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WAVE OPERATORS FOR DEFOCUSING

MATRIX ZAKHAROV-SHABAT SYSTEMS

WITH POTENTIALS NONVANISHING AT INFINITY
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Abstract. In this article we prove that the wave operators describing
the direct scattering of the defocusing matrix Zakharov-Shabat system with
potentials having distinct nonzero values with the same modulus at ±∞
exist, are asymptotically complete, and lead to a unitary scattering operator.
We also prove that the free Hamiltonian operator is absolutely continuous.

1. Introduction. In this article we develop in part the direct scattering
theory for the defocusing matrix Zakharov-Shabat system

(1.1) iJ
∂X

∂x
(k, x) − V (x)X(k, x) = kX(k, x), x ∈ R,
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where

(1.2) J =

(
1 01×n

0n×1 −In

)

, V (x) =

(
0 iq(x)

−iq(x)† 0n×n

)

,

the 1×n matrix q(x) is the potential, Ip stands for the p×p identity matrix, and
k is a spectral parameter. The dagger denotes the matrix conjugate transpose
and the asterisk (scalar) complex conjugation. We assume that

(1.3) q(x) ∼ q± = eiθ±q0, x→ ±∞,

where q0 is a fixed nontrivial row vector. We also assume that

q(x) − q±

has its entries in L1(R±). Putting q0
def
= ‖q0‖ > 0, the Zakharov-Shabat operator

iJ(d/dx) − V is a selfadjoint operator on the direct sum L2(R)(n+1)×1 of n + 1
copies of L2(R).

Equation (1.1), with n = 1 and nonvanishing boundary conditions, was
first studied by Zakharov and Shabat [21]. Various improvements to their results
soon followed [10, 11, 7, 14, 2, 4, 3]. The standard source on the n = 1 case
is the Faddeev-Takhtajan book [6], where a Hamiltonian framework is adopted
consistently. For n ≥ 2 the 1+n problem with nonvanishing boundary conditions
has not been studied as much as the 1 + 1 problem. Here the main results were
obtained by Gerdzhikov and Kulish [8] and Prinari, Ablowitz, and Biondini [16]
for n = 2, though there still are substantial problems in identifying the domains
of analyticity of Jost solutions in order to pass to a Riemann-Hilbert problem
and Marchenko integral equation when solving the inverse scattering problem.
For n = 1 such results are basically known [15, 8, 18].

The matrix Zakharov-Shabat system with vanishing boundary conditions
has its continuous spectrum for λ ∈ R. In the defocusing case the selfadjointness
of the problem precludes the occurrence of other spectrum. We then end up
deriving Riemann-Hilbert problems relating functions analytic in the upper half
complex λ-plane to functions analytic in the lower half complex λ-plane, coupled
by a (modified) scattering matrix. Under nonvanishing boundary conditions,
however, the situation complicates considerably. In the 1+1 case the continuous
spectrum consists of (−∞,−q0] ∪ [q0,+∞), like for the Dirac equation, with
uniform spectral multiplicity 2. Selfadjointness still allows the occurrence of
isolated real and simple eigenvalues in the spectral gap (−q0, q0). In the 1 + n
case (with n ≥ 2) the continuous spectrum consists of a two-fold layer along
(−∞,−q0] ∪ [q0,+∞) and an (n− 1)-fold layer along the full real line.
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The main topic of this article is to prove the existence and the asymptotic
completeness of the Moeller wave operators defined by

(1.4) W± = lim
t→±∞

Pac(H)eitHe−itH0 , Z± = lim
t→±∞

eitH0e−itHPac(H),

where H0 = iJ(d/dx) − Vf is the free Hamiltonian for some steplike potential
Vf , H = iJ(d/dx) − V is the (full) Hamiltonian, and Pac(H) is the orthogonal
projection of L2(R)(n+1)×1 onto the absolutely continuous subspace ofH. Here we
observe that H0 and H are selfadjoint on L2(R)(n+1)×1. Then the wave operators
induce a unitary equivalence between the absolutely continuous part of H and
the free Hamiltonian H0. Further, the scattering operator

S = Z+W−

is proven to be a unitary operator commuting with H0.

Historically wave operators have been introduced in the time dependent
scattering theory of the Schrödinger and Dirac equations [9, 17, 20, 19]. Only
recently they have been applied to the matrix Zakharov-Shabat systems with L1-
potentials ([5] in the defocusing case; [13] in general), where the scattering matrix
prevailing in the direct and inverse scattering theory and introduced there in an
ad hoc manner was shown to be unitarily equivalent to the scattering operator
from time dependent scattering theory. The unitary equivalence (in fact, the
Fourier transform map) turned out to diagonalize H0 and S simultaneously.

