SUR LES FONCTIONS ANALYTIQUES DE DEUX VARIABLES **COMPLEXES QUI SONT PARAANALYTIQUES**

par Maurice Fréchet

Rappel. Soient f_1, f_2, \ldots, f_n , n vecteurs unitaires sur n axes de l'espace E_n à n dimensions; e_1 , e_2 , ..., e_p , p vecteurs unitaires placés sur p axes de l'espace E_p à p dimensions, V $X_1f_1 + ... + X_nf_n$, $v = x_1e_1 + ... + x_pe_p$, deux vecteurs de ces deux espaces. Quand V = F(v), $X_1, ..., X_n$ sont des fonctions,

$$X_1 = F_1(x_1, \ldots, x_p), \ldots, X_n = F_n(x_1, \ldots, x_p).$$

Dans des mémoires récents, [1] nous avons étudié les conséquences des définitions suivantes.

I. F(v) est dérivable relativement à la règle Rpour $v = v^0$ si

 $1^{\circ} F(v)$ est différentiable pour $v = v^{\circ}$.

2º Il existe un vecteur V_0 , indépendant de dv, tel que pour $v = v^0$

$$dF(v) = V_0' \cdot dv$$

où, au second membre, le produit est effectué suivant la règle R. V_0' est de la forme $\sum_{i} L_{j}(v^{0}) f_{j}$, et $V'_{\sigma} dv$ de la forme

(2)
$$\left(\sum_{i} L_{i} f_{i}\right) \cdot \left(\sum_{k} dx_{k} e_{k}\right) = \sum_{i} \sum_{k} L_{i} dx_{k} f_{i} \cdot e_{k}.$$

Pour que l'égalité (1) ait un sens, il faut évidemment que la règle soit exprimée sous la forme

$$(3) f_{j} \cdot e_{k} = \sum_{h} u_{jkh} f_{h}$$

où les u_{jkh} sont des constantes qui déterminent la règle R.

Si les conditions 1° , 2° sont remplies, $V_{0}^{'}$ sera dit une dérivée de F(v) pour $v=v^{\circ}$, relativement à R.

II. F(v) est paraanalytique relativement à R pour $v = v^0$, si F(v) est dérivable indéfiniment relativement à R au voisinage de v^0 .

Dans les deux mémoires cités plus haut, nous avons donné quelques propriétés générales de ces fonctions et nous les avons appliquées à la théorie des surfaces dans le cas où n=3, p=2.

Position du problème. Nous voulons ici donner une autre application en cherchant, dans le cas où n=2, p=4, quelles sont les fonctions analytiques (au sens classique) de deux variables complexes qui "sont", en même temps, des fonctions paraanalytiques relativement à une règle R convenable, le sens précis de cette question étant formulé comme suit

Soit donc

$$f(\xi, \eta) = P_1(x_1, \ldots, x_4) + i P_2(x_1, \ldots, x_4)$$

une fonction analytique au sens classique, de

$$\xi \quad x_1 + ix_2, \ \eta = x_3 + ix_4$$

pour ξ ξ^0 , η η^{0*} . On peut la considérer comme déterminant un vecteur de l'espace E_2

$$F(v) = P_1 f_1 + P_2 f_2$$

fonctions du vecteur

$$v \quad x_1e_1 + \ldots + x_4e_4$$

de l'espace E_4 .

Si elle est paraanalytique pour $v = v^0$ (correspondant au couple z^0 , μ^0) relativement à une règle R, elle est dérivable relativement à R pour chaque point v suffisamment voisin de v^0 .

