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Abstract. Let M2(K) be the algebra of 2×2 matrices over an infinite inte-
gral domain K. In this note we describe a basis for the Z2-graded identities
of the pair (M2(K), gl2(K)).

1. Introduction. Let K be an associative and commutative unitary
ring and let K〈X〉 be the free associative algebra over K on a free generating
set X = {x1, x2, . . .}. We say that f = f(x1, . . . , xn) ∈ K〈X〉 is a polynomial

identity in an associative K-algebra A if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ A.
An ideal T in K〈X〉 is called a T-ideal if φ(T ) ⊆ T for each endomorphism φ
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of K〈X〉. It can be easily checked that, for a K-algebra A, the set T (A) of all
polynomial identities of A is a T-ideal in K〈X〉. The converse also holds: every
T-ideal is the set of the polynomial identities of a certain K-algebra. A set S of
polynomial identities of an algebra A is called a basis for the identities of A if it
generates T (A) as a T-ideal. We refer to [6, 8] for further terminology and basic
results related to polynomial identities.

Let M2(K) be the algebra of 2 × 2 matrices over K. One of the most
challenging and long standing open problems concerning polynomial identities is
the following.

Problem 1. Let K be an infinite field of characteristic 2. Is there a

finite basis for the polynomial identities of M2(K)?

Let A be an associative K-algebra and let A(−) be its associated Lie
algebra (with the Lie multiplication given by [a, b] = ab − ba). Let B be a Lie
subalgebra of A(−). We say that f = f(x1, . . . , xn) ∈ K〈X〉 is an identity of the

pair (A,B) if f(b1, . . . , bn) = 0 for all b1, . . . , bn ∈ B. Let L be the Lie subalgebra
of K〈X〉(−) generated by X. It is well known that L is the free Lie algebra freely
generated by the set X. An ideal T in K〈X〉 is called a weak T-ideal if ψ(T ) ⊆ T
for each endomorphism ψ of K〈X〉 such that ψ(xi) ∈ L for all i. The set T (A,B)
of all identities of the pair (A,B) is a weak T-ideal in K〈X〉. A set S of identities
of a pair (A,B) is called a basis for the identities of (A,B) if it generates T (A,B)
as a weak T-ideal.

In order to find an approach to Problem 1 one can study the following.

Problem 2. Is there a finite basis for the identities of the pair (M2(K),
gl2(K)) if K is an infinite field of characteristic 2?

It can be easily seen that a basis for the identities of the pair (M2(K),
gl2(K)) is a basis for the polynomial identities of M2(K) (but in general the
converse is not true). Since over an infinite field K of characteristic 2 the Lie
algebra gl2(K) has no finite basis for its identities (Vaughan-Lee [20]), one might
expect that it could be easier to solve the latter problem than the former one.
However, Problem 2 still remains open as well as Problem 1.

Note that the algebra M2(K) admits a natural grading and so does the
pair (M2(K), gl2(K)). An algebra A is called graded (or Z2-graded) if A =
A0 ⊕ A1 where A0, A1 are submodules of A, and AiAj ⊆ Ai+j with the sum
i + j taken in Z2 = Z/2Z. In particular, A0 is a subalgebra of A. If B is a Lie
subalgebra in A(−) such that B = B0 ⊕ B1, Bi = B ∩ Ai, (i = 0, 1) we say that
(A,B) is a graded pair.

If A = M2(K) then A0 is the subalgebra of A consisting of all diagonal
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matrices and A1 is spanned by all matrices with 0 on the main diagonal. We
refer to the elements of A0 as even ones and to those in A1 as odd ones.

Let Y = {y1, y2, . . .} and Z = {z1, z2, . . .} and let X = Y ∪Z. Recall that
K〈X〉 is the free associative algebra freely generated by X. The homogeneous
degree of a monomial m ∈ K〈X〉, denoted by w(m), equals 0 if its degree with
respect to the variables of Z is even; otherwise w(m) = 1. Then K〈X〉 is graded
in a natural way setting K〈X〉i to be the span of all monomials m such that
w(m) = i, i = 0, 1. A polynomial f(y1, . . . , ym, z1, . . . , zn) ∈ K〈X〉 is called a
graded identity for a graded algebra A = A0 ⊕ A1 (for a graded pair (A,B)) if
f(u1, . . . , um, v1, . . . , vn) = 0 for every ui ∈ A0 and vi ∈ A1 (for every ui ∈ B0

and vi ∈ B1).
An ideal I in K〈X〉 is called a T2-ideal if φ(I) ⊆ I for all graded en-

domorphisms φ of K〈X〉, that is, endomorphisms φ such that φ(yi) ∈ K〈X〉0
and φ(zi) ∈ K〈X〉1 for all i. Recall that L is the Lie subalgebra of K〈X〉(−)

generated by X. An ideal I in K〈X〉 is called a weak T2-ideal if ψ(I) ⊆ I for all
endomorphisms ψ of K〈X〉 such that ψ(yi) ∈ L∩K〈X〉0 and ψ(zi) ∈ L∩K〈X〉1
for all i.