In this article we introduce a unitary transformation U which maps the
original defocusing matrix Zakharov-Shabat system (1.1) to a new equation

∂Y

∂x
(k, x) =

[(
−ik q±
q∗± ik

)

+̇ ikIn−1

]

Y (k, x)

+

(
0 Q(x)

Q(x)† 0n×n

)

Y (k, x),(1.5)

where Q(x) is a row vector function whose first entry tends to q± as x→ ±∞ and
whose other n− 1 entries vanish as x→ ±∞. For n = 1 the unitary equivalence
U is the identity matrix and nothing changes. For n ≥ 2 the unitary equiva-
lence allows one to separate the discussion of the wave operators and scattering
solutions into one for the 1 + 1 problem for a defocusing potential approaching
q±

def
= eiθ±q0 as x→ ±∞ and one for an auxiliary matrix system of order n− 1.

Let us briefly describe the contents of the various sections. In Section
2 we introduce the conformal mapping λ(k) of the spectral parameter and the
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unitary equivalence U , compute the resolvent of the free Hamiltonian H0, and
use the result to diagonalize H0. In Section 3 we prove the existence and asymp-
totic completeness of the wave operators (1.4) and the unitarity of the scattering
operator.

In this article we denote the domain, image, and null space of a linear
operator T by D(T ), ImT , and KerT , respectively.

2. Preliminaries. In this section we apply a unitary equivalence to
the matrix Zakharov-Shabat system to arrive at the modified matrix Zakharov-
Shabat system (1.5). We then go on to study the spectral properties of the
corresponding free Hamiltonian. We start by introducing a conformal mapping
of the spectral parameter.

2.1. Conformal mapping. By K we consider the Riemann surface con-
sisting of two copies of the complex k-plane cut along (−∞,−q0] ∪ [q0,+∞),
one called the physical sheet and the other the unphysical sheet, where the up-
per/lower edge of [q0,+∞) of the physical sheet is glued to the lower/upper edge
of (−∞,−q0] of the unphysical sheet and the lower/upper edge of [q0,+∞) of the
physical sheet is glued to the upper/lower edge of (−∞,−q0] of the unphysical
sheet. We shall denote the physical sheet (without the branch cut limits) by K

+

and the unphysical sheet (without the branch cut limits) by K
−. The physical

and unphysical sheets including the branch cut limits are denoted by K+ and
K−, respectively.

For k ∈ K+ we define the conformal map λ = λ(k) =
√

k2 − q20 as follows
[1, Sec. 2.3]:

{

k − q0 = r1e
iθ1 , 0 ≤ θ1 < 2π,

k + q0 = r2e
iθ2 , −π ≤ θ2 < π,

where r1 = |k − q0| and r2 = |k + q0|. We then define

λ(k) =
√
r1r2 e

i(θ1+θ2)/2.

Thus, the argument θ = 1
2(θ1 + θ2) of λ(k) varies continuously between 0 and π

in the upper and lower complex k-planes cut along (−∞,−q0] ∪ [q0,+∞). We
then get the upper half complex λ-plane Λ+, where Im (λ± k) ≥ 0. On the other
hand, for k ∈ K− we define

λ(k) = −√
r1r2 e

i(θ1+θ2)/2

and obtain the lower half complex λ-plane Λ−, where Im (λ ± k) ≤ 0. Thus the
so-called physical k-sheet corresponds to the upper half complex λ-plane Λ+ and
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the so-called unphysical k-sheet corresponds to the lower half complex λ-plane
Λ−. These two λ half-planes are glued together by a common real λ-line, where
we write Λ± = Λ± ∪ R. A special role is played by k = ±q0 which correspond to
λ = 0.

Fig. 2.1. The conformal mapping λ(k) from the physical k-sheet cut along (−∞,−q0] ∪
[q0,+∞) onto the upper half complex k-plane bordered by the real k-plane. The points

k = ±q0 are mapped into λ = 0

In the sequel the variable k will always be a point of the Riemann surface
K consisting of the physical and unphysical k-sheets glued together in the appro-
priate way. The variable λ will always belong to the complex λ-plane Λ thought
of the union of the upper and lower half complex λ-plane glued together along
the real λ-line.

Because λ2 − k2 = −q20 ∈ R, it is clear that the conformal mapping
transforms the real plus imaginary axes into the real plus imaginary axes. In
particular, k ∈ (−q0, q0) ⊂ K

+ is transformed into λ ∈ (0, iq0] ⊂ Λ+ and k ∈
(−q0, q0) ⊂ K

− is transformed into λ ∈ [−iq0, 0) ⊂ Λ−. Further, k ∈ iR ⊂ K
+

is transformed into λ ∈ [iq0,+i∞) ⊂ Λ+ and k ∈ iR ⊂ K
− is transformed into

λ ∈ (−i∞,−q0] ⊂ Λ−.

