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Abstract. We show that the symmetric difference between the generalized
Kato spectrum and the essential spectrum defined in [7] by σec(T ) = {λ ∈
C ; R(λI − T ) is not closed} is at most countable and we also give some
relationship between this spectrum and the SVEP theory.

1. Introduction. Let X be a Banach space and L(X) be the set of
all bounded linear operators from X into X. For T ∈ L(X) we denote by R(T )
its range, N(T ) its null space, σ(T ) its spectrum and T ∗ the adjoint of T . Let
I denote the identity operator in X. An operator T ∈ L(X) is said to be semi-
regular if R(T ) is closed and N(T n) ⊆ R(T ), for all n ≥ 0. T admits a generalized
Kato decomposition, abbreviated as GKD, if we can write T = T1 ⊕ T0 where T0

is a quasi-nilpotent operator and T1 is a semi-regular one. If we assume in the
definition above that T0 is nilpotent, T is said to be of Kato type.
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The Kato decomposition for bounded operator on Banach spaces arises
from the classical treatment of perturbation theory of Kato [9], and its flourish-
ing has greatly benefited from the work of many authors in the last ten years,
in particular from the work of Mbekhta [13, 14, 16], Aiena [1] and Q. Jiang-
H. Zhong [8]. The operators which satisfy this property form a class which
includes the class of quasi-Fredholm operators, semi-regular, Kato type, semi-
Fredholm and B-Fredholm operators. This concept leads in a natural way to
the generalized Kato spectrum σgk(T ), an important subset of the ordinary spec-
trum which is defined as the set of all λ ∈ C for which λI − T does not ad-
mit a generalized Kato decomposition. It was shown in [8, Corollary 2.3] that
σgk(T ) is a compact subset of C. In the present paper, the relationship be-
tween the generalized Kato spectrum and the essential spectrum defined in [7]
by σec(T ) = {λ ∈ C ; R(λI − T ) is not closed } is examined. It is shown in [12],
in the Hilbert space case, that the symmetric difference between σec(T ) and the
essential quasi-Fredholm spectrum which is the set of all complex λ such that
λI − T is not quasi-Fredholm operator, is at most countable, which is of course,
in this case, a quasi-Fredholm operators equivalent to T is of Kato type, but in
the case of Banach spaces the Kato type operator is also quasi-Fredholm, the
inverse is not true. This results examined in Banach space in [3], for the Kato
essential spectrum, which is the set of all complex λ such that λI − T is not of
Kato type operator.

Our paper is organized as follows:

In section 2, we give some preliminary results upon which our investiga-
tion will be based.

In section 3, we extend the results proved in [3] for the generalized Kato
spectrum, we give some relationship between the generalized Kato spectrum and
the SVEP theory.

Finally, in section 4 we apply the results obtained in section 3 to study
the generalized Kato spectrum for tow classes operators, first class is the class
of operators which satisfy a polynomial growth condition, and the second is the
class of of Cesaro operators.

2. Preliminary results. In this section, we collect some technical
results which we will use in the sequel.

The reduced minimum modulus of a non-zero operator T is defined by

γ(T ) = inf
x/∈N(T )

‖Tx‖

dist(x,N(T ))
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where dist(x,N(T )) = infy∈N(T ) ‖x − y‖. If T = 0 then we take γ(T ) = ∞.
Note that (see [10]):

γ(T ) > 0 ⇔ R(T ) is closed.

Let M,N be two closed linear subspaces of the Banach space X and set

δ(M,N) = sup{dist(x,N) : x ∈ M, ‖x‖ = 1},

in the case that M 6= {0}, otherwise we define δ({0}, N) = 0 for any subspace N .
The gap between M and N is defined by

δ̂(M,N) = max{δ(M,N), δ(N,M)}

δ̂ is a metric on the set F(X) of all linear closed subspaces of X, and
the convergence Mn −→ M in F(X) is obviously defined by δ̂(Mn,M) −→ 0 as
n −→ ∞ in R. Moreover, (F(X), δ̂) is complete metric space (see [10]).

Proposition 2.1 [1]. For every operator T ∈ L(X) and for arbitrary
λ, µ ∈ C, we have:

(1) γ(λI − T )δ(N(µI − T ), N(λI − T )) ≤ |µ − λ|.

(2) min{γ(µI − T ), γ(λI − T )}δ̂(N(µI − T ), N(λI − T )) ≤ |µ − λ|.