Il existe donc un vecteur

$$V' = L_1(v) f_1 + L_2(v) f_2$$

indépendant de dv et tel que

$$dF(v) = V' \cdot dv$$

c'est à dire

$$(4) \qquad \sum_{h} dP_{h} f_{h} \quad \left(\sum_{j} L_{j}(v) f_{j}\right) \quad \left(\sum_{k} dx_{k} e_{k}\right) = \sum_{h} \left(\sum_{j} \sum_{k} L_{j} dx_{k} u_{jkh}\right) f_{h}.$$

D'où

(5)
$$dP_h = \sum_{k} \left(\sum_{j} L_{j}(v) u_{jkh} \right) dx_k.$$

Or, puisque $f(\xi, \eta)$ est analytique en ξ , η , voisin de ξ^0 , η^0 , $f(\xi, \eta)$ est analytique en $\xi = x_1 + ix_2$, d'où

(6)
$$\frac{\partial P_1}{\partial x_1} = \frac{\partial P_2}{\partial x_2}; \quad \frac{\partial P_2}{\partial x_1} = -\frac{\partial P_1}{\partial x_2};$$

c'est à dire d'après (5)

^{*} Nous nous éloignons des notations ordinaires pour abréger les calculs qui suivent.

$$\sum_{j} L_{j}(v) u_{j_{11}} = \sum_{j} L_{j}(v) u_{j_{22}},$$

$$\sum_{i} L_{j}(v) u_{j_{12}} = -\sum_{i} L_{j}(v) u_{j_{21}},$$

ou encore

(1)
$$(u_{111} - u_{122}) L_1(v) = (u_{222} - u_{211}) L_2(v),$$
(1)
$$(u_{112} + u_{121}) L_1(v) = -(u_{221} + u_{212}) L_2(v).$$

De même $f(\xi, \eta)$ étant analytique en η

(8)
$$(u_{131} - u_{142}) L_1(v) - (u_{242} - u_{231}) L_2(v),$$

$$(u_{132} + u_{141}) L_1(v) = -(u_{241} + u_{232}) L_2(v).$$

Supposons d'abord qu'une au moins des parenthèses des quatre dernières égalités soit ± 0 . Par exemple soit $u_{111} - u_{122} \pm 0$, on aura

$$L_1(v) = rL_2(v)$$

où $r = \frac{u_{222} - u_{211}}{u_{111} - u_{122}}$ est un nombre, indépendant de v et de la fonction F(v), entièrement déterminé par la règle R. On aura alors

$$dF(v) = L_2(v)(rf_1 + f_2) \cdot dv,$$

ou en posant

$$\mathfrak{M}(v) = (rf_1 + f_2) \cdot v \qquad \sum_{j} a_j(v)f_j$$

$$\left(\begin{array}{ccc} \text{où } a_j(v) & \sum_{j} a_j(v)f_j \\ \end{array} \right) \qquad dF(v) \qquad L_2(v)d\mathfrak{M}(v)$$

$$\sum_{j} dP_j f_j = L_2(v) \sum_{j} a_j(dv)f_j;$$

ďoù

ou

(9)
$$dP_{j} = L_{2}(v)a_{j}(dv) = Q(x_{1}, \ldots, x_{4}) \sum_{k} a_{jk}dx_{k}.$$

Supposons que l'un des déterminants du second ordre tiré du tableau

$$\left\{
\begin{array}{l}
a_{11} \dots a_{14} \\
a_{21} \dots a_{24}
\end{array}
\right\}$$

soit ± 0 , par exemple

$$\left| \begin{array}{c} a_{11} \ a_{12} \\ a_{21} \ a_{22} \end{array} \right| \neq 0.$$

Alors en posant

$$y_1 = \sum a_{1k}x_k, y_2 = \sum a_{2k}x_k, y_3 = x_3, y_4 x_4,$$

on pourra tirer $x_1, ..., x_4$ en fonctions linéaires des $y_1, ..., y_4$ et en portant dans les P_I , on pourra poser

$$P_{j}(x_{1},...,x_{4})=p_{j}(y_{1},...,y_{4}); Q(x_{1},...,x_{4})=q(y_{1},...,y_{4}),$$

de sorte que (9) deviendra

$$dp_{f}(y_1,\ldots,y_4)=q(y_1,\ldots,y_4)dy_{f}.$$

Donc p_i est un fonction de y_i seul, soit $p_i(y_i)$ et on aurait

$$\frac{dp_1(y_1)}{dy_1} = \frac{dp_2(y_2)}{dy_2} = q(y_1, \ldots, y_4) = L_2(v).$$