Let us now look into the transformations of the eight quadrants of the
Riemann surface K (four in K

+ and four in K
−) into the four quadrants of the

complex λ-plane Λ, where we number the quadrants in the usual way by the
upper roman numerals I, II, III and IV. In the penultimate and ultimate columns
of the table below we indicate the respective limits of λ+k and λ−k as |k| → +∞
(or, equivalently, as |λ| → +∞). Since (λ+k)(λ−k) = −q20 6= 0, one of the limits
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is infinity and the other is zero.

K
+ I Λ+ I ∞ 0

K
+ II Λ+ II ∞ 0

K
+ III Λ+ I 0 ∞

K
+ IV Λ+ II 0 ∞

K
− I Λ− III 0 ∞

K
− II Λ− IV 0 ∞

K
− III Λ− III ∞ 0

K
− IV Λ− IV ∞ 0

The signs of λ and k agree for k ∈ K
+ on the upper edges and for k ∈ K

−

on the lower edges of the cuts; these signs differ for k ∈ K
+ on the lower edges

and k ∈ K
− on the upper edges of the cuts. Moreover,

λ± k = λ

[

1 ±
√

1 +
q20
λ2

]

=

{

2λ+ (q20/2λ) +O(λ−3), ∞ in third column,

±(q20/2λ) +O(λ−3), 0 in third column,

where the three ± vary independently but in accordance with the third columns
of the above two tables.

2.2. Global unitary equivalence. Now consider, for n ≥ 2, a fixed
orthonormal set of row vectors v1, . . . ,vn−1 such that q0v

†
j = 0 (j = 1, . . . , n−1).

Then

e0
def
=

(
1

0n×1

)

, eq
def
=

1

q0

(
0

q
†
0

)

, e1
def
=

(
0

v
†
1

)

, . . . , en−1
def
=

(
0

v
†
n−1

)

,

is an orthonormal basis of C
n+1. Now write the matrix Zakharov-Shabat system

(1.1) in the form

(2.1)
∂X

∂x
(k, x) =

(−ik q±

q
†
± ikIn

)

︸ ︷︷ ︸

=E±(k)

X(k, x) +

(
0 q(x) − q±

q(x)† − q
†
± 0n×n

)

X(k, x),

where, for j = 1, 2, . . . , n− 1,







E±(k)e0 = −ike0 + q±eq,

E±(k)eq = q∗±e0 + ikeq,

E±(k)ej = ikej.

Put

(2.2) X(k, x) = UY (k, x),
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where

U =
(
e0 eq e1 . . . en−1

)
.

Then JU = UJ and

E±(k)U = U





−ik q± 01×(n−1)

q∗± ik 01×(n−1)

0(n−1)×1 0(n−1)×1 ikIn−1



 .

As a result,

∂Y

∂x
(k, x) =





−ik q± 01×(n−1)

q∗± ik 01×(n−1)

0(n−1)×1 0(n−1)×1 ikIn−1



Y (k, x)

+ U †

(
0 q(x) − q±

q(x)† − q
†
± 0n×n

)

UY (k, x)

=

[(
−ik q±
q∗± ik

)

+̇ ikIn−1

]

Y (k, x)

+





0 δp,m(x) qv(x)
δp,m(x)∗ 0 01×(n−1)

qv(x)
† 0(n−1)×1 0(n−1)×(n−1)



Y (k, x),(2.3)

where

δp(x) =
q(x)q†

0 − eiθ+q20
q0

=
q(x)q†

0

q0
− q+,

δm(x) =
q(x)q†

0 − eiθ−q20
q0

=
q(x)q†

0

q0
− q−,

has its entries in L1(R+) and L1(R−), respectively, and

qv(x) =
(

q(x)v†
1 . . . q(x)v†

n−1

)

has its entries in L1(R). We have therefore converted the defocusing matrix
Zakharov-Shabat system (1.1) into the equivalent ± pair of matrix Zakharov-
Shabat-like systems (2.3).
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In (2.3) the free Hamiltonian operators from the right and the left

Ap(k) = A0
p(k) +̇ ikIn−1

def
=

(
−ik q+
q∗+ ik

)

+̇ ikIn−1,(2.4a)

Am(k) = A0
m(k) +̇ ikIn−1

def
=

(
−ik q−
q∗− ik

)

+̇ ikIn−1,(2.4b)

depend on the separate limits q±. Equation (2.3) can then be written as

∂Y

∂x
(k, x) = Ap(k)Y (k, x) +

(
0 wp(x)

wp(x)
† 0n×n

)

︸ ︷︷ ︸

=V p(x)

Y (k, x),(2.5a)

∂Y

∂x
(k, x) = Am(k)Y (k, x) +

(
0 wm(x)

wm(x)† 0n×n

)

︸ ︷︷ ︸

=V m(x)

Y (k, x),(2.5b)

where

wp(x) =
(
δp(x) qv(x)

)
, wm(x) =

(
δm(x) qv(x)

)
.

