.

Suppose & > 7 is a limit cardinal. Since ¢(U)N¢q(V) is a finite set, there
exists A € (v,a) such that B ¢ q(U) N ¢(V) for every B € [\, ). Then for all
B € [\, a) we have (p‘g,“)'l (Intpg(U)) C Intpgs,(U) and (p‘;“)‘1 (Intps(V)) C
Intpg41(V). This allows us to find points zg € Intpg(U) NIntps(V), B € (M, a),
such that pg (zg) = zp for all A < 0 < B < . Because X, is the limit space of
the inverse system S§ = {Xg,pg,/\ < 6 < B < a}, we obtain a point z, € Xa
with pg(ze) = zg, 6 € [y,a). Next claim implies 2, € Intp(U) N Intpe (V)
which completes the induction.

Claim 5. For all 6 € [\ &) we have (p§)~!(Intpy(V)) C Intp,(V) and
(pg‘)‘l(Intpg(U)) C Intp, (U).

Fix § € [\a) and let A be the set of all # € [f,a) such that
(pg)_l(lntpg(U))\pg(U) # @. Suppose that A # @ and denote by v the min-
imal element of A. Therefore W, = (p§)~!(Intps(U))\p,(U) # @. Observe
that v > 6 because 6 ¢ q(U). Moreover, v is a limit cardinal. Indeed, other-
wise (pj ')~ (Intpg(U)) C Intp,—_1(U). On the other hand v — 1 ¢ q(U) yields

v—1)"'(Intp,—1(U)) C Intp, (U). Hence, (p})~* (Intpa(U)) C Intp, (U), a con-
tradiction. So, X, is the limit of the inverse system Sy = {Xg, Pg,0 < B <
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p < v}. Now, we apply Lemma 3.2 to the system S, and the set Intm, to
conclude that (py)~!(Intpe(U)) C p,(U) which contradicts W, # @. Conse-
quently, A = @ and (pg)’l(lntpg(U)) c pg(U) for all B € [,«). We can apply
again Lemma 3.2 to the system S§ = {X,,,pﬁ,O < pu < B < a} and the set
Intpa(U) to obtain that (pg)~!(Intpe(U)) C Intp(U). Similarly, we can show
that (p§)~!(Intpg(V)) C Intpa(V) which completes the proof of Claim 5.

Therefore, Intpg(U) NIntpg(V) # @ for all B € [y, 7). To finish the proof
of this lemma, take A(0) € (7,7 such that (q(U) U q(V)) N [A(0),7) = @. Re-

peating the arguments from Claim 5, we can show that (p‘j“(o))"l (Intm) C
Intp(U) and (PX0) ™ (Intpr)(V)) C Intpa(V) for all a € [A(0),7). Then ap-
ply Lemma 3.2 to the inverse system Sy) = {X,,,pg,/\(O) <pu<B<rT}
and the set U to obtain that p;(lo) (Intpa)(U)) C IntU. Similarly, we have
p;(lo) (Intpr)(V)) C IntV. Since Intpy)(U) N Intpre)(V) # 2, the last two

inclusions imply U NV # @, a contradiction. Hence, Intp,(U) NIntpy (V) = @.
u

Next proposition was announced in [13]:

Proposition 3.4. [18, Proposition 3.2] Let S = {Xa,pg,a <B <7}
be an almost continuous inverse system with skeletal bonding maps such that
X=a-— @S . Then the family of all open subsets of X having a finite rank is
a m-base for X. '

Proof. First, following the proof of [8, Section 3, Lemma 2], we are
going to show by transfinite induction that for every a < 7 the open subsets
U C X with ¢(U)N[1, o] being finite form a 7-base for X. Obviously, this is true
for finite «, and it holds for a+1 provided it is true for a. So, it remains to prove
this statement for a limit cardinal « if it is true for any 8 < a. Suppose G C X
is open. Let So = {X7,p€,'y <B<a},Y,= ggSa and pS: Yo — X are the
limit projections of S,. Obviously, X, is naturally embedded as a dense subset
of Y, and each p$ restricted on X is pg. Then, by Lemma 2.3, Intp(G) is
non-empty and open in X, (here both interior and closure are taken in Xa). So,

there exists 7 < o and an open set U, C X, with (ﬁ:)"l(U.y) C Inty,,pa(G)Y".
Consequently, (pﬁ)_l(U.,) C Intps(G). We can suppose that Uy = IntU,. Then,
according to the inductive assumption, p5 1(U,)NG contains an open set W C X

such that ¢(W) N [1,7] is finite. So, W, = Intp,(W) # @ and it is contained in
U,. Hence, pJ 1(W,) NG is a non-empty open subset of X contained in G.