La valeur commune sera une constante µ et on aura

$$p_{i}(y_{i}) = \mu y_{i} + c_{i}, L_{2}(v) = \mu,$$

d'où

$$dF(v) = \mu(rf_1 + f_2) \cdot dv = (\lambda_1 f_1 + \lambda_2 f_2) \cdot dv,$$

$$F(v) = \lambda \cdot v + c,$$

où $\lambda = \lambda_1 f_1 + \lambda_2 f_2$, $c - c_1 f_1 + c_2 f_2$ sont des vecteurs constants. Ainsi F(v) est une fonction vectorielle linéaire de v. On a

$$P_1 f_1 + P_2 f_2 = (\lambda_1 f_1 + \lambda_2 f_2) (x_1 e_1 + \ldots + x_4 e_4) + c_1 f_1 + c_2 f_2$$

$$= \sum_{h} \left(\sum_{h} \sum_{i} \lambda_i x_h u_{jhh} + c_h \right) f_h,$$

d'où

$$P_h = \sum_{k} \left(\sum_{j} \lambda_{j} u_{jkh} \right) x_k + c_h = \sum_{k} \beta_{kh} x_k + c_h$$

avec

$$\beta_{11} \quad \frac{\partial P_1}{\partial x_1} \quad \frac{\partial P_2}{\partial x_2} = \beta_{22}, \ \beta_{12} = \frac{\partial P_2}{\partial x_1} = -\frac{\partial P_1}{\partial x_2} = -\beta_{21}$$

et de même

$$\beta_{33} = \beta_{44}, \quad \beta_{34} = -\beta_{43}$$
.

D'où

$$f(\xi,\eta) = \sum_{k} (\beta_{k1} + i\beta_{k2}) x_k + c_1 + ic_2 = (\beta_{11} + i\beta_{12}) x_1 + (-\beta_{12} + i\beta_{11}) x_2 + \dots + c_1 + ic_2 = (\beta_{11} + i\beta_{12}) (x_1 + ix_2) + \dots + c_1 + ic_2.$$

De sorte que $f(\xi, \eta)$ est de la forme

(11)
$$f(\xi, \eta) = w\xi + t\eta + \gamma$$

où w, t, γ sont trois constantes complexes: $f(\xi, \eta)$ est une fonction linéaire du couple (ξ, η) .

D'ailleurs, la règle devra être (quand $L_1(v)$ et $L_2(v)$ ne sont pas constamment nuls au voisinage de v^0 , c'est à dire quand $f(\xi, \eta)$ n'est pas une constante dans ce voisinage), telle que l'on ait, au moins,

$$u_{222} = u_{211} + r(u_{111} - u_{122})$$

$$u_{221} = -u_{212} - r(u_{112} + u_{121})$$

$$u_{242} = u_{231} + r(u_{131} - u_{142})$$

$$u_{241} = -u_{232} - r(u_{132} + u_{141}).$$

Considérons maintenant le cas où les déterminants du second ordre du tableau (10) sont nuls; mais supposons d'abord qu'un des éléments de ce tableau soit ± 0 ; par exemple $a_{11} \pm 0$.

Alors, comme

$$\begin{vmatrix} a_{11} & a_{1k} \\ a_{21} & a_{2k} \end{vmatrix} = 0$$

$$a_{2k} = a_{1k} \frac{a_{21}}{a_{11}} \quad \text{ou} \quad a_{2k} = s \, a_{1k} \quad (k = 1, 2, 3, 4)$$

$$dP_2 = Qs \sum a_{1k} dx_k = s dP_1,$$

$$\frac{\partial P_1}{\partial x_1} = \frac{\partial P_2}{\partial x_2} = s \frac{\partial P_1}{\partial x_2}; \quad \frac{\partial P_1}{\partial x_2} = -\frac{\partial P_2}{\partial x_1} = -s \frac{\partial P_1}{\partial x_1}$$

$$\frac{\partial P_1}{\partial x_1} - s \frac{\partial P_1}{\partial x_2} = 0, \quad s \frac{\partial P_1}{\partial x_1} + \frac{\partial P_1}{\partial x_2} = 0.$$

Le déterminant de ces deux équations en $\frac{\partial P_1}{\partial x_1}$, $\frac{\partial P_1}{\partial x_2}$ est $1+s^2 \neq 0$.

Donc

$$\frac{\partial P_1}{\partial x_1} = \frac{\partial P_1}{\partial x_2} = 0$$

et par suite

$$\frac{\partial P_2}{\partial x_2} = -\frac{\partial P_2}{\partial x_1} = 0.$$

Donc P_1 et P_2 sont indépendants de x_1 et x_2 . On verrait de même qu'ils sont indépendants de x_3 et de x_4 . P_1 et P_2 se réduisent à deux constantes c_1 , c_2 . Finalement $f(\xi,\eta)=c_1+ic_2$ se réduit dans ce cas à une constante complexe et $F(v)=c_1f_1+c_2f_2$ se réduit à un vecteur constant. Il en est encore évidemment de même, d'après (9), quand tous les a_{fk} sont nuls.

Supposons maintenant nuls tous les coefficients de $L_1(v)$ et de $L_2(v)$ dans (7) et (8). On aura

(13)
$$\begin{array}{c} u_{122} = u_{111}; \quad u_{222} = u_{211}; \quad u_{121} = -u_{112}; \quad u_{221} = -u_{212}; \\ u_{142} = u_{131}; \quad u_{242} = u_{231}; \quad u_{141} = -u_{132}; \quad u_{241} = -u_{232}. \end{array}$$

D'où d'aprês (5) et (13)

$$dP_{1}+idP_{2}=L_{1}\left(\sum_{k}u_{1k1}dx_{k}+i\sum_{k}u_{1k2}dx_{k}\right)$$

$$+L_{2}\left(\sum_{k}u_{2k1}dx_{k}+i\sum_{k}u_{2k2}dx_{k}\right)$$

$$=L_{1}\left[u_{111}dx_{1}+u_{121}dx_{2}+\ldots+iu_{112}dx_{1}+iu_{122}dx_{2}+\ldots\right]+L_{2}\left[\ldots\right]$$

$$=L_{1}\left[\left(u_{111}+iu_{112}\right)\left(dx_{1}+idx_{2}\right)+\ldots\right]+L_{2}\left[\left(u_{211}+iu_{212}\right)\left(dx_{1}+idx_{2}\right)+\ldots\right].$$

ďoù

$$df(\xi,\eta) = [M_1(v) + iN_1(v)]d\xi + [M_2(v) + iN_2(v)]d\eta.$$

Ainsi

$$f'_{i} = M_{1} + iN_{1} = L_{1}(u_{11} + iu_{112}) + L_{2}(u_{211} + iu_{212}) = L_{1}w_{1} + L_{2}w_{2},$$

$$f'_{\eta} = M_{2} + iN_{2} = L_{1}(u_{131} + iu_{132}) + L_{2}(u_{231} + iu_{232}) = L_{1}t_{1} + L_{2}t_{2}.$$

Dono

(14)
$$t_{2}f'_{1}-w_{2}f'_{\eta}=L_{1}(t_{2}w_{1}-w_{2}t_{1})=L_{1}\Delta, t_{1}f'_{1}-w_{1}f'_{\eta}=L_{2}(t_{1}w_{2}+w_{1}t_{2})=-L_{2}\Delta.$$

Quand .1 \neq 0, si l'on pose $g(\xi, \eta) = \frac{f(\xi, \eta)}{\Delta}$, on a

 $t_{2}g'_{t} - w_{2}g'_{t} = [\text{une quantité réelle, fonction de } v] = L_{1}(v),$

 $t_1 g'_t - w_1 g'_{\eta} = [\text{une quantité réelle, fonction de } v] = -L_2(v).$

Posons

$$\xi = t_1 \xi' + t_2 \eta',$$

$$\eta = -\mathbf{w}_1 \xi' - \mathbf{w}_2 \eta'.$$

Puisque .1 ± 0 , on peut en tirer ξ' , η' en fonction de ξ , η et, d'autre part, poser

$$h(\xi', \eta') = g(\xi, \eta).$$

Puisque g, comme f, est analytique en ξ , η et alors h est analytique en ξ' , η' , on aura

(15)
$$\frac{\partial h}{\partial \xi'} = t_1 \frac{\partial g}{\partial \xi} - w_1 \frac{\partial g}{\partial \eta} = -L_2(v);$$

$$\frac{\partial h}{\partial \eta'} = t_2 \frac{\partial g}{\partial \xi} - w_2 \frac{\partial g}{\partial \eta} = L_1(v),$$

si l'on pose

$$\xi' = y_1 + iy_2, \quad \eta' = y_3 + iy_4,$$

on peut écrire

$$h(\xi', \eta') = p(y_1, y_2, y_3, y_4) + iq(y_1, y_2, y_3, y_4).*$$

* Il ne peut y avoir de confusion entre cette fonction $q(y_1, \ldots, y_4)$ et celle de la p. 6.

Alcra

$$\frac{\partial p}{\partial y_1} + i \frac{\partial q}{\partial y_1} = -i \left(\frac{\partial p}{\partial y_2} + i \frac{\partial q}{\partial y_2} \right) = \frac{\partial h}{\partial \xi'} = -L_2(v).$$

Donc au voisinage de v^0 , puisque $L_2(v)$ est réelle:

$$\frac{\partial q}{\partial y_1} = \frac{\partial p}{\partial p_2} = 0.$$

Ainsi p ne dépend pas de y_2 , ni q de y_1 . De même, on verrait que p ne dépend pas de y_4 , ni q de y_3 :

$$p = p(y_1, y_3); q = q(y_2, y_4).$$

Or on a

$$\frac{\partial p(y_1,y_3)}{\partial y_1} = \frac{\partial q(y_2,y_4)}{\partial y_2};$$

la valeur commune des deux membres est une constante δ

$$p = \delta y_1 + p_1(y_3); \quad q = \delta y_2 + q_1(y_4).$$

Mais on a aussi

$$\frac{\partial p}{\partial y_3} = \frac{\partial q}{\partial y_4}.$$

soit

$$\frac{dp_{1}(y_{3})}{dy_{3}}=\frac{dq_{1}(y_{4})}{dy_{4}};$$

ici encore la valeur commune des deux membres doit être constante et on a

$$p = \delta y_1 + \mu y_3 + \nu_1, \quad q = \delta y_2 + \mu y_4 + \nu_2,$$

$$g(\xi, \eta) = h(\xi', \eta') = p + iq = [\delta(y_1 + iy_2) + \mu(y_3 + iy_4)] + \nu_1 + i\nu_2,$$

$$g(\xi, \eta) = \delta \xi' + \mu \eta' + \nu.$$

Par suite $f(\xi, \eta) = \Delta g(\xi, \eta)$ est une fonction linéaire de ξ' , η' , donc de ξ , η .

D'ailleurs, s'il est ainsi $\frac{\partial g}{\partial \xi}$, $\frac{\partial g}{\partial \eta}$ seront des constantes et par suite, d'après (15) L_1 et L_2 seront des constantes. Et alors d'après (4) F(v) sera une fonction linéaire de v.

Il reste le cas où $\Delta = 0$.

$$0 = t_1 w_2 - t_2 w_1 = (u_{131} + iu_{132}) (u_{211} + iu_{212}) - (u_{231} + iu_{232}) (u_{111} + iu_{112}).$$

Dans ce cas, si l'un des termes de Δ est ± 0 , par exemple $w_2 \pm 0$, on aura d'après (14)

$$f'_{\eta} = \frac{t_2}{w_2} f'_{\xi}, \quad df = f'_{\xi} \left(d\xi + \frac{t_2}{w_2} d\eta \right).$$

Puisque df est différentiable près de v^0 , avec

$$df = \frac{1}{w_2} f'_{\ell} d\left(w_2 \xi + t_2 \eta\right).$$

c'est que $f(\xi, \eta)$ est une fonction analytique d'une fonction linéaire de ξ , η , à savoir $z=w_2\xi+t_2\eta$ près de $z_0=w_2\xi^0+t_2\eta^0$ soit la fonction

$$f\left(\xi,\,\,\eta\right)=\varphi\left(z\right),$$

ΟÙ

$$z = w_2 \xi + t_2 \eta = (u_{211} + iu_{212}) (x_1 + ix_2) + (u_{231} + iu_{232}) (x_3 + ix_4)$$

ou en posant z = x + iy

$$x = u_{211}x_1 - u_{212}x_2 + u_{221}x_3 - u_{222}x_4$$

$$y = u_{211}x_2 + u_{212}x_1 + u_{231}x_4 + u_{232}x_3.$$

Le cas où tous les termes de Δ seraient nuls, ne peut se présenter puisqu'alors les $f_j \cdot e_k$ seraient tous nuls, cas qu'il faut evidemment exclure.

Remarque. Les cas où $f(\xi, \eta)$ se réduit à une fonction linéaire ou à une constante, rentrent dans le cas général où $f(\xi, \eta)$ est de la forme $\varphi(w\zeta+t\eta)$, en prenant pour $\varphi(z)$ dans ces deux premiers cas $\varphi(z)=pz+q$ où p et q sont deux constantes complexes.

=pz+q où p et q sont deux constantes complexes. **Problème inverse.** Donnons-nous à priori, une fonction $\varphi(z)$ analytique au point $z^0 = x^0 + iy^0$ et une forme linéaire $w \xi + t \eta$ de deux variables complexes $\xi = x_1 + ix_2$, $\eta = x_3 + ix_4$. La fonction

$$f(\xi, \eta) = \varphi(w\xi + t\eta) - P_1(x_1, \dots, x_4) + iP_2(x_1, \dots, x_4)$$

sera évidemment une fonction analytique des deux variables complexes ξ , η pour $\xi = \xi^0$, $\eta = \eta^0$, pourvu que $w\xi^0 + t\eta^0 = z^0$.

Nous voulons démontrer qu'il existe au moins une règle R relativement à laquelle soit paraanalytique pour $v=v^0=x_1^0e_1+\ldots+x_4^0e_4$, (avec $\xi^0=x_1^0+ix_2^0$, $\eta^0=x_3^0+ix_4^0$) la fonction vectorielle associée à $f(\xi,\eta)$, soit

$$F(v) = P_1(x_1, \ldots, x_4) f_1 + P_2(x_1, \ldots, x_4) f_2.$$

Démenstration. Pour des raisons indiquées plus loin, prenons à priori les coefficients u_{IAA} de la règle R tels que

(16)
$$\begin{cases} u_{111} + iu_{119} = w, \ u_{221} + iu_{222} = -w; \ u_{131} + iu_{132} = t, \ u_{241} + iu_{242} = -t; \\ u_{121} + iu_{122} = iw = u_{211} + iu_{212}; \ u_{141} + iu_{142} = it = u_{231} + iu_{232}. \end{cases}$$

Il s'agit de savoir s'il existe $L_1(v)$, $L_2(v)$ tels qu'en posant $F'(v) = L_1(v)f_1 + L_2(v)f_2$ on ait

$$dF = F \cdot dv$$

ou

$$dP_1f_1+dP_2f_2=\sum\sum\sum L_j\cdot dx_ku_{j-k}f_k$$

ou

$$dP_h = \sum \sum L_j . dx_k u_{jkh}.$$

D'où

$$d\varphi(z) = dP_1 + idP_2 = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} L_i \cdot dx_k (u_{jk1} + iu_{jk2}) = L_1 dx_1 w + L_1 dx_2 iw + L_1 dx_2 it + \dots = L_1 (w dz + t d\eta) + L_1 dx_2 iw + L_2 dx_2 iw + L_3 dx_4 it + \dots = L_4 (w dz + t d\eta) + L_4 dx_3 iw + L_5 dx_4 it + \dots = L_5 (w dz + t d\eta) + L_5 dx_5 iw + L_$$

ou

$$\varphi_z'dz = (L_1 + iL_2)dz$$
.

Ainsi F(v) est dérivable puisqu'il suffit de prendre $L_1+iL_2=q_z$, c'est à dire de prendre pour $F'(v)=L_1f_1+L_2f_2$, la fonction vectorielle associée à φ_z' .