Proposition 2.2 [1]. Let M,N ∈ F(X). For every x ∈ X and 0 < ǫ < 1
there exists x0 ∈ X such that (x − x0) ∈ M and

(1) dist(x0, N) ≥

(
(1 − ǫ)

1 − δ(M,N)

1 + δ(M,N)

)
‖x0‖ .

Definition 2.3 [17]. Let T ∈ L(X). T is said to be semi-regular if R(T )
is closed and N(T n) ⊆ R(T ), for all n ≥ 0.

Trivial examples of semi-regular operators are surjective operators as well
as injective operators with closed range, Fredholm operators and semi-Fredholm
operators with zero jump (for more details see [1]). Some other examples of semi-
regular operators may be found in Mbekhta and Ouahab [17] and Labrousse [11].
The following theorem shows that the semi-regularity of an operator may be
characterized in terms of the continuity of certain maps.

Theorem 2.4 [18]. For T ∈ L(X) and λ0 ∈ C, the following statements
are equivalent:

(1) λ0I − T is semi-regular.
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(2) γ(λ0I − T ) > 0 and the mapping λ → γ(λI − T ) is continuous at λ0.

(3) γ(λ0I −T ) > 0 and the mapping λ → N(λI −T ) is continuous at λ0 in the
gap topology.

(4) R(λ0I−T ) is closed in a neighborhood of λ0 and the mapping λ → R(λI−T )
is continuous at λ0 in the gap topology.

For an essential version of semi-regular operators we use the following no-
tation. For subspaces M,L ⊂ X write M ⊂e L if there exists a finite-dimensional
subspace F of X for which M ⊂ L + F . Obviously

M ⊂e L ⇔ dim
M

M ∩ L
< ∞

An operator T ∈ L(X) is called essentially semi-regular if R(T ) is closed and
N(T n) ⊂e R(T ), for all n ≥ 0.

The semi-regular spectrum of a bounded operator T is defined by

σse(T ) := {λ ∈ C : λI − T is not semi-regular}

and its essential version by

σes(T ) := {λ ∈ C : λI − T is not essentially semi-regular}

The semi-regular spectrum was studied by Apostol [2], Rakocević [19],
Müller [18] , Mbekhta and Ouahab [17] and Mbekhta [15]. The sets σse(T ) and
σes(T ) are always non-empty compact subsets of the complex plane, σse(f(T )) =
f(σse(T )) and σes(f(T )) = f(σes(T )) for any analytic function f in a neighbor-

hood of σ(T ). If T is a semi-regular operator, then the limit limn→∞(γ(T )n)
1

n

exists and

lim
n→∞

(γ(T )n)
1

n = dist(0, σse(T )) = sup{r;λI − T is semi-regular for |λ| < r}

Now we recall some results about σse(T ) and σes(T )

Theorem 2.5 [19]. Let T ∈ L(X).

(1) σse(T ) = σse(T
∗) and σes(T ) = σes(T

∗);

(2) ∂σ(T ) ⊆ σse(T ); where ∂σ(T ) is the boundary of the spectrum of T .

(3) λ ∈ σse(T ) \ σes(T ) if and only if λ is an isolated point of σse(T ),

supn dim
N(λI − T ) + N((λI − T )n)

N(λI − T )
< ∞ and R(T − λI) is closed.



On the generalized Kato spectrum 287

Now, we introduce an important class of bounded operators which involves
the concept of semi-regularity.

Definition 2.6. An operator T ∈ L(X), is said to admit a generalized
Kato decomposition, if there exists a pair of closed subspaces (M,N) of X such
that:

(1) X = M ⊕ N .

(2) T (M) ⊂ M and T/M is semi-regular.

(3) T (N) ⊂ N and T/N is quasi-nilpotent (i.e σ(T/N ) = {0}).

(M,N) is said to be a generalized Kato decomposition of T , abbreviated as
GKD(M,N).

If we assume in the definition above that T/N is nilpotent, then there

exists d ∈ N for which (T/N )d = 0. In this case T is said to be of Kato type of
order d. Clearly, every semi-regular operator is of Kato type with M = X and
N = {0} and a quasi-nilpotent operator has a GKD with M = {0} and N = X.
Note that if T is essentialy semi-regular then N is finite-dimensional and T/N

is nilpotent, since every quasi-nilpotent operator on a finite-dimensional space
is nilpotent. Discussions of operators which admit a generalized decomposition
may be found in [14], [16].