Claim 6. q(p;'(Wy)NG) N[L,0] = g(W)N[L,7).
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Indeed, for every 8 < we have pg(p5'(W,) N G) = pg(W). This implies
(14) g(W)N[1,7) =q(p7'(Wy) NG) N [L,7).

Moreover, if 8 € [y, @), then

pa(py ' (W,) NG) = pa(py(Wy))

because W, C U, and (pg)_l(U.,,) C pa(G). Hence,
(15) a(py'(W2) N G) Ny, @) = q(p; (W) N [7, ).

Obviously, by Lemma 3.1(ii), q(jr).y 1(W,)) N [y,@) = @. Then the combination
of (14) and (15) provides the proof of the claim.

Therefore, for every o < 7 the open sets W < X with ¢(W) N [1,q]
finite form a 7-base for X. Now, we can finish the proof of the proposition. If
V C X is open we find a set G C V with G = Pg 31(Gp), where Gp is open in
Xp. Then there exists an open set W C G such tha’c q(W)N|[1,p] is finite. Let
W5 = Intpg(W) and U = p_l(Wg N Gpg). It is easily seen that p,(U) = p,(W)
for all v < B. This yields that q(U)N[1,8) = ¢(W)N[1,B). On the other hand,
by Lemma 3.1(ii), ¢(U) N [B,7) = @. Hence q(U) is finite. L]

Proposition 3.5. Let X be a compact I-favorable space with respect to
co-zero sets. Then every embedding of X in another space is 7-regular.

Proof. We are going to prove this proposition by transfinite induction
with respect to the weight w(X). This is true if X is metrizable, see for example
(6, §21, XI, Theorem 2]. Assume the proposition is true for any compact space
Y of weight < 7 such that Y is I-favorable with respect to co-zero sets, where
7 is an uncountable cardinal. Suppose X is compact I-favorable with respect
to co-zero sets and w(X) = 7. Then, by Theorem 2.6, X is the limit space
of a continuous inverse system S = {X,,p2,a < B < 7} such that all X, are
compact I-favorable with respect to co-zero sets spaces of weight < 7 and all
bonding maps are surjective and skeletal. If suffices to show that there exists a
m-regular embedding of X in a Tychonoff cube I“ for some card(A).

By Proposition 3.4, X has a m-base B consisting of open sets U C X
with finite rank. For every U € B let Q(U) = {ag,a,a + 1 : a € ¢(U)}, where
ap < 7 is fixed. Obviously, X is a subset of [[{X4 : @ < 7}. For every U € B
we consider the open set I'(U) C [[{X4 : @ < 7} defined by

r'U) = [[{Intpa(D) : a € QU)} x [[{Xa:a g Q).
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Claim 7. T'(Uy) NT'(Us) = @ whenever Uy NU; = @. Moreover, there
ezists B € QU) NQUs) with pg(Ur) Npp(Usz) = @.

Let 8 = max{Q(U;) N Q(Uz)}. Then B is either ap or max{g(U1) N
q(Uz)} + 1. In both cases q(U1) Nq(Uz) N [B,T) = @. According to Lemma 3.3,
Intpﬁ(Ul) n Intpﬁ(Ug) = @. Since B € Q(Ul) N Q(Uz), F(U]) N F(U2) = J.

Suppose U C X is open. Since all p, and pg are closed skeletal maps
(see Lemma, 2.2 and Lemma 2.3), U, = Intp,(U) is a non-empty subset of Xq
for every a.

Claim 8. ({p3'(Ua) NU : o € A} # @ for every finite set A C
{a:a< T}

Obviously, this is true if |A| = 1. Suppose it is true for all A with [A] <n
for some n. and let {aj, .., an, an41} be a finite set of n+ 1 cardinals < 7. Then
V= ﬂ pa) (Ua,) NU # @. Since pa,,,, is skeletal, W = Intpq,,,, (V) is a non-

i<n
empty subset of X4, ,,, 50 W C Ug,,,. Consequently ﬂ p;l.l(Ua‘.) NU #+ 2.
i<n+1

Claim 9. T(U) N X is a non-empty subset of U for all U € B.

We are going to show first that T'(U) N X # @ for all U € B. Indeed, we
fix such U and let QU) = {a; : i < k} with a; < a5 for i < j. By Claim 8,
there exists « € ﬂp;il(Uai) NU. So, pa,(z) € Uy, for all i < k. This implies

i<k

zeT(U)NX.

To show that [(U)NX c U, let z € T'(U)NX. Define (U) = maxq(U)+
1. Then pg)(z) € Intpgw)(U). Since o & q(U) for all & > B(U), the arguments
from Claim 5 show that (pg(u))_l(lntpﬁ(u)(U)) C Intpe(U) for a > B(U).
Hence, applying Lemma 3.2 to the inverse system Sy = {Xa,pg, BU) < a<
B < 7} and the set U, we obtain z € p/;(lu) (Intpﬂ(u)(U )) C U. This completes
the proof of Claim 9. .