Now observe that either of Ap(k) and Am(k) has the simple eigenvalues
±iλ(k) and the eigenvalue ik of multiplicity n − 1. The groups generated by
Ap(k) and Am(k) are bounded if and only if k > q0 or k < −q0. In that case we
have

ezAp(k) =






cos(λz) − ik
sin(λz)

λ
q+

sin(λz)

λ

q∗+
sin(λz)

λ
cos(λz) + ik

sin(λz)

λ




 +̇ eikzIn−1,(2.6a)

ezAm(k) =






cos(λz) − ik
sin(λz)

λ
q−

sin(λz)

λ

q∗−
sin(λz)

λ
cos(λz) + ik

sin(λz)

λ




 +̇ eikzIn−1.(2.6b)

Observe that (2.6) does not change if we replace λ with −λ.

For k /∈ (−∞,−q0] ∪ [q0,∞) [if n = 1] or k /∈ R [if n ≥ 2] the matrices
Ap(k) and Am(k) do not have imaginary eigenvalues. For such k we compute
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the resolvents of A0
p(k) and A0

m(k):

(ζI2 − A0
p(k))

−1 =
1

ζ − iλ

1

2λ

(
λ− k −iq+
−iq∗+ λ+ k

)

+
1

ζ + iλ

1

2λ

(
λ+ k iq+
iq∗+ λ− k

)

,

(ζI2 − A0
m(k))−1 =

1

ζ − iλ

1

2λ

(
λ− k −iq−
−iq∗− λ+ k

)

+
1

ζ + iλ

1

2λ

(
λ+ k iq−
iq∗− λ− k

)

,

where ζ 6= ±iλ. Letting P 0
p,+(k) and P 0

p,−(k) stand for the spectral projections of

A0
p(k) corresponding to its eigenvalues in the right and left half-planes, respec-

tively, we get, for k ∈ K
+ and hence Imλ > 0,

P 0
p,+(k) =

1

2λ

(
λ+ k iq+
iq∗+ λ− k

)

, P 0
p,−(k) =

1

2λ

(
λ− k −iq+
−iq∗+ λ+ k

)

,

and similarly for A0
m(k). This implies that

ezA
0
p
(k)P 0

p,±(k) = e∓iλzP 0
p,±(k), ezA

0
m

(k)P 0
m,±(k) = e∓iλzP 0

m,±(k).

Instead, if we consider k ∈ K
− and hence Imλ < 0, we get

P 0
p,+(k) =

1

2λ

(
λ− k −iq+
−iq∗+ λ+ k

)

, P 0
p,−(k) =

1

2λ

(
λ+ k iq−
iq∗− λ− k

)

,

which implies that

ezA
0
p
(k)P 0

p,±(k) = e±iλzP 0
p,±(k), ezA

0
m

(k)P 0
m,±(k) = e±iλzP 0

m,±(k).

2.3. Resolvent of the free Hamiltonian. In this subsection we com-
pute the resolvent of the free Hamiltonian H0 = iJ(d/dx)−Vf , where qf (x) = q+

for x > x0 and qf (x) = q− for x < x0. The free Hamiltonians are unitarily equiv-
alent by means of a similarity translating the point x0. We also prove the absolute
continuity of H0.

Theorem 2.1. Given an inhomogeneous term F (x) with entries in L2(R)
and k /∈ (−∞,−q0] ∪ [q0,∞) for n = 1 and k /∈ R for n ≥ 2, the solution of the
differential system

∂Y

∂x
= Ap(k)Y (x) + F (x), x > x0,(2.7a)

∂Y

∂x
= Am(k)Y (x) + F (x), x < x0,(2.7b)
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which has its components in L2(R) and is continuous in x = x0, is given by

(2.8) Y (x) =

∫ ∞

−∞
dy E(x, y; k)F (y),

where the Green’s function E(x, y; k) is given by

E(x, y; k)

=







e(x−y)Ap(k)Pp,−(k)