For every operator T ∈ L(X), let us define the Kato type spectrum and
the generalized Kato spectrum as follows respectively:

σk(T ) := {λ ∈ C : λI − T is not of Kato type}

σgk(T ) := {λ ∈ C : λI−T does not admit a generalized Kato decomposition}

σgk(T ) is not necessarily non-empty. For example, each quasi-nilpotent oper-
ator T has empty generalized Kato spectrum.

The following result shows that the generalized Kato spectrum of a bounded
operator is a closed subset of the spectra σ(T ) of T . The next theorem is due to
Q. Jiang , H. Zhong [8, Theorem 2.2]:

Theorem 2.7. Suppose that T ∈ L(X), admits a GKD(M,N). Then
there exists an open disc D(0, ǫ) for which λI − T is semi-regular for all λ ∈
D(0, ǫ) \ {0}

Since σgk(T ) ⊆ σk(T ) ⊆ σes(T ) ⊆ σse(T ), as a straightforward conse-
quence of Theorem 2.7, we easily obtain that these spectra differ from each other
on at most countably many isolated points.
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Proposition 2.8 ([1], [8]). The sets σse(T ) \ σgk(T ), σse(T ) \ σk(T ),
σes(T ) \ σk(T ), σes(T ) \ σgk(T ) and σk(T ) \ σgk(T ) are at most countable.

3. Main results. The essential spectra were studied by many authors
(see [1, 13, 18]). Now, the main question is the relationship between them. Mo-
tivated by a problem concerning the essential quasi-Fredholm spectrum posed
in [12], J. P. Labrousse characterized in the case of Hilbert spaces, a relation of
the essential quasi-Fredholm spectrum and another not closed essential spectrum
defined in [7] by

σec(T ) = {λ ∈ C ; R(λI − T ) is not closed}

This result is extended to Banach space in [3].
Now, we study this relation in the case of the generalized Kato spectrum.

Let T ∈ L(X). For α a nonzero positive real number, we introduce the following
set

R(α) = {λ ∈ C; γ(λI − T ) ≥ α}

We begin with the following preparatory result proved in [3, Theorem 3] which
is crucial for our purposes.

Theorem 3.1. Let (λn)n ⊂ R(α) non stationary sequence and λn −→ λ0

in C, then

(1) δ̂(N(λnI − T ), N(λ0I − T )) ≤ 1
α |λn − λ0|.

(2) λ0 ∈ R(α).

(3) λ0I − T is semi-regular.

Note that this theorem is extended to the Banach space, the result was
shown by J. P. Labrousse [12] in the case of Hilbert spaces.

Proposition 3.2. If λ ∈ σec(T ) is non-isolated point then λ ∈ σgk(T ).

P r o o f. Let λ ∈ σec(T ) be a non-isolated point. Assume that λI − T
admits a GKD(M,N). Then by Theorem 2.7 there exists an open disc D(λ, ǫ)
such that µI − T is semi-regular in D(λ, ǫ) \ {λ}, so that R(µI − T ) is closed
if µ ∈ D(λ, ǫ) \ {λ}. This contradicts our assumption that λ is a non-isolated
point. �

Theorem 3.3. The symmetric difference σgk(T )∆σec(T ) is at most
countable.
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P r o o f. We have

σgk(T )∆σec(T ) = (σgk(T ) ∩ (C \ σec(T ))) ∪ (σec(T ) ∩ (C \ σgk(T )))

From Proposition 3.2 the set σec(T ) \ σgk(T ) is at most countable. We have
C \ σec(T ) =

⋃
∞

m=1 R( 1
m) and

σgk(T ) ∩ (C \ σec(T )) =

∞⋃

m=1

(
σgk(T ) ∩R

(
1

m

))
.

To finish the proof we prove that the set σgk(T ) ∩ R

(
1

m

)
is at most count-

able. Let λ0 be a non-isolated point of σgk(T ) ∩ R

(
1

m

)
. Then there exists

(λn)n ⊂ R

(
1

m

)
∩σgk(T ) such that λn → λ0, by Theorem 3.1 λ0 /∈ σgk(T ). This

contradicts the closedness of σgk(T ). �

Proposition 3.4. σse(T ) \ (σgk(T ) ∩ σec(T )) is at most countable.