According to our assumption, each X, is m-regularly embedded in [A(e)
for some A(a). So, there exists a m-regular operator en : Tx, — Tja@. For
every U € B consider the open set 6,(U) C [T{1A® : a < 7},

01(U) = [ [{ea(Intpa(D)) : a € QU)} x [ : o ¢ QU)}-
Now, we define a function @ from B to the topology of [T{14® : o < 7} by
6(G) = J{61(U) : U € Band U C G}.
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Let us show that 6 is 7-regular. It follows from Claim 7 that 8(G,)N0(G2) = @
provided G; N G2 = @. It is easily seen that (G)N X = J{T(U)NX : U €
B and U C G}. According to Claim 9, each ['(U) N X is a non-empty subset of
U. Hence, 8(G) N X is a non-empty dense subset of G. So, X is w-regularly
embedded in [4, where A is the union of all A(a), a < 7. ]

Lemma 3.6. Suppose X = @S, where S = {X,,,pg,A} is an almost
o-complete inverse system with open bonding maps and second countable spaces
Xao. Then X is ccc and for every open U C X there exists o € A such that
pgl (ps(U)) = U. Moreover, any continuous function f on X can be represented
in the form f = gop, for some o € A and a continuous function g on Xq-

Proof. More general statement was announce in [14], for the sake of
completeness we provide a proof. Denote by B a base of X consisting of all
open sets of the form pEl(W,g), B € A, where Wg C Xp is open. Let U C X be
open and B(U) = {V € B: V C U}. We construct by induction an increasing

sequence {f,} C A and countable families B, (U) C B(U), n > 1, satisfying the
following conditions:

(I)n Bn(U) C Bp41(U) for each n;
(i4)n The family {pg, (W) : W € B,(U)} is dense in pg, (U);

(ii6)n P, (PBas:1(W)) =W for all n > 1 and W € B,(U).

Fix an arbitrary ) € A and choose a countable family By (U) c B(U)
such that {pg, (W) : W € B,(U)} is dense in pg, (U) (this can be done because
Xp, is second countable). Suppose S and Bi(U) are already constructed for
all £ < n. The family B,(U) is countable and for each W € B, (U) there exists
Bw € A with pg‘b (Pgw (W)) = W. Moreover, A is o-complete. So, we can find
Bn+1 = Bn satisfying item (ii2),. Next, we choose a countable family B, 1 C B
containing B, and satisfying condition (%i),. This completes the induction.
Finally, let 8 = sup{fn : n > 1} and By = |J,;5; Bn. It is easily seen that
{ps(W) : W € By} is dense in pg(U) and pgl(pg(W)) = W for all W € By.
Since pg is open, this implies that | J By is dense in U and pEl (ps(U)) =T.

Suppose now f: X — R is a continuous function. Choose a countable
base U of R. For each U € U there exists S(U) € A such that pE(IU) (pﬂ(U)(U)) =

U. Let 8 = sup{B(U) : U € U}. Then pEl(p,g(ﬁ)) = U for all U € U. The
last equalities imply that if pg(x) = pg(y) for some z,y € X, then f(z) = f(y).
So, the function g: Xg — R, g(2) = f(pgl(z)), is well defined and f = g o pg.
Finally, since pg is open, g is continuous. =
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Proposition 3.7. Let Y be a limit space of an almost o-complete
inverse system with open bonding maps and second countable spaces. Suppose
X is a w-reqularly C*-embedded subspace of Y. Then X is skeletally generated.

Proof. Suppose Y = Qi_mS& and e: Tx — Ty is a w-regular operator,

where Sy = {Ya,wg,A} is an almost o-complete inverse system with open
bonding maps and second countable spaces Y,. Then the limit projections
mo: Y — Y, are also open.

Let Ag be a countable open base for Ys. We say that 8 € A is e-admissible
if

(16) ﬂ'El (mp (e(ﬂEI(V) nXx))) = e(ﬂEI(V) N X)
for every V € Ag. We also denote Xg = mg(X).
Claim 10. The map pg = mg|X is skeletal for every e-admissible B € A.

The proof of this claim is extracted from the proof of [11, Lemma 9]. Let
U C X be open in X. Because 7g is open, it suffices to show that wg(e(U)) N
Xg C wﬁ(U)Xﬂ. Suppose there exists a point z € wg(e(U)) N Xﬁ\WB(U)Xﬂ and
take V € Ag containing z such that VNng(U) = & (here mg(U) is the closure in
Y3). Since 3 is e-admissible, ;' (m5(e(U1))) = e(U1), where Uy = n5' (V)N X.
Obviously, Uy NU = @ and 7g(U;) = V N Xg. Because e(U;) N X is dense in
Uy, we have mg(e(U1) N X) = m5(U1) = VN Xp. Since mg(e(U1)) is closed in
Yj (recall that mg being open is a quotient map), z € mge(U1) N7g(e(U)) which
implies e(U;) Ne(U) # @. So, e(U;) Ne(U) # @, and consequently, U NU; # @.
This contradiction completes the proof of Claim 10.