+e(x−x0)Ap(k)V#(k)−1Pm,−(k)e−(y−x0)Ap(k)Pp,+(k), x > y > x0,

−e−(y−x)Ap(k)Pp,+(k)

+e(x−x0)Ap(k)V#(k)−1Pm,−(k)e−(y−x0)Ap(k)Pp,+(k), y > x > x0,

−e−(y−x)Am(k)Pm,+(k)

−e−(x0−x)Am(k)V (k)−1Pp,+(k)e(x0−y)Am(k)Pm,−(k), x < y < x0,

e(x−y)Am(k)Pm,−(k)

−e−(x0−x)Am(k)V (k)−1Pp,+(k)e(x0−y)Am(k)Pm,−(k), y < x < x0,

e(x−x0)Ap(k)V#(k)−1e(x0−y)Am(k)Pm,−(k), x > x0 > y,

−e−(x0−x)Am(k)V (k)−1e−(y−x0)Ap(k)Pp,+(k), y > x0 > x.

Here V (k) and V#(k) are given by (2.9) below.

As a result of the selfadjointness of H0 we have

E(x, y; k) = E(y, x; k∗)†,

where k /∈ (−∞,−q0] ∪ [q0,∞) for n = 1 and k /∈ R for n ≥ 2.
P r o o f. For such a solution Y (x) to exist it is necessary and sufficient

that there exists a vector Y0 such that

Y (x) = e(x−x0)Ap(k)Pp,−(k)Y0 +

∫ x

x0

dy e(x−y)Ap(k)Pp,−(k)F (y)

−
∫ ∞

x
dy e(x−y)Ap(k)Pp,+(k)F (y)

for x > x0, and

Y (x) = e−(x0−x)Am(k)Pm,+(k)Y0 +

∫ x

−∞
dy e(x−y)Am(k)Pm,−(k)F (y)

−
∫ x0

x
dy e(x−y)Am(k)Pm,+(k)F (y)
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for x < x0. The continuity requirement in x = x0 implies that Y0 satisfies

Pp,−(k)Y0 −
∫ ∞

x0

dy e−(y−x0)Ap(k)Pp,+(k)F (y)

= Pm,+(k)Y0 +

∫ x0

−∞
dy e(x0−y)Am(k)Pm,−(k)F (y).

In other words,

Pm,+(k)Y0 − Pp,−(k)Y0 = −
∫ ∞

x0

dy e−(y−x0)Ap(k)Pp,+(k)F (y)

−
∫ x0

−∞
dy e(x0−y)Am(k)Pm,−(k)F (y),

where the right-hand side is the sum of a vector in ImPm,+(k) and a vector in
ImPp,−(k).

There is a unique way to recover Y0 from Pm,+(k)Y0 − Pp,−(k)Y0 if and
only if the 2 × 2 matrix composed of one column of P 0

m,+(k) and one column of
P 0

p,−(k) is nonsingular:

det

(
iq+ −iq−
λ− k λ+ k

)

= iq+(λ+ k) + iq−(λ− k) 6= 0,

which is the case unless k = ±q0 (or λ = 0). As a result, under this condition we
can compute Y0 uniquely from F (x). Put

V (k) = Pp,+(k)Pm,+(k) + Pp,−(k)Pm,−(k),(2.9a)

V#(k) = Pm,+(k)Pp,+(k) + Pm,−(k)Pp,−(k).(2.9b)

Then V (k) and V#(k) act as follows:

ImPm,+(k)+̇ImPm,−(k)=C
n+1

V (k)



y V (k)



y



yV (k)

ImPp,+(k)+̇ ImPp,−(k)=C
n+1

ImPp,+(k)+̇ ImPp,−(k)=C
n+1

V#(k)



y V#(k)



y



yV #(k)

ImPm,+(k)+̇ImPm,−(k)=C
n+1

Moreover,

detV (k) = det V#(k) = 1 +
q20 − (q+q

∗
− + q−q

∗
+)

2λ2
6= 0,
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unless λ = 0. Thus from Pm,+(k)Y0 − Pp,−(k)Y0 = Z0 we derive Pm,+(k)Y0 =
V (k)−1Pp,+(k)Z0 and Pp,−(k)Y0 = −V#(k)−1Pm,−(k)Z0.