P r o o f. We have

σse(T ) \ (σgk(T ) ∩ σec(T )) = (σgk(T )∆σec(T )) ∪ σse(T ) \ (σgk(T ) ∪ σec(T ))

Since the sets σse(T ) \ σgk(T ), σse(T ) \ σec(T ) are at most countable, Theorem
3.3 implies that σgk(T )∆σec(T ) is at most countable, establishing the result. �

The fact that σk(T ) ⊆ σes(T ) ⊆ σse(T ) then we have

Corollary 3.5. σes(T ) \ (σgk(T )∩ σec(T )) and σk(T ) \ (σgk(T )∩σec(T ))
are at most countable.

Definition 3.6. Let T ∈ L(X). The operator T is said to have the
single-valued extension property at λ0 ∈ C, abbreviated T has the SVEP at λ0,
if for every neighborhood U of λ0 the only analytic function f : U → X which
satisfies the equation

(λI − T )f(λ) = 0

is the constant function f ≡ 0.
The operator T is said to have the SVEP if T has the SVEP at every

λ ∈ C.

We collect some basic properties of the SVEP (see [1]):

(1) Every operator T has the SVEP at an isolated point of the spectrum.
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(2) If p(λI − T ) < ∞, then T has the SVEP at λ.

(3) If q(λI − T ) < ∞, then T ∗ has the SVEP at λ
where p(λI − T ) = min{p ∈ N : N((λI − T )p) = N((λI − T )p+1)} and
q(λI − T ) = min{q ∈ N : R((λI − T )q) = R((λI − T )q+1)} are respectively
the ascent and the descent of (λI − T ).

Proposition 3.7. If λ ∈ ∂σ(T ) is a non-isolated point, then λ ∈ σgk(T ).

The approximate point spectrum is defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below}

and the surjectivity spectrum is defined by

σsu(T ) := {λ ∈ C : λI − T is not surjective}.

By the closed range theorem we know that the approximate point spec-
trum and the surjectivity spectrum are dual to each other, in the sense that
σap(T ) = σsu(T ∗) and σap(T

∗) = σsu(T ). All results established above have a
numerous of interesting applications. In the next theorem we consider a situation
which occurs in some concrete cases.

Theorem 3.8. Let T ∈ L(X) be an operator for which σap(T ) = ∂σ(T )
and every λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then σec(T ) ⊆ σgk(T ) = σes(T ) =
σse(T ).

P r o o f. Since λ ∈ ∂σ(T ) is non-isolated, according to Proposition 3.7,

σap(T ) = ∂σ(T ) ⊆ σgk(T ) ⊆ σk(T ) ⊆ σes(T ) ⊆ σse(T ) ⊆ σap(T ),

that is,

σgk(T ) = σk(T ) = σes(T ) = σse(T ) = σap(T ) = σp(T ) ∪ σec(T )

and

σec(T ) ⊆ σgk(T ) = σes(T ) = σse(T ). 2

Dually we have

Theorem 3.9. Let T ∈ L(X) an operator for which σsu(T ) = ∂σ(T )
and every λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then σec(T ) ⊆ σgk(T ) = σes(T ) =
σse(T ).
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P r o o f. Since λ ∈ ∂σ(T ) is non-isolated, then σsu(T ) cluster in λ. Ob-
serve that T ∗ has the SVEP at λ ∈ ∂σ(T ), then λI − T does not admit a gener-
alized Kato decomposition and thus λ ∈ σgk(T ). So

σsu(T ) = ∂σ(T ) ⊆ σgk(T ) ⊆ σk(T ) ⊆ σes(T ) ⊆ σse(T ) ⊆ σap(T )

and

σgk(T ) = σk(T ) = σes(T ) = σse(T ) = σsu(T ).

Thus we have

σec(T ) ⊆ σgk(T ) = σes(T ) = σse(T ). 2

4. Examples.

Example 1. Let X = l2 the space of complex square-summable se-
quences and the linear operator T defined by

Tx =

(
0, x1, 0,

1

3
x2, 0,

1

5
x3, 0, . . .

)
, x = (xn) ∈ ℓ2

The operator T is compact and R(T ) is not closed, then 0 ∈ σec(T ). It easy to
see that T 2 = 0, so 0 /∈ σgk(T ), σec(T ) = {0} and σgk(T ) = ∅.