The graded identities for a graded algebra A and for a graded pair (A,B)
form ideals in K〈X〉, denoted by T2(A) and T2(A,B) respectively. It can be easily
seen that, for a graded algebra A, the ideal T2(A) is a T2-ideal and, for a graded
pair (A,B), the ideal T2(A,B) is a weak T2-ideal in K〈X〉. A set S ⊆ T2(A) is
called a basis of the graded identities of an algebra A if it generates T2(A) as a
T2-ideal. In other words, S is a basis of the graded identities of A when T2(A)
is the least T2-ideal of K〈X〉 that contains S. Similarly, a set S ⊆ T2(A,B) is a
basis of the graded identities of a pair (A,B) if S generates T2(A,B) as a weak
T2-ideal.

In order to find an approach to the solution of Problem 2 one can study
first its (simpler) graded analog.

Problem 3. Let K be an infinite field of characteristic 2. Is there a

finite basis for the graded identities of the pair (M2(K), gl2(K))?

In this paper we solve Problem 3. More precisely we present an explicit
finite basis in question. We were able to find such a basis over an arbitrary infinite
integral domain K.

Theorem 1. Let K be an infinite integral domain. The following poly-

nomials form a basis for the graded identities of the pair (M2(K), gl2(K)):

(1) y1y2 − y2y1, z1z2z3 − z3z2z1, z1z2y − yz1z2.
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Note that for an arbitrary associative K-algebra A, the set of the (graded)
identities of the pair (A,A(−)) coincides with the set of the (graded) polynomial
identities of A. In particular, we have

T2(M2(K), gl2(K)) = T2(M2(K)).

It follows that Theorem 1 is equivalent to the following.

Theorem 2. Let K be an infinite integral domain. The ideal T2(M2(K))
is generated as a weak T2-ideal in K〈X〉 by the polynomials (1).

Remarks. 1. By Theorem 1, over an infinite field K of characteristic 2
the pair (M2(K), gl2(K)) has a finite basis for its graded identities. On the other
hand, over such a field K the graded identities of gl2(K) admit no finite basis
[15]. This gives the first example of a pair of the form (Mn(K), G), where G is a
graded Lie algebra with the following properties:

i) the graded identities of G have no finite basis;

ii) the graded identities of the pair (Mn(K), G) have a finite basis.

A pair (M2(K), S) with similar properties where S is a (multiplicative) semigroup
was found in [1]. A pair (M4(K), G) such that the Lie algebra G has a finite basis
for its identities but the pair has no such a basis was constructed in [17] (the field
K in the latter example is infinite of characteristic 2).

2. If K is an infinite field and charK 6= 2 then the polynomial identities
of M2(K) have a finite basis. Such a basis was found by Razmyslov [18] (see also
Drensky [4]) if charK = 0 and by the first named author [12] if charK = p > 2.
A (finite) basis for the identities of gl2(K) was found by Razmyslov [18] if K
is a field of characteristic 0 and by Vasilovsky [19] if K is an infinite field of
characteristic p > 2 (over such a field K the Lie algebras sl2(K) and gl2(K)
satisfy the same identities). On the other hand, Vaughan-Lee [20] proved that
over an infinite field K of characteristic 2 the identities of gl2(K) admit no finite
basis. Over such a field K, sl2(K) is a nilpotent Lie algebra of dimension 3 so all
its identities follow from [[x1, x2], x3].

3. The identities of the pair (M2(K), sl2(K)) were described by Razmyslov
in [18] when charK = 0, and by the first named author when K is an infinite
field of characteristic 6= 2, see [9]. All of them follow from [x2, y]. Recall that
the description of the identities of this pair is an essential step to obtaining a
basis of the polynomial identities for the associative algebra M2(K). The above
results admit generalizations, see for example [7, 10, 11]. Over an infinite field K
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of characteristic 2 the identities of the pair (M2(K), sl2(K)) were described by
Drensky [5].