Equations (2.7) and (2.8) now easily lead to the expressions for the above
Green’s function E(x, y; k). �

The Green’s function E(x, y; k) and the matrices V (k) and V ±(k) are
easily seen to have the direct sum decompositions

E(x, y; k) = E0(x, y; k) +̇ E×(x, y; k),

V (k) = V 0(k) +̇ In−1,

V#(k) = V 0
#(k) +̇ In−1,

where

E×(x, y; k) =







+eik(x−y)In−1, x > y, Im k > 0,

−e−ik(y−x)In−1, y > x, Im k < 0,

0(n−1)×(n−1), otherwise,

E0(x, y; k)

=







eiλ(x−y)P 0
p,−(k) + eiλ(x+y−2x0)V 0

#(k)−1P 0
m,−(k)P 0

p,+(k), x > y > x0,

−eiλ(y−x)P 0
p,+(k) + eiλ(x+y−2x0)V 0

#(k)−1P 0
m,−(k)P 0

p,+(k), y > x > x0,

−eiλ(y−x)P 0
m,+(k) − eiλ(2x0−x−y)V 0(k)−1P 0

p,+(k)P 0
m,−(k), x < y < x0,

eiλ(x−y)P 0
m,−(k) − eiλ(2x0−x−y)V 0(k)−1P 0

p,+(k)P 0
m,−(k), y < x < x0,

eiλ(x−y)V 0
#(k)−1P 0

m,−(k), x > x0 > y,

−eiλ(y−x)V 0(k)−1P 0
p,+(k), y > x0 > x.

for k ∈ K
+, and E0(x, y; k) has the same form but with each iλ replaced by −iλ

if k ∈ K
−. Then the Green’s function has the following properties:

E(x, z; k)E(z, y; k) = +E(x, y; k), x > z > y,(2.10a)

E(x, z; k)E(z, y; k) = −E(x, y; k), x < z < y,(2.10b)

E(x, x−; k) − E(x, x+; k) = In+1.(2.10c)

Equation (2.10c) is easily verified by using that

V 0
#(k)−1P 0

m,−(k) + V 0(k)−1P 0
p,+(k) = I2.
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2.4. Diagonalizing the free Hamiltonian. In this subsection we prove
the absolute continuity of the free Hamiltonian H0. We first define the (modified)
Fourier transform F by

ψ̂(ξ) = (Fψ)(ξ) =

∫ ∞

−∞
dx eiξ(x−x0)Jψ(x),(2.11a)

ψ(x) = (F−1ψ̂)(x) =
1

2π

∫ ∞

−∞
dξ e−iξ(x−x0)J ψ̂(ξ).(2.11b)

Theorem 2.2. The free Hamiltonian H0 = iJ(d/dx)−Vf is an absolutely
continuous selfadjoint operator on the direct sum of n+ 1 copies of L2(R) whose
spectrum consists of two layers of k ∈ (−∞,−q0] ∪ [q0,∞) and, for n ≥ 2, n− 1
layers of k ∈ R.

P r o o f. Recall that U †H0U is the orthogonal direct sum of a selfadjoint
operator [U †H0U ]1+1 on L2(R)2×1 and n − 1 copies of −i(d/dx). Applying the
Fourier transform (2.11) to −i(d/dx)In−1, we obtain as the resolvent an integral
operator on L2(R)(n−1)×1 with integral kernel

Ê×(ξ, η; k) =
−1

2πi

∫ ∞

−∞
dx

∫ ∞

−∞
dy eiξ(x−x0)Je−iη(y−x0)JE×(x, y; k)

=
1

2πi

∫ ∞

−∞
dz

ei(ξ−η)z

η − k
In−1 =

1

ξ − k
δ(ξ − η)In−1,

which implies the absolute continuity of −i(d/dx)In−1 with uniform spectral mul-
tiplicity n− 1 on its spectrum k ∈ R.

To prove the absolute continuity ofH0, it is sufficient to prove the absolute
continuity of the operator [U †H0U ]1+1 whose resolvent is an integral operator
on L2(R)2×1 with integral kernel

(2.12) Ê0(ξ, η; k) =
1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dy eiξ(x−x0)Je−iη(y−x0)JE0(x, y; k).

This integral kernel has been evaluated in the Appendix as the sum of eight
terms. For ξ, η, z ∈ R, these terms contain P 0

p,±(k), P 0
m,±(k), V 0

#(k)−1, V 0(k)−1,

(λ(k)I2 ± ξJ)−1, (λ(k) ± ηJ)−1, and eiλzI2, all of which are 2 × 2 matrices F (k)
depending on k /∈ (−∞,−q0] ∪ [q0,∞) having the property that F (k) = F (k∗)†.
All of the entities F (k + iε) and F (k − iε) have finite limits as ε→ 0+, provided
k < −q0 or k > q0. As a result, the integral operator on L2(R)2×1 with kernel

lim
ε→0+

1

2πi

{
E0(ξ, η; k − iε) − E0(ξ, η; k + iε)

}
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is bounded, provided k < −q0 or k > q0, which proves the absolute continuity of
[U †H0U ]1+1. �

3. Wave operators and scattering operator. In this section we
prove that the wave operators exist and are asymptotically complete (in the sense
of [9, 17]) and that the scattering operator is unitary.