Example 2. Let Pg(X) be the class of operators on the Banach space
X which satisfy a polynomial growth condition. An operator T satisfies this
condition if there exists K > 0, and δ > 0 for which

‖exp(iλT )‖ ≤ K(1 + |λ|δ) for all λ ∈ R,

Examples of operators which satisfy a polynomial growth condition are Hermitian
operators on Hilbert spaces, nilpotent and projection operators, algebraic oper-
ators with real spectra. It is shown that Pg(X) coincides with the class of all
generalized scalar operators having real spectra. We first note that the polyno-
mial growth condition may be reformulated as follows (see [1]) : T ∈ Pg(X) if
and only if σ(T ) ⊆ R and there is a constant K > 0, and δ > 0 such that

(2)
∥∥(λI − T )−1

∥∥ ≤ K(1 + |Imλ|−δ) for all λ ∈ C with Imλ 6= 0,

The finiteness of the ascent and of the descent of a linear operator T is related
to a certain decomposition of X.

Theorem 4.1 [10]. Let T ∈ L(X). If both p(T ) and q(T ) are finite then
p(T ) = q(T ) = p, and we have the decomposition

X = R(T p) ⊕ N(T p)
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Conversely, if for a natural number p we have the decomposition X = R(T p) ⊕
N(T p) then p(T ) = q(T ) ≤ p. In this case T/R(T p) is bijective.
Moreover, λ ∈ σ(T ) is a pole of the resolvent (λI − T )−1 if and only if 0 <
p(λI − T ) = q(λI − T ) < ∞.

The following proposition establishes the finiteness of the ascent of a linear
operator T ∈ Pg(X).

Proposition 4.2 [1]. Assume that T ∈ Pg(X), for every λ ∈ σ(T ) we
have:

(1) p(λI − T ) < ∞ .

(2) R((λI − T )p) = R((λI − T )p+k); k ∈ N. and p = p(λI − T ).

Proposition 4.3. Let T ∈ Pg(X), we have:

(1) If λ /∈ σec(T ), then λ is an isolated point in σ(T ).

(2) If λ ∈ σec(T ) and R((λI − T )p) is closed for some p ∈ N, then λ is a pole
of the resolvent T .

P r o o f. 1. If we assume that T ∈ Pg(X) and R((λI − T )) is closed for
some λ ∈ C then also p = p(λI − T ) is finite, R((λI − T )) + N((λI − T )p) is
closed and R((λI − T )) + N((λI − T )p) = R((λI − T )) + N((λI − T )n) for all
n ≥ p. Since p(λI − T ) < ∞, T has the SVEP at λ. It follows by [4, Theorem
2.5] that λ is an isolated point in σ(T ).

2. If R((λI −T )p) is closed, then R((λI −T )p) = R((λI −T )p+k); k ∈ N,
so q(λI − T ) < ∞, it follows that λ is a pole of the resolvent of T . �

Corollary 4.4. Let T ∈ Pg(X), then σgk(T )∆σec(T ) = σec(T ) \ σgk(T )
is at most countable.

P r o o f. From Proposition 4.3, if λ /∈ σec(T ), then λ is a an isolated point
in σ(T ). This implies By [6, Theorem 6.7] that T admits GKD and λ /∈ σgk(T )
and the set σgk(T )\σec(T ) is empty. Now if λ ∈ σec(T ), we have two cases. First if
there exists p ∈ N such that R((λI−T )p) is closed, by Proposition 4.3 part 2, λ is
a pole of the resolvent and λ /∈ σgk(T ), thus σec(T )\σgk(T ) is at most countable.
Now if R((λI − T )p) is not closed for every p ∈ N, then R(((λI − T )/M )p) is
not closed for every T -invariant closed subset M and p ∈ N, so λI − T does not
admits GKD and λ ∈ σgk(T ). The set σec(T ) \ σgk(T ) is then empty. �
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Example 3. Let Hp(D), 1 < p < ∞, the classical Hardy space, where D

is the open unit disc of C. The Cesaro operator Cp is defined by

(Cpf)(λ) =
1

λ

∫ λ

0

f(λ)

1 − λ
dµ, for all f ∈ Hp(D) and λ ∈ D.

The spectrum of the operator Cp is the closed disc Γp centered at
p

2
with radius

p

2
, see [1], and σef (Cp) ⊆ σap(Cp) = ∂Γp. From Theorem 3.8 we also have

σec(Cp) ⊆ σgk(Cp) = σap(Cp) = σse(Cp) = σk(Cp) = σes(Cp) = ∂Γp
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