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Abstract. In [1] we studied identities of finite dimensional incidence al-
gebras and showed how they were gotten by products and intersections of
identities of matrices and we left open the question of when two incidence
algebras satisfy the same identities, a problem which is still open. In the
current paper we re-visit this problem: We describe it, give some partial
results and some related problems based on the work of Kemer.

1. Incidence algebras. In this paper all graphs will be finite directed
graphs with no multiple edges. We impose the additional restriction of transi-
tivity, namely, that if there is an edge from v1 to v2 and an edge from v2 to v3,
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there must also be an edge from v1 to v3. Given such a graph G with vertex set

V = {v1, . . . , vn}

we define the algebra A(G) to be the span of the matrix units eij for each (i, j)
such that there is an edge from vi to vj . We will write I(G) for the ideal of
polynomial identities of A(G). An important special case is G = Cn, the complete
graph on n vertices. In this case A(Cn) equals Mn(F ), the n × n matrices over
the field F and we write In for the identities I(Cn). For technical reasons it is
useful to define C0 to be the graph with one vertex and no edges.

There are three basic operations on graphs. Given graphs G1 and G2 we
may form their union G = G1 ∪ G2. It is not hard to see that

A(G1 ∪ G2) ∼= A(G1) ⊕ A(G2) and I(G) = I(G1) ∩ I(G2).

A second graph formed from G1 and G2 is denoted G1G2 and it consists of G1∪G2

with additional edges from each vertex in G1 to each vertex in G2. We denote
A(G1G2) as A(G1) ◦ A(G2). It is not hard to see that

A(G1) ◦ A(G2) =

(

A(G1) ∗

0 A(G2)

)

,

and the description of the identities follows from Lewin’s theorem, see [4]:

I(G1G2) = I(G1)I(G2).

The third operation is cross product, and it is not hard to see that A(G1 ×G2) =
A(G1) ⊗ A(G2). This operation was important in [1] and elsewhere, but will not
play a role in the current paper.

A subset C of a graph is called a chain if given any v,w ∈ C there is
at least one edge joining them. The following theorem from [1] describes the
identities of incidence algebras.

Theorem 1.1. Let G be any finite graph.

(1) Let C ⊆ G be a chain. Then there exists non-negative integers a1, . . . , an

such that C ∼= Ca1
· · ·Can

and so I(C) = Ia1
· · · Ian

.

(2) The ideal of polynomial identities of A(G) is the intersection of all I(C)
where C ⊆ G is a maximal chain.
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Note that if C = Ca1
· · ·Can

then the corresponding incidence algebra
A(C) consists of the block upper triangular matrices of the form













Ma1
(F ) ∗ · · · ∗

0 Ma2
(F ) · · · ∗

... 0
. . . ∗

0 0 · · · Man
(F )













On the one hand, Theorem 1.1 completely describes identities of incidence alge-
bras: They are intersections of products of identities of matrix algebras. Let A
be the set of finite sequences of non-negative integers. For α = (a1, . . . , an) in A
we will let C(α) denote Ca1

· · ·Can
and I(α) denote I(C(α)) = Ia1

· · · Ian
. Then

the natural question is:

Question 1. Given graphs G1 and G2, when is I(G1) = I(G2), or more

generally, when is I(G1) ⊆ I(G2)? Equivalently, for which α1, . . . , αn, β1, . . . , βm ∈
A do we have

I(α1) ∩ · · · ∩ I(αn) ⊆ I(β1) ∩ · · · ∩ I(βm)?

If G1 ⊆ G2 then A(G1) is a subalgebra of A(G2) and so it satisfies all of
the identities of A(G2) implying that I(G2) ⊆ I(G1). For α, β ∈ A we will write
α ≺ β if C(α) embeds into C(β) (in which case I(β) ⊆ I(α)). If the graph C(α)
has n vertices, so that

∑

max{αi, 1} = n, then α ≺ (n) and, we shall show in the
next section that, for algebras with 1, the relation ≺ is generated by this relation.

Conjecture 1. Given graphs G1 and G2 such that each of A(G1) and

A(G2) contains 1, I(G1) ⊆ I(G2) if and only if every chain C contained in G2

has an embedding into G1.

Note that A(G) contains 1 if and only if there is a loop at each vertex. The
hypothesis that the algebras contain 1 is necessary since C0C0 does not embed
into C1, yet every identity of C1 is of degree at least two, and so lies in C0C0.
Although the more general case is certainly of interest, we will henceforth restrict
attention to graphs with loops at each vertex. Say that a graph G is irredundant
if A(G) is not p. i. equivalent to any A(H) for any proper subgraph H. Then, in
light of Theorem 1.1, Conjecture 1 is equivalent to the statement that if G1 and
G2 are irredundant, then I(G1) ⊆ I(G2) if and only if G2 embedds into G1, and
in particular I(G1) = I(G2) if and only if G1

∼= G2.
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Before starting in on our results we introduce a bit more notation. We let
A+ be the set of finite sequences of positive integers. Given α = (a1, . . . , an) ∈ A+

we let |α| denote the sum
∑

ai and we note that the incidence algebra A(α) is a
subalgebra of |α| × |α| matrices.

2. Positive results. In [2] Giambruno and Zaicev proved the following,
see Theorem 8.4.4 of [3]:

Theorem 2.1. Let P,Q, J1, . . . , Jm be T -ideals such that the Ji are ver-

bally prime and PQ is contained in the product J = J1 · · · Jm. Then either P ⊆ J ,

Q ⊆ J or there exists a k such that P ⊆ J1 . . . Jk and Q ⊆ Jk+1 · · · Jm.

Given α = (a1, . . . , an) ∈ A+ we define s(2α) to be the polynomial

s2a1
(x

(1)
1 , . . . , x

(1)
2a1

)y1s2a2
(x

(2)
1 , . . . , x2a2

a(2))y2 · · · yn−1s2an
(x

(n)
1 , . . . , x(n)

an

)

where sa denotes the standard polynomial.

Lemma 2.2. Given α, β ∈ A+, the polynomial s(2α) is in I(β) if and

only if β ≺ α.

P r o o f. Let Si denote the T -ideal generated by the standard identity
si. If α = (a1, . . . , an), then the T -ideal generated by s(2α) is the product
S2a1

. . . S2an
. Since S(2α) ⊆ I(α) the polynomial s(2α) is an identity for C(α)

and for any subalgebra. Hence, if β ≺ α then s(2α) ∈ I(β).

For the reverse implication we precede by induction on n. If n = 1 then
α = a1. If β 6≺ α then |β| = b > a1. But the algebra C(β) contains the upper
triangular b × b matrices and so by the standard staircase argument C(β) does
not satisfy s2a1

.

Finally, for the induction step, we assume that

S2a1
. . . S2an

⊆ I(b1) . . . I(bm),

with n ≥ 2. Letting P = S2a1
and Q = S2a2

· · ·S2an
and noting that the I(bi)

are verbally prime, we apply the Giambruno-Zaicev theorem together with the
induction hypothesis. If P or Q is contained in I(β) then C(β) embeds into C(a1)
or C(a2, . . . , an). Either of these two containments implies that C(β) embeds in
C(α) and so β ≺ α. In the remaining case,

P ⊆ I(b1) . . . I(bk) and Q ⊆ I(bk+1) . . . I(bm)
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for some k. By induction

(b1, . . . , bk) ≺ a1 and (bk+1, . . . , bm) ≺ (a2, . . . , an)

which implies that β ≺ α as claimed. �

Lemma 2.2 has a number of implications, two of which are immediate.
First it proves Conjecture 1 in the case that G1 and G2 are chains. This is a
special case of Corollary 8.5.5 of [3].

Theorem 2.3. Let α, β ∈ A+. Then α ≺ β if and only if I(β) ⊆ I(α).

P r o o f. If I(β) ⊆ I(α) then s(2β) is an identity for I(α). �

Corollary 2.4. Conjecture 1 is true if and only if whenever ∩I(αi) ⊂
I(β) then I(αi) ⊆ I(β) for some i.

Another consequence of Lemma 2.2 is that the relation ≺ on A+ is gen-
erated by the three relations:

• α ≺ |α|

• n ≺ n + 1

• If α1 ≺ β1 and α2 ≺ β2 then α1α2 ≺ β1β2.

The proof follows from noting that these are the relations used in the proof of
Lemma 2.2.

Here is another positive result about Conjecture 1.

Theorem 2.5. Let β = (b1, . . . , bm) ∈ A+ where either b1 = · · · = bm = 1
or m ≤ 2, let α1, . . . , αn ∈ A+, and assume that ∩iI(αi) ⊆ I(β). Then some

I(αi) is contained in I(β) and so β ≺ αi.

P r o o f. We first take the case of β1 = · · · = βm = 1. Then whenever some
I(αi) 6⊆ I(β), we have (1, 1, . . . , 1) 6≺ αi which happens if and only if m > |αi|.
Hence the standard identity S2m−2 is an identity for C(αi) but not for C(β). So
if no I(αi) is contained in I(β) then the intersection ∩iI(αi) contains S2m−2, but
I(β) does not.

Next we consider m = 1, β = b1. In general b1 ≺ α for some α =
(a1, . . . , at) ∈ A+ if and only b1 < ai for some i. If this does not happen, then
the standard identity s2β1−2 is a member of each I(aj) implying that st

2β1−2 is in



74 Allan Berele

I(αi) but not I(β). Hence, if β ≺ αi is false for every i then for large N sN
2b1−2 is

in every I(αi), but is not in I(β).
Turning to the m = 2 case, if (b1, b2) 6≺ (a1, . . . , an), either ai < b1 for

every i or if k is minimum such that ak ≥ b1 then ak < b1 + b2 and ai < b2 for all
i > k. Hence if α 6≺ (b1, b2) then α ≺ γn where

γn = ((b1 − 1)n, b1 + b2 − 1, (b2 − 1)n),

the exponents representing repetitions rather than multiplications. Therefore, if
N is large enough, αi ≺ γN for every i, and so s(2γN ) ∈ ∩I(αi). But β 6≺ γN

and so s(γN ) /∈ I(β). �

At this point one might imagine that if I(G) 6⊆ I(α) then one can find a
s(2β) which is an identity for C(α) but not A(G). Sadly, this is not the case.

Theorem 2.6. If α ∈ A+ is such that s(2α) is an identity for A(2, 2) ⊕
A(3), then s(2α) is also an identity for A(1, 2, 1). Yet, I(2, 2) ∩ I(3) is not

contained in I(1, 2, 1).

Perhaps this is not so sad, for if it were true that I(2, 2)∩I(3) ⊆ I(1, 2, 1)
then Conjecture 1 would be false.

P r o o f. By Lemma 2.2, s(2α) is an identity for A(2, 2)∩A(3) if and only
if (2, 2) ≺ α and (3) ≺ α. The former implies that either α has two parts greater
than or equal to 2, or one part greater than or equal to 4. If some part of α
is greater than 4, then (1, 2, 1) ≺ α, so we assume instead that α has at least
two parts equal to 2 or 3. But we also have the condition 3 ≺ α so that α must
have at least one part equal to 3. Say for convenience that the 3 comes first:
α = α13α2aα3, where a = 2 or 3. Then since (1, 2) ≺ 3 and 1 ≺ a, (1, 2, 1) ≺ α.

To complete the proof we need a polynomial in I2I2 ∩ I3 which is not an
identity for C(1, 2, 1). Such a polynomial is given by

s6(x1, s4(x2, . . . , x5), x6, x7, s4(x8, . . . , x11), x12).

Since this polynomial is a consequence of s6 it lies in I3, and since it is a sum of
terms each involving two evaluations of s4 it is also in I2I2. Finally, the algebra
C(1, 2, 1) is the span of

{eij | either 1 ≤ i ≤ j ≤ 4 or (i, j) = (3, 2)}

and the above polynomial is non-zero under the substitution

s6(e11, s4(e11, e13, e32, e22), e22, e23, s4(e32, e22, e24, e44), e44) =

s6(e11, e12, e22, e23, e34, e44) =

e14. 2
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3. More open questions. The ideals In of identities of matrices are
verbally prime ideals. The other verbally prime ideals are the identities of the
algebras Mn(E) of matrices over the Grassmann algebra and Mk,ℓ, which we will
not define here. See [3]. Verbally prime ideals not equal to Io are called proper.
The analogue of C(α) are block upper triangular algebras of the form













A1 ∗ · · · ∗

0 A2 · · · ∗
... 0 · · · ∗

0 0 · · · An













where each of the Ai is a verbally prime algebra. We denote this algebra as
A1 ◦· · · ◦An. It is known that the T -ideal of identities equals the product I1 · · · In

where each Ii = Id(Ai).
Theorem 2.1 says that in order to determine when one product of verbally

prime T -ideals is contained in another, we need only determine when a single
verbally prime T -ideal is contained in a product of others:

Question 2. For which proper verbally prime ideals P,Q1, . . . , Qn do we

have P ⊆ Q1 · · ·Qn? In particular, when is one verbally prime T -ideal contained

in another?

The following inclusions of proper verbally prime T -ideals are known:

• Id(Mn(F )) ⊆ Id(Mn−1(F ))

• Id(Mn(E)) ⊆ Id(Mn(F ))

• Id(Mn,k) ⊆ Id(Mn(F ))

• Id(Mk,ℓ) ⊆ Id(Mk′,ℓ′) if k ≥ k′ and ℓ ≥ ℓ′

• Id(Mk+ℓ(E)) ⊆ Id(Mk,ℓ)

• Id(Mn(E)) ⊆ Id(Mn−1(E))

• Id(Mn,n) ⊆ Id(Mn(E))

Conjecture 2. The above inclusions describe all inclusions of proper

verbally prime ideals.

Any T -ideal defines a codimension sequence cn(I) which in turn defines
the exponential rate of growth exp(I) which equals the limit of cn(I)1/n as n → ∞.
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In addition to Theorem 2.1 Giambruno and Zaicev prove the following theorems
about products of proper verbally prime ideals, theorems 8.5.5, and 8.5.6, respec-
tively, in their book [3].

Theorem 3.1. Let P1, . . . , Pn be proper verbally prime ideals and let Q
be any T -ideal. If P1 · · ·Pn ( Q then exp(Q) < exp(P1 · · ·Pn).

Theorem 3.2. Let P1, . . . , Pn, Q1, . . . , Qm be proper verbally verbally

prime ideals such that

P1 · · ·Pn = Q1 · · ·Qm.

Then n = m and Pi = Qi for all i = 1, . . . , n.

Using Theorem 3.1 we can now prove that products of proper verbally
prime ideals are varietally irreducible. A T -ideal is said to be varietally irreducible
if it cannot be written as a finite intersection of strictly larger T -ideals.

Theorem 3.3. Let P1, . . . , Pn be proper verbally verbally prime ideals

and let Q1, . . . , Qm be any T -ideals such that

P1 · · ·Pn = Q1 ∩ · · · ∩ Qm.

Then P1 · · ·Pn = Qi for some i.

P r o o f. The codimension sequence satisfies

max{cn(I), cn(J)} ≤ cn(I ∩ J) ≤ cn(I) + cn(J)

and hence exp(I ∩ J) equals max{exp(I), exp(J)}. In our case

exp(P1 · · ·Pn) = exp(∩iQi) = max{exp(Qi)}

and so exp(P1 · · ·Pn) = exp(Qi) for some i. But since P1 · · ·Pn ⊆ Qi, Theo-
rem 3.1 implies that P1 · · ·Pn = Qi. �

We conjecture that a stronger version of this theorem should hold:

Conjectute 3. Let P1, . . . , Pn be proper verbally verbally prime ideals

and let Q1, . . . , Qm be any T -ideals such that

Q1 ∩ · · · ∩ Qm ⊆ P1 · · ·Pn.

Then Qi ⊆ P1 · · ·Pn for some i.
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By Corollary 2.4, Conjecture 3 would imply Conjecture 1.
We note that there are varietally irreducible ideals which are not products

of verbally prime ideals. This follows from the fact that every T -ideal is an
intersection of varietally irreducible ideals and the following lemma.

Lemma 3.4. Let I = S2n be the T -ideal generated by a standard identity

s2n for some n ≥ 2. Then I is not an intersection of products of verbally prime

T -ideals.

P r o o f. The only products of verbally prime T -ideals containing S2n are
the I(α) with α ≺ (n) and the intersection of all such is In. But since the
identities of n × n matrices are not all consequences of s2n, the ideal S2n is not
the intersection of the products of verbally prime T -ideals. �

Question 3. Find natural examples of varietally irreducible T -ideals

which are not products of verbally prime T -ideals.

In the proof of the Specht conjecture, Kemer defined algebras called PI-
basic. Let A be a finite dimensional algebra over the algebraically closed field
F . By Wedderburn’s theorem we can write A as a vector space direct sum
A + J where J is the Jacobson radical and A is a semisimple subalgebra, and
so A = A1 ⊕ · · ·An, a direct sum of simple algebras. The algebra A is said to
be full if there is a permutation σ ∈ Sn such that Aσ(1)J · · · JAσ(n) 6= 0; and it
is said to be subdirectly irreducible if no intersection of non-zero ideals is zero.
Kemer proved that any T -ideal I containing a standard identity can be written
as the intersection of ∩Ji where each Ji is the ideal of identities for some full,
subdirectly irreducible algebra. Finally, a full, subdirectly irreducible algebra A
with radical J is called PI-basic if there does not exist an algebra A′ with radical
J ′ which which is p.i. equivalent to A and which is smaller in the sense of either
dim A′/J ′ < dimA/J or dim A′/J ′ = dimA/J and J ′ nilpotent of lower index
than J . It follows that every varietally irreducible T -ideal containing a standard
identity is the ideal of identities of a PI-basic algebra. In fact, it follows from his
work that the C(α) are all PI-basic.

Question 4. Are there PI-basic algebras whose ideals of identities are

not varietally irreducible?
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