SupposeH0 = iJ(d/dx)−Vf (with qf (x) = q+ for x > x0 and qf (x) = q−

for x < x0) is the free Hamiltonian and H = iJ(d/dx)In+1 − V (where q(x)
satisfies (1.3)) is the full Hamiltonian. Since either operator is selfadjoint on
the direct sum of n + 1 copies of L2(R), then, according to Pearson’s theorem
[9, 17, 19, 20], it is sufficient to prove that the resolvent difference (ζI −H)−1 −
(ζI −H0)

−1 is trace-class in order to conclude that the wave operators W± and
Z± defined by

(3.1) W± = lim
t→±∞

Pac(H)eitHe−itH0 , Z± = lim
t→±∞

eitH0e−itHPac(H),

exist and are asymptotically complete in the sense that W± have the same closed
range and Z± have the same closed range. Here Pac(H) is the orthogonal projec-
tion onto the absolutely continuous subspace of H. In that case the scattering
operator

S = Z+W−

is unitary and commutes with the free Hamiltonian H0. It is sufficient to prove
that

(3.2) U †
[
(ζI −H)−1 − (ζI −H0)

−1
]
U

is trace-class. Put

δ(x) =

{

δp(x), x > x0,

δm(x), x < x0.

Then (2.2) converts the matrix Zakharov-Shabat system into

∂Y

∂x
(k, x) =





−ik q(x) 01×(n−1)

q(x)∗ ik 01×(n−1)

0(n−1)×1 0(n−1)×1 ikIn−1



Y (k, x)

+





0 δ(x) qv(x)
δ(x)∗ 0 01×(n−1)

qv(x)
† 0(n−1)×1 0(n−1)×(n−1)



 ,
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where q(x) = q+ for x > x0 and q(x) = q− for x < x0. Hence,

U †(H −H0)U =





0 iδ(x) iqv(x)
−iδ(x)∗ 0 01×(n−1)

−iqv(x)
† 0(n−1)×1 0(n−1)×(n−1)



=

(
0 i∆(x)†

−i∆(x) 0n×n

)

,

where the row vector

∆(x)† =
(
δ(x) qv(x)

)
=

(

δ(x) q(x)v†
1 . . . q(x)v†

n−1

)

has its entries in L1(R). Consequently, we get the polar decomposition U †(H −
H0)U = U(x)|U †(H −H0)U |, where

U(x) =

(
0 iUdn

−iUup 0n×n

)

, |U †(H −H0)U | =

(
[∆†∆]1/2 01×n

0n×1 [∆∆†]1/2

)

,

∆(x)† = Udn(x)[∆(x)∆(x)†]1/2, and ∆(x) = Uup(x)[∆(x)†∆(x)]1/2. Here we
have not always written the dependence on x.

We first derive a preliminary result (cf. [5, 12]) on sufficient conditions for
certain integral operators with kernel K(x, y) to be Hilbert-Schmidt on L2(R).
The proof proceeds by an easy estimation of

∫ ∞
−∞ dx

∫ ∞
−∞ dy |K(x, y)|2 and is

omitted.

Lemma 3.1. Let W,W1,W2 ∈ L2(R). Then the following is true:

1. The integral operators with kernel eiζ|x−y|W (x) and eiζ|x−y|W (y) are Hilbert-
Schmidt on L2(R) if Im ζ > 0.

2. The integral operator with kernel eiζ|x−y|W1(x)W2(y) is Hilbert-Schmidt on
L2(R) if Im ζ ≥ 0.

3. For x0 ∈ R, the integral operators with kernel eiζ|x+y−2x0|W (x) and kernel
eiζ|x+y−2x0|W (y) are Hilbert-Schmidt on L2(R) if Im ζ > 0.

4. For x0 ∈ R, the integral operator with kernel eiζ|x+y−2x0|W1(x)W2(y) is
Hilbert-Schmidt on L2(R) if Im ζ ≥ 0.

We now prove the sufficient condition for applying Pearson’s theorem.

Theorem 3.2. Suppose q(x) − qf (x) is a row vector with entries in
L2(R). Then, for ζ /∈ R, the resolvent difference (3.2) is a trace-class operator.
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P r o o f. Mimicking the proof of [5, Prop. 2 and Thm. 4], we put

W (ζ) = I + |U †(H −H0)U |1/2(ζI −H0)
−1U |U †(H −H0)U |1/2.