Claim 11. Let {Bn}n>1 be an increasing sequence of elements of A such
that each Bn41 satisfies the equality (16) with V € Ag,. Then sup{f, : n > 1}
1s e-admissible. In particular, this is true if all B, are e-admissible.

The proof of this claim follows from the definition of e-admissible sets.
Claim 12. For every v € A there exists an e-admissible 8 with v < .

We construct by induction an increasing sequence {f,}n>1 such that
B1 =~ and B, satisfies the equality (16) with V' € Ag, for all n > 1. Suppose
Bn is already constructed. By Lemma 3.6, for each V' € Ag, there exists S(V) €

A such that 75, (ma(v) (e(m5,) (V) N X)) = e(m5,) (V) N X) and B(V) 2 Bn.

-1
B(V)



76 Vesko Valov

Then 3,41 = sup{B(V) : V € Ag,} is as desired (to be sure that 8, exists,
we may assume that {3(V) : V € Ag,} is an increasing sequence). Finally, by
Claim 11, 8 = sup{fB, : n > 1} is e-admissible.

Now, consider the set A C A consisting of all e-admissible S with the
order inherited from A. According to Claim 12, A is directed. Claim 11 yields
A is o-complete and, by Claim 10, all pg are skeletal maps. Hence, the bonding
maps pg: Xo — Xp, where 8, € A and X, = po(X), are also skeletal. More-
over, the inverse system Sy = {Xa,pg, A} is o-complete and X = a— Lme. It
remains to show that the system Sx satisfies condition (7). So, let f: X = R
be a bounded continuous function. Next, extend f to a continuous function
f:Y — R (recall that X is C*-embedded in Y’). Since any inverse o-complete
system with open projections and second countable spaces is factorizable (i.e.,
its limit space satisfies condition (7)), see Lemma 3.6, there exists a € A and

a continuous function g : X4 — R with f = g o p,. Therefore, X is skeletally
generated. ]

Proof of Theorem 1.1. To prove implication (i) = (i), suppose X is I-
favorable with respect to co-zero sets and X is C*-embedded in a space Y. Then
Ym is homeomorphic to fX. Since 8X is also I-favorable with respect to co-
zero sets (see Proposition 2.1), according to Proposition 3.5, 8X is m-regularly
embedded in BY. This yields that X is m-regularly embedded in Y.

(it) = (i7i) Let X be a C*-embedded subset of some I4. Then X is
m-regularly embedded in I4. Since I is openly generated (it is the limit space
of the continuous inverse system {]IB,ﬂ'g,B C C C A} with all B,C being
countable subsets of A), we can apply Proposition 3.7 to conclude that X is
skeletally generated.

Finally, the implication (7ii) = (i) follows from Lemma 2.4. =

Proof of Corollary 1.2. Let X, o € A, be a family of compact [-favorable
with respect to co-zero sets spaces and X = [locr Xa- We embed each X, is a
Tychonoff cube I4(®) and let K = [Taea I4®). By theorem 1.1(ii), there exists
a m-regular operator eq : Tx, — Tjac for each @ € A. Let B be the family of
all standard open sets of the form U = U,(y) x .. x Uahy X [[{Xa : a # a;,i =
1,..,k}, where each U,(;) C Xq(s) is open. For any such U € B we define
Y(U) = eaq)(Uaqr)) X - X €a@)Uagky) X [TI{IA® : a # a;,5 = 1,..,k}. Finally,
we define a function e: Tx — Tk by the equality e(W) = U{y(U) : U €
B and U C W}. It is easily seen that e is m-regular. Since K is the limit space
of a continuous o-complete inverse system consisting of open bounding maps
and compact metrizable spaces, by Proposition 3.7, X is skeletally generated.
Hence, X is I-favorable with respect to co-zero sets. ]
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Proof of Corollary 1.3. Suppose X C Y a C*-embedded I-favorable
space with respect to co-zero sets, where Y is extremally disconnected. Then,
by Theorem 1.1(ii), there exists a 7-regular operator e: 7x — Ty. We need
to show that the closure (in X) of every open subset of X is also open. Since

Y is extremally disconnected, e(U )Y is open in Y. So, the proof will be done

if we prove that e(U)Y NX =T for all U € Tx. By (1), we have T~ ¢
e(U )Y N X. Assume there exists z € e(U )Y nx \ﬁx and choose V € Tx with

V C e(U)Y\—U-X. Then e(V) ﬂe(U)Y # @, s0 e(V)Ne(U) # @. The last one
contradicts UNV = @. u
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