4. For an infinite field K, charK 6= 2, the graded identities for M2(K)
were described in [3, 14]. In fact, the proof given in [14] remains valid over an
arbitrary infinite integral domain K (see [2, Corollary 2]). A (finite) basis for
the graded identities of sl2(K) (or, equivalently, gl2(K)) over such a field K was
found by the first named author [12] (see also [16]). On the other hand, over an
infinite field K of characteristic 2 the graded identities of gl2(K) admit no finite
basis [15].

5. In Theorem 2 we prove that T2(M2(K)) is generated by the polynomials
(1) as a weak T2-ideal. As an “ordinary” T2-ideal it is generated by the first two
polynomials only since z1z2y − yz1z2 is contained in the T2-ideal generated by
y1y2 − y2y1.

2. Proof of Theorem 2. Let ti, ui, vi and wi be commuting variables.
Form the polynomial algebra K[ti, ui, vi, wi | i ≥ 1]. Let F2(K) be the subalgebra
of M2(K[ti, ui, vi, wi]) generated by the generic graded matrices

Ai =

(
ti 0
0 ui

)
, Bi =

(
0 vi

wi 0

)
(i ≥ 1).

When K is an infinite integral domain it is easy to check that F2(K) is isomorphic
to the relatively free graded algebra in the variety of graded K-algebras generated
by M2(K), that is,

F2(K) ∼= K〈X〉/T2(M2(K)).

Here the matrices Ai stand for the even variables and Bi for the odd ones. Thus,
Theorem 2 follows immediately from the following.

Theorem 3. Let K be an associative and commutative unitary ring. The

ideal I = T2(F2(K)) is generated as a weak T2-ideal in K〈X〉 by the polynomi-

als (1).

In order to prove Theorem 3 we will need some auxiliary results.
The following proposition was proved in [3, 14] when K is an infinite field,

charK 6= 2. In fact, the proof given in [14] relies on an argument using generic
graded matrices. It remains valid for the graded identities of F2(K), where K is
an arbitrary associative and commutative ring with 1.

Proposition 4. The ideal I = T2(F2(K)) is generated as a T2-ideal in

K〈X〉 by the polynomials

(2) y1y2 − y2y1, z1z2z3 − z3z2z1.



502 Plamen Koshlukov, Alexei Krasilnikov

Let B be the set of the following monomials in K〈X〉:

ya1
ya2

. . . yak
,

ya1
ya2

. . . yak
zc1zd1

zc2zd2
. . . zcm

ẑdm
,

ya1
ya2

. . . yak
zc1yb1yb2 . . . ybl

zd1
zc2zd2

. . . zcm
ẑdm

.

Here a1 ≤ a2 ≤ . . . ≤ ak, b1 ≤ b2 ≤ . . . ≤ bl, c1 ≤ c2 ≤ . . . ≤ cm and d1 ≤ d2 ≤
. . . ≤ dm, k ≥ 0, l > 0, m > 0. The “hat” over a variable means that it can be
missing.

The following fact can be proved exactly in the same way as Proposition
5 in [14] (see also [2, Proposition 3]).

Proposition 5. Let K be an associative and commutative ring with 1.
Then the relatively free graded algebra K〈X〉/I is a free K-module with a basis

{g + I | g ∈ B}

over K.

The linear independence of the above monomials in K〈X〉/I was proved
in [14] by substituting the variables by generic graded matrices (that is, by iden-
tifying the graded algebras K〈X〉/I and F2(K)), and computing the entries of
the matrices thus obtained.

We write [a, b] = ab− ba, [a, b, c] = [[a, b], c].

Lemma 6. The following polynomials generate I as a weak T2-ideal in

K〈X〉:

[y1, y2], v0 = z1z2z3 − z3z2z1,

uk = [z1y1y2 . . . ykz2, y0] (k = 0, 1, . . .),

vk = z1y1y2 . . . ykz2z3 − z3y1y2 . . . ykz2z1 (k = 1, 2, . . .).

P r o o f. Let J be the weak T2-ideal in K〈X〉 generated by [y1, y2] together
with uk and vk (k = 0, 1, 2, . . .). Then J ⊆ I. Indeed, the polynomials uk (k ≥ 0)
belong to the (“strong”) T2-ideal generated by [y1, y2] and the polynomials vk

(k ≥ 1) belong to the T2-ideal generated by z1z2z3−z3z2z1. Since, by Proposition
4, [y1, y2] and z1z2z3 − z3z2z1 belong to I, so do uk (k ≥ 0) and vk (k ≥ 1).

To complete the proof of Lemma 6 we need the following.



A basis for the graded identities of the pair (M2(K), gl2(K)) 503

Lemma 7. Let h be a monomial in K〈X〉. Then there exists h′ ∈ B such

that

h = h′ (mod J).

P r o o f. Let h be an arbitrary monomial in K〈X〉,

h = Y1zi1Y2zi2 . . . YszisYs+1

where s ≥ 0 and, for all m, Ym are monomials in y1, y2, . . . Note that yiyj = yjyi

(mod J) for all i and j. It follows that if s = 0 then

h = ya1
ya2

. . . yak
(mod J), a1 ≤ a2 ≤ . . . ≤ ak

and if s = 1 then

h = ya1
ya2

. . . yak
zc1yb1yb2 . . . ybl

(mod J),

where a1 ≤ a2 ≤ . . . ≤ ak and b1 ≤ b2 ≤ . . . ≤ bl.
Suppose that s ≥ 2. Since uk ∈ J (k ≥ 0), for all i1, i2, j0, j1, . . . , jk and

all f, g ∈ K〈X〉 we have

f [zi1yj1 . . . yjk
zi2 , yj0] g ∈ J,

that is,

f zi1yj1 . . . yjk
zi2yj0 g = f yj0zi1yj1 . . . yjk

zi2 g (mod J).

It follows that

(3) h = ya1
ya2

. . . yak
zc1yb1yb2 . . . ybl

zd1
zc2zd2

. . . zcm
ẑdm

(mod J)

where a1 ≤ a2 ≤ . . . ≤ ak, b1 ≤ b2 ≤ . . . ≤ bl. Since

zi1yj1yj2 . . . yjk
zi2zi3 − zi3yj1yj2 . . . yjk

zi2zi1 ∈ J

for all k ≥ 0 and all is and jr, we can permute, modulo J , the elements zc1, . . . ,
zcm

and zd1
, . . . , zdm

in (3) in order to get the conditions c1 ≤ c2 ≤ . . . ≤ cm and
d1 ≤ d2 ≤ . . . ≤ dm satisfied.

The proof of Lemma 7 is complete. �

Now we are in a position to prove Lemma 6. We take f ∈ I, then
f +J =

∑
αigi +J for some αi ∈ K and gi ∈ B because, by Lemma 7, the image
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of B generates K〈X〉/J as a K-module. Since J ⊆ I, we have f+I =
∑
αigi +I.

On the other hand, f ∈ I so f + I = I. It follows that αi = 0 for all i because
gi ∈ B and the set {g + I | g ∈ B} is a basis of K〈X〉/I over K.

Thus, if f ∈ I then f + J =
∑
αigi + J = J , that is, f ∈ J . Since J ⊆ I,

it follows that J = I, as required.

The proof of Lemma 6 is complete. �

Lemma 8. The polynomial vk (k ≥ 1) is contained in the weak T2-ideal

generated by vk−1 and uk−1.

P r o o f. We have

vk(y1, . . . , yk, z1, z2, z3) = z1y1 . . . ykz2z3 − z3y1 . . . ykz2z1

= z1y1 . . . yk−1z2ykz3 + z1y1 . . . yk−1[yk, z2]z3

−z3y1 . . . yk−1z2ykz1 − z3y1 . . . yk−1[yk, z2]z1

= ykz1y1 . . . yk−1z2z3 + [z1y1 . . . yk−1z2, yk]z3

−ykz3y1 . . . yk−1z2z1 − [z3y1 . . . yk−1z2, yk]z1

+vk−1(y1, . . . , yk−1, z1, [yk, z2], z3)

= ykvk−1(y1, . . . , yk−1, z1, z2, z3) + vk−1(y1, . . . , yk−1, z1, [yk, z2], z3)

+uk−1(yk, y1, . . . , yk−1, z1, z2)z3 − uk−1(yk, y1, . . . , yk−1, z3, z2)z1.

The result follows. �

Lemma 9. The polynomial uk (k ≥ 1) is contained in the weak T2-ideal

generated by uk−1 and [y1, y2].

P r o o f. We have

uk(y0, y1, . . . , yk, z1, z2) = [z1y1y2 . . . ykz2, y0]

= [z1y1 . . . yk−1z2yk, y0] + [z1y1 . . . yk−1[yk, z2], y0]

= z1y1 . . . yk−1z2[yk, y0] + [z1y1 . . . yk−1z2, y0]yk + [z1y1 . . . yk−1[yk, z2], y0]

= z1y1 . . . yk−1z2[yk, y0] + uk−1(y0, y1, . . . , yk−1, z1, z2)yk

+uk−1(y0, y1, . . . , yk−1, z1, [yk, z2]).

The result follows. �
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P r o o f o f Th e o r e m 3. The theorem follows immediately from the
above Lemmas 6, 8, and 9. �

REF ERENC ES

[1] L. Al’shanskii, A. Kushkuley. Identities of the natural representation of
the infinitely based semigroup. Proc. Amer. Math. Soc. 118 (1993), 931–937.

[2] A. P. Brandão Jr., P. Koshlukov, A. Krasilnikov. Graded central
polynomials for the matrix algebra of order two. Monatsh. Math. 157 (2009),
247–256.

[3] O. M. Di Vincenzo. On the graded identities of M1,1(E). Israel J. Math.

80, 3 (1992), 323–335.

[4] V. Drensky. A minimal basis for the identities of a second-order matrix
algebra over a field of characteristic 0. Algebra i Logika 20 (1981), 282–290
(in Russian). English translation in Algebra Logic 20 (1982), 188–194.

[5] V. Drensky. Identities of representations of nilpotent Lie algebras. Com-

mun. Algebra 25, 7 (1997), 2115–2127.

[6] V. Drensky. Free Algebras and PI-Algebras. Graduate Course in Algebra.
Singapore, Springer, 2000.

[7] V. Drensky, P. Koshlukov. Weak polynomial identities for the vector
space with a symmetric bilinear form. Math. and Education in Math. Proc.
of the 16-th Spring Conf. of the Union of Bulgarian Mathematicians, Sunny
Beach, April 6–10, 1987, 16 (1987), 213–219.

[8] A. Giambruno, M. Zaicev. Polynomial Identities and Asymptotic Meth-
ods. Mathematical Surveys and Monographs, vol. 122, Providence, RI,
Amer. Math. Soc., 2005.

[9] P. Koshlukov. Weak polynomial identities for the matrix algebra of order
two. J. Algebra 188, 2 (1997), 610–625.

[10] P. Koshlukov. Finitely based ideals of weak polynomial identities. Com-

mun. Algebra 26, 10 (1998), 3335–3359.

[11] P. Koshlukov. Ideals of identities of representations of nilpotent Lie alge-
bras. Commun. Algebra 28, 7 (2000), 3095–3113.

[12] P. Koshlukov. Basis of the identities of the matrix algebra of order two
over a field of characteristic p 6= 2. J. Algebra 241 (2001), 410–434.



506 Plamen Koshlukov, Alexei Krasilnikov

[13] P. Koshlukov. Graded polynomial identities for the Lie algebra sl2(K).
Internat. J. Algebra Comput. 18, 5 (2008), 825–836.

[14] P. Koshlukov, S. S. Azevedo. Graded identities for T-prime algebras
over fields of positive characteristic. Israel J. Math. 128 (2002), 157–176.

[15] P. Koshlukov, A. Krasilnikov. A just nonfinitely based variety of 2-
graded Lie algebras. Preprint.

[16] P. Koshlukov, A. Krasilnikov, D. D. P. Silva. Graded identities for
Lie algebras. In: Groups, Rings and Group Rings (Eds A. Giambruno et al.),
International conference, Ubatuba, Brazil, July 28–August 2, 2008. Con-
temporary Mathematics vol. 499, Providence, RI, American Mathematical
Society, 2009, 181–188.

[17] A. Krasilnikov, A. L. Shmelkin. Finiteness of basis of identities of finite-
dimensional representations of solvable Lie algebras. Sibirsk. Mat. Zh. 29,
3 (1988), 78–86 (in Russian); English translation in Siberian Math. J. 29

(1988), 395–402.

[18] Yu. P. Razmyslov. Finite basing of the identities of a matrix algebra of
second order over a field of characteristic zero. Algebra i Logika 12 (1973),
83–113 (in Russian); English translation in Algebra Logic 12 (1973), 47–63.

[19] S. Yu. Vasilovsky. The basis of identities of a three-dimensional simple
Lie algebra over an infinite field. Algebra i Logika 28 (1989), 534–554 (in
Russian); English translation in Algebra Logic 28 (1989), 355–368.

[20] M. R. Vaughan-Lee. Varieties of Lie algebras. Quart. J. Math. Oxford (2 )
21 (1970), 297–308.

Plamen Koshlukov

IMECC, UNICAMP, Sergio Buarque de Holanda 651

13083-859 Campinas, SP, Brazil

e-mail: plamen@ime.unicamp.br

Alexei Krasilnikov

Departamento de Matemática
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