Then, for ζ /∈ R,

U †
[
(ζI −H)−1 − (ζI −H0)

−1
]
U = −[U †(ζI −H0)

−1U ]U×

× |U †(H −H0)U |1/2W (ζ)−1|U †(H −H0)U |1/2[U †(ζI −H0)
−1U ],

where the invertibility of W (ζ) is clear from the selfadjointness of H. Thus it
suffices to prove that, for ζ ∈ C \ R, |U †(ζI − H0)U |1/2U |U †(H − H0)U |1/2

and |U †(H − H0)U |1/2|U †(ζI − H0)U |1/2 are Hilbert-Schmidt operators. This
is immediate from parts 1 and 3 of Lemma 3.1 and the explicit expression for
E(x, y; k), since ∆(x) is a column vector having its entries in L1(R). �

Applying Pearson’s theorem [9, 17, 19, 20], we obtain the following result.

Theorem 3.3. Suppose q(x) − qf (x) is a row vector with entries in
L2(R). Then the wave operators W± and Z± defined by (3.1) exist and are asymp-
totically complete in the sense that W± have the absolutely continuous subspace
of H as their range and Z± are onto. Moreover, the scattering operator

S = Z+W−

is unitary.

The wave operators W± and Z± defined by (3.1) are partial isometries
satisfying the following relations:

Z± = (W±)†,(3.3a)

W±[D(H0)] ⊂ D(H) and HW± = W±H0,(3.3b)

Z±[D(H)] ⊂ D(H0) and Z±H = H0Z±,(3.3c)

ImW± = [KerZ±]⊥ = ImPac(H),(3.3d)

KerW± = [ImZ±]⊥ = {0}.(3.3e)

Moreover, the absolutely continuous part of the full Hamiltonian H is unitarily
equivalent to the free Hamiltonian H0. Furthermore, the scattering operator and
the free Hamiltonian commute:

SH0 = (Z+W−)H0 = Z+(W−H0) = Z+(HW−)

= (Z+H)W− = (H0Z+)W− = H0(Z+W−) = H0S.
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A. Free hamiltonian resolvent kernel. Applying the Fourier trans-
form F defined by (2.11) to the (transformed) free Hamiltonian [U †H0U ]1+1, we
get a linear operator with resolvent kernel (2.12), where J = diag(1,−1) and
k /∈ (−∞,−q0] ∪ [q0,∞).

Fig. A.1. The six regions in which the euclidean plane is divided by the straight lines
x = y, x = x0, and y = x0

To compute Ê0(ξ, η; k) for k /∈ (−∞,−q0] ∪ [q0,∞), we use the straight
lines x = x0, y = x0, and y = x to divide R

2 into the six subregions correspond-
ing to the subdomains used in defining E0(x, y; k). Distinguishing between the
contributions I1, II1, III1, and IV1 of the first terms of E0(x, y; k) in the first
four subdomains, the contributions V and V I of the last two subdomains, the
sum I2 + II2 of the contributions of the second terms in the first two subdo-
mains, and the sum III2 + IV2 of the contributions of the second terms in the
last two subdomains, we get eight terms contributing to Ê0(ξ, η; k), all of which
are independent of x0 ∈ R. We get

I1 =
−1

2πi

∫ ∞

0
dz (λI2 + ηJ)−1

[

ei(ξ−η)zJ − eiξzJeiλz
]

P 0
p,−(k),

II1 =
1

2πi

∫ ∞

0
dz (λI2 − ξJ)−1

[

ei(ξ−η)zJ − e−iηzJeiλz
]

P 0
p,+(k),

III1 =
1

2πi

∫ ∞

0
dz (λI2 − ηJ)−1

[

e−i(ξ−η)zJ − e−iξzJeiλz
]

P 0
m,+(k),
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IV1 =
−1

2πi

∫ ∞

0
dz (λI2 + ξJ)−1

[

e−i(ξ−η)zJ − eiηzJeiλz
]

P 0
m,−(k),

V =
−1

2π
(λI2 + ξJ)−1(λI2 + ηJ)−1V 0

#(k)−1P 0
m,−(k),

V I =
−1

2π
(λI2 − ξJ)−1(λI2 − ηJ)−1V 0(k)−1P 0

p,+(k),

I2 + II2 =
−1

2π
(λI2 + ξJ)−1(λI2 − ηJ)−1V 0

#(k)−1P 0
m,−(k)P 0

p,+(k),

III2 + IV2 =
1

2π
(λI2 − ξJ)−1(λI2 + ηJ)−1V 0(k)−1P 0

p,+(k)P 0
m,−(k).
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