Mais alors, de même, puisque φ'_z est aussi analytique pour $z=z^0$, F'(v) est dérivable et on obtient F''(v) en la prenant égale à la fonction vectorielle associée à q''(z), etc.

Finalement on voit qu'il existe une règle R, définie par les relations (16) et, par suite, dépendante des coefficients w, t de la forme $w\xi+t\eta$, mais indépendante de la fonction q(z) (supposée analytique pour $z=z_0$), règle R telle que la fonction vectorielle $F(v)=P_1f_1+P_2f_2$ associée à la fonction $q(w\xi+t\eta)=P_1+iP_2$ soit para a nalytique pour $v=v^0$ en posant

$$v^0 = \sum x_k^0 e_k$$
 où $w(x_1^0 + ix_2^0) + t(x_3^0 + ix_4^0) = z^0$.

Généralisation. Pour démontrer la proposition inverse, il suffisait, comme nous l'avons fait à l'instant, de prouver qu'il existe au moins une règle R, pour laquelle F(v) soit paraanalytique pour $v = v^0$.

On peut cependant se poser la question de déterminer les règles R pour lesquelles il en est ainsi. Nous nous contenterons de dire que 1^o si $\varphi(z)$ est constant, toutes les règles conviennent, 2^o si $\varphi(z)$ est linéaire, sans être constant, on obtient facilement deux formes de règles, qui dépendent d'un assez grand nombre de paramètres arbitraires, 3^o enfin, dans le cas le plus intéressant où $\varphi(z)$ est analytique pour $z=z^o$, sans être constante ni linéaire, la règle la plus générale cherchée dépend de deux paramètres réels arbitraires: a et b, tels que $a+ib \neq 0$, en prenant pour les u_{jkh} :

$$u_{111} + iu_{112} = s + in; \quad u_{221} + iu_{222} = -(\delta + in);$$

$$u_{121} + iu_{122} = i(s + in) = u_{211} + u_{212};$$

$$u_{131} + iu_{122} = s' + in'; \quad u_{241} + iu_{242} = -(s' + in');$$

$$u_{231} + iu_{232} = i(s' + in') = u_{141} + iu_{142};$$

$$avec \quad s + in = (a + ib)w, \quad s' + in' = (a + ib)t.$$

La règle examinée plus haut est celle qui correspond au cas où a=1, b=0.

Cas particulier. Lorsque $\varphi(z) = e^z$, il est clair qu'on aura $F(v) = F'(v) = \dots$

LITTÉRATURE

 M. Fréchet. Les surfaces dérivables relativement à une règle de multiplication: mémoire préliminaire. Verhandelingen kon. Nederlandse Ak. v. Wetens. Eerste Reeks, Deel XXI, № 1 (1954), p. 1-44. Second mémoire: Ann. Ec. Norm. Sup. (3) LXXI, 1954, p. 29-85.

ВЪРХУ АНАЛИТИЧНИТЕ ФУНКЦИИ НА ДВЕ КОМПЛЕКСНИ ПРОМЕНЛИВИ, КОИТО СА ПАРААНАЛИТИЧНИ

Морис Фреше (Париж)

РЕЗЮМЕ

Нека f_1, f_2, \ldots, f_n са n единични вектори върху n оси от пространството E_n с n измерения; e_1, e_2, \ldots, e_p p единични вектори, поставени върху осите на пространството E_p с p измерения и $V = X_1 f_1 + \ldots + X_n f_n$ и $v = x_1 e_1 + \ldots + x_p e_p$ два вектора от тези две пространства. Когато V = F(v), то X_1, X_2, \ldots, X_n са функции на X_1, X_2, \ldots, X_p

$$X_1 = F_1(x_1, \ldots, x_p), \quad X = F_2(x_1, \ldots, x_p), \ldots, X_n = F_n(x_1, \ldots, x_p).$$

В две свои неотдавнашни публикации авторът е въвел и изучил някои приложения на следните дефиниции:

I. F(v) е диференцируема относно правилото R за $v=v^0$, ако $1^0F(v)$ е диференцируема за $v-v^0$ и 2^0 съществува един вектор V_0 , независим от dv, така че за $v=v^0$ да имаме

$$dF(v) = V_0' dv,$$

където в дясната част произведението е извършено съгласно правилото R. V_0' има вида $\sum_i L_i(v^0)f_i$, а $V_0'av$ има вида

(2)
$$\left(\sum_{j} L_{j} f_{j}\right) \cdot \left(\sum_{k} dx_{k} e_{k}\right) = \sum_{j} \sum_{k} L_{j} dx_{k} f_{j} \cdot e_{k}.$$

За да има равенството (2) смисъл, трябва очевидно правилото за умножение да се изразява във формата

$$f_{J}.e_{k}=\sum_{h}u_{Jkh}f_{h},$$

където u_{jkh} са константи, определящи правилото R.

Ако условията 1^0 и 2^0 са изпълнени, V_0 се нарича производна на F(v) за $v=v^0$ относно R.

II. F(v) е парааналитична относно R за $v=v^0$, ако F(v) е диференцируема неограничено пъти относно R в околността на V^0 .

В цитираните две работи авторът е установил някои общи свойства на тези функции и ги е приложил в теорията на повърхнините в случая, където $n=3,\ p=2.$ В настоящата работа авторът дава ново приложение, като изследва в случая, където $n=2,\ p=4,$ кои са аналитичните функции (в класичен смисъл) на две комплексни променливи, които са в същото време парааналитични функции относно едно подходящо правило R.

ОБ **АНАЛИТИЧЕСКИХ ФУНКЦИЯХ ДВУХ КОМПЛЕКСНЫХ** ПЕРЕМЕННЫХ, ЯВЛЯЮЩИХСЯ ПАРААНАЛИТИЧЕСКИМИ

Морис Фреше (Париж)

РЕЗЮМЕ

Допустим, что f_1, f_2, \ldots, f_n-n единичные векторы пространства E_n n измерений; e_1, e_2, \ldots, e_p-p единичные векторы пространства E_p p измерений и $V=X_1f_1+\ldots+X_nf_n$ и $v=x_1e_1+\ldots+x_pe_p$ — два вектора этих двух пространств. Когда V=F(v), то X_1, X_2, \ldots, X_n — функции x_1, x_2, \ldots, x_p ;

$$X_1 = F_1(x_1, \ldots, x_p), \quad X_2 = F_2(x_1, \ldots, x_p), \ldots, \quad X_n = F_n(x_1, \ldots, x_p).$$

В двух недавно опубликованных своих работах автор ввел и изучил ряд случаев применения следующих определений:

1. F(v) диференцируема относительно правила R для $v=v^0$, если 1^0 F(v) диференцируема для $v=v^0$ и 2^0 существует вектор v_0 , независимый от dv, так что для $v=v^0$

$$dF(v) = V_0 dv,$$

где в правой части произведение осуществлено согласно правилу R.

$$V_0$$
 имеет вид $\sum L_f(v^0)f_f$ и $V_0\dot{d}v$ имеют вид

(2)
$$\left(\sum L_j f_j\right) \left(\sum_k dx_k e_k\right) = \sum_j \sum_k L_j dx_k f_j \cdot e_k \cdot$$

Для того, чтобы равенство (2) имело определенный смысл, очевидно необходимо, чтобы правило умножения выражалось формой:

$$f_{j}.e_{k}=\sum_{h}u_{jkh}f_{h},$$

где $u_{/ah}$ являются константами, определяющими правило R.

Если условия 1° и 2° выполнены, то V_0' называется производной F(v) для $v=v^{\circ}$ относительно R.

II. F(v) — парааналитична относительно R для $v = v^0$, если F(v) неограниченно диференцируема относительно R в окрестности v^0 .

В цитированных выше двух работах автор установил некоторые общие свойства этих функций и применил их в теории поверхностей в случае $n=3,\ p=2.$ В настоящей работе автор дает новое применение, исследуя (в случае $n=2,\ p=4)$ — каковы аналитические функции двух комплексных переменных, являющихся в то же время и парааналитическими функциями относительно одного подходящего правила R.