AN INTEGRAL EQUATION FOR PULSATIONS OF THE ZERO VELOCITY
OVALS IN THE ASTEROIDAL ELLIPTICAL PROBLEM

W. W. Heinrich (Prague)

Summary:
The well known theory of stability according Hill in the restricted
asteroidal circular problem, becomes a rather complicated question as
soon as we pass to the more general asteroidal elliptical problem, in
which the orbital excentricity of the disturbing planet differs from zero
Hitherto all theories resulted always in asymptotical semiconvergent
dcvelopments of the classics.
However this procedure renders every criterion of stability doubtful as
the explicit time appears bteyond the trigonometrical functions. The
author uses a well known theorem on the homogencous functions and
succeeds in integrating completely the integral equation pertaining
thereto. In this way the whole problem is reduced to quadratures and
a very simple survey of the strongly pulsating zero velocity ovals
is obtained.
Complete havoc is played just with the most interesting ovals, marking
the transgression from a satellite to a planetary case.

In a previous paper two problems concerning the asteroidal
movements have been formulated.

I. The so called circular, restricted problem of three bodies, with
an asteroid of zero mass and a disturbing planet, going round the
central body (Sun) in a circle (Hill-Poincaré).

II. The more general asteroidal elliptical problem, in which the
disturbing planet revolves about the central body in a Keplerian ellipse,
of finite, constant excentricity.

I pointed out that unfortunately the passage from the first (I) to
the more general case (II) is rather difficult.

After having detected the cause of these difficulties in the exi-
stence of certain curves of small divisors, so called curves of reso-
nance (1}, [2], [3], ] tried to study the problem in question more
thoroughly.

The first step was the construction of certain secular solu-
tions [4], [5].

Summing up | proved, that the curves of resonance can always
be iselated and avoided, but then the movements of the more
general elliptical problem (Il) differ very greatly from
the starting orbits of the so called restricted circular
asteroidal problem (I).
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Now the question arises whether the aforesaid changes, and pos-
sibly even secular changes, caused by the disturbing planet revolving
in an Keplerian ellipse, do not effect the stability and even secular sta-
bility according Hill of the movements in question.

This appears more than probable, and a study of this problem is
the main subject of the present paper. Previously such investigations
were carried out by means of the so called equipotential surfaces, and
we owe to the genius of the American astronomer G. W. Hill {1 the
discovery of surfaces of zero velocity for the circular restricted
problem 1. [6].

Starting with the Jacobian integral of energy, that luckily enough
in the case of the simplified circular problem, is always extant, and
remembering that the square velocity for all real motions must remain
positive, one is unabled to divide the whole plane (space) into regions
of real and imaginary movements. In this manner G. W. Hill finds out
certain limiting ovals, within which all movement, once started, must
remain confined for ever.

There is no possibility to escape beyond such an impenetrable
oval curtain — unless the whole movement became imaginary.

As to the thorough study of these ovals | must refer to the
original paper of Hill |6}, or in a more elementary way to text books
such as [7].

There are easily obtained planetary ovals — satellite ovals and
ovals with both possibilities of transgression from a planet case to a
satellite movement: then limiting ovals preventing the asteroid not to
approach any nearer to the central body or to the disturbing planet,
or else obliging the small body to remain for ever within a certain
maximum, utmost distance from the central body or from the distur-
bing planet. So G. W. Hill succeeded in ascertaining that our Moon
can never recede from the Earth beyond the quadruple amount of its
present distance-radius [6].

Now in my paper quoted above [1], | predicted that, as a con-
sequence of the curves of resonance and the strong disturbing effect
of the orbital excentricity of the planet, — the Hill zero velocity ovals
and surfaces must start oscillating or changing secularly from their
originally fixed position.

But at that time | understood it to be proved by the asympto-
tically diverygent series of the classical theory of perturbations. And
indeed at that time no other means appeared to be at our disposal.
Hitherto there was no knowledge of any integral analogous to that of
Jacobi for the circular restricted problem, which could have been taken
advantage of for the more general elliptical asteroidal problem.

The efforts of the classics always resulted in asymptotically
divergent developments, and these can never grant a stability according
Hill for ever, because of the existence of explicit time (8], [9], [10].

But luckily, by the same method I succeed in integrating completely
the integral equation, which replaces the Hill equation of the zero
velocity ovals in the more general case of asteroidal elliptical problem,
and thus defines the pulsations of the curves in question.
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And indeed the generalised integral equation of the zero velocity
ovals can easily be reduced to mere quadratures.

The amplitude of the pulsations proves to be of the order twice
the orbital excentricity of the disturbing planet. Such a big amount,
which appears in no way to be lessened or factored by the small mass
of the disturbing planet, means very much.

Just in the case of the passages of the most interesting ovals
of Hill from those, closed entirely round the central body (planetary
ovals) to others, which start suddenly with the change of the constant
of energy enclosing both central body and the disturbing planet,
complete havoc is played with the connection of the
originally satellite and planetary ovals. In this way
many passages of an asteroid from a planetary body
to a satellite type unforeseen by Hill become pos-
sible.

But the most interesting fact is that two neighbouring curves
never intersect one another and therefore there can never be any talk
of an envelope of Hill oscillating ovals. Moreover we are enabled to
ascertain the whole character of stability by an extremely simple survey.

The results of Callandreau [9] as well as of Wilkens |8] being
found by means of classical semi-convergent methods, with the possi-
bility of explicit time seem to remain in our case entirely out of que-
stion -— at least with the system of coordinates chosen
hereafter. Still even these are testing in favour of our view,

In general it appears proved that the pulsating zero velocity ovals
do not undergo any secular or long periodical changes, the period of
their pulsations always being exactly the same as the short-periodic
time of revolution of the disturbing planet.

On the contrary it remains more than not excluded that the
asteroidal movements are subject to strong peculiar, secular variations,
these all being caused by the mere effect of the orbital excentricity
of the disturbing planet.

Let us start with the well known equations of the asteroidal
elliptical problem. The fundamental system of rectangular coordinates
is supposed to be fixed (not rotating). The origin is assumed to be in
the Sun. Then denoting the relative coordinates to the Sun by resp.
x, y, z for the asteroid of mass zero, m =0, so that the distance
between the asteroid and the Sun of mass M is r. X, Y, Z are relative
rectangular coordinates of Jupiter, the disturbing planet.

Let us denote farther m; the mass of Jupiter, A2 the Gaussian
constant of attraction. Then taking .4, for the distance of the asteroid
from Jupiter, whose prescribed Keplerian orbit is a fixed ellipse, for
the relative coordinates of Jupiter with respect to the Sun we can
write

X=Rcosv,, Y=Rsinv,, Z=0.

which means that we take the plane of the Jupiter ellipse for the fun-
damental plane XY and v, signifies the polar angle. The equations of
motion are then
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.. oV
(l) mx—a—x—, etc.
@) V= k’M+’" m-+mS, m=0, S- km, (:, _x"’,;y”).

On multiplying the equations of motion (1) by respectively x, j/, z
adding and integrating the following integrodifferential equation is

gained, whose first notions go back till to O. Callandreau (9) and the
classics.

dU oU OU
X x=2 et 5 = or
or else

I 4
, S 02U ,, V
(3) X 4y 4z =20~1L fdt e U=

It is to be expressly noted that in consequence of our assumption of,
a prescribed Keplerian ellipse for the disturbing planet, the potential
function U contains the independent variable (time) £, not only implicitly
through the coordinates x, y, 2, but also explicitly through the coordi-
nates of Jupiter X, V, Z2 O.

Only the particular case of the restricted circular problem (I)

admits of the well known simpiification for which dU:O. Then and

ot
only then the right handside reduces to

(4) W—L=0

and defines the well known surfaces and ovals of zero velocity, which
we transform as a rule into a rotating system.

Now our general integrodifferential equation (3) for the asteroidal
elliptical case (IlI), replacing the classical integral of energy appears
rather complicated. And indeed we must bear in mind above all things
the compelling duty to perform the differentiation under the sign
of the integral with respect to the explicit time, but to carry out the
complete integration with respect to time both explicit and implicit.
Moreover the structure of the function ¢/ is very circumstantial,
especially in all the unavoidable cases of the trigonometrical develop-
ments. | refer in this respect to the classical papers of Tisserand [10),
Callandreau [9], Newcomb, Le Verrier, Laplace etc.

The same circumstances still hold if we pass from the aforesaid
integrodifferential equation (3) of energy to the simple integral equation
defining the zero velocity ovals.

The reasoning inferred from (3) remains the same as in the
Hill theory.

The square velocity figuring on the lefthand side of (3) must
remain positive for all real movements of the asteroid, therefore the
following inequality must for ever be acurately satisfied,
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4
) 2U—L—fd12?—(—j§0,

which equation, in case of equality, supersedes the definition of the
Hill zero velocity ovals of the more general asteroidal elliptical pro-
blem (II). As occurred previously, with the entire Jacobian Integral,
even in our case of this integral equation (5), it seems to have hitherto
been completely overlooked, that this equation, replacing the classical
Hill-energy relation, is completely solvable, and thus the whole pro-
blem can always be reduced to mere quadratures.

To attain this end I take advantage of a most important
property of the function U, which was well known to Gyldén
and Theodor von Oppolzer [11].

And indeed the right hand side, despite all tremendously compli-
cated trigonometrical developments of the classics nevertheless remains
in its original form, a homogenous function of negative first dimension
of Euler, with respect to both series of variables.

x, ¥, 2 X,V Z
so that if we put
x=Rx, etc

(6) X=RX,

then according to the well-known theorem of Euler, it will be

(7) URx,Ry, Rz, RX,RY,RZ) R-'U(x,y,z, X, Y, Z) =R 'U.

This Eulerian homogeneity can be more easily surveved if we pass
from rectangular to polar coordinates, owing to the particular structure
of the function U (2) (3). And indeed the transformation (6) means a
periodic contraction and dilatation of the whole space, with the perio-
dical oscillations of the prescribed Keplerian changes of R the radius

vector of the disturbing planet. Thus we can transcribe the equations (2)
in the form

(8) V:k’ﬂ—i—m

1 rcoso
m—+—k2mm,<A-— R? ),
and then recalling that, by the aforesaid oscillations, no angle can be
affected, and still less one where both legs start from the same apex-

point as R namely the Sun (as origin of coordinates)
we find immediately that r Rr, 4 R4, U=R™'U,

1
(9) U=R“‘{k2 T—{—k"’m, (A_fCOSo } RU.
However it is to be expressly pointed out that the FEulerian homo-

geneity in question (and especially in the coordinates of the disturbing
planet X, Y, Z) holds good even in the case when a rotating system
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of new axes of coordinates is introduced. But as was explained in
another more general way in the previous paper,we must compel Jupiter
to oscillate perpetually along the ¢ axis, keeping to this line and
never departing from it during its whole revolution round the Sun.

So if we wish to reach our aim viz. get rid of the explicit time,
we must choose for the rotating speed of the new rectangular system,
whose ¢ axis always points to the revolving disturbing planet, just the
speed of Jupiter. And in fact for this particular choice, n, as well as

&, disappears and T€O89 s reduced to
R

xX+yY &t &,
R? Re R

The main achievement thus arrived at, can easily be tested and
at the same time made more comprehensible, if we choose to introduce
the Eulerian transformation just from the start namely in the original
equations of movement holding for the fixed system of rectangular
coordinates (1).

As a direct computation would appear rather tedious through the
carrying out of many second derivations, it appears advisable to apply
the Lagrangean scheme and, only after the introduction, of the rota-
ting, non uniform system to choose for LLagrangian variables
resp‘ 5! ”v c-

Using the same notation as before, we find out for the expression
of the Lagrangean kinetic Energy

(1) 2T m(P+3"+2) miR2 (x4 )R+ )+ 2RR(xx+..)}

After the introduction of the rotating system animated with the Jovian
speed we find out for

(10) =R:, 5i=R.

2T - m{R'r" +2RR B s RY 3+ R703 (8 +n))+
(]2) £on.d

+2R, (Sn 78)}-
Then the l.agrangean scheme leads finally to the equations

R s— 20, R n+2RRs — nRH,+ sRH, = ‘;U,

-
~

>

(13) oU

R+ 20, Rs+2RRy+sRH +nRHy = 5=,
n

R+ 2RR+:RYS + Ry =Y,

>

H)“_Ri'l'*_?Ri'll H’——_R_Rv;.
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If we wish to get rid of the terms », &, it is advisable to choose
the hitherto not disposed of velocity of the rotating system in such a
way that it coincides with the rotational Keplerian speed of the distur-
bing planet, and indeed the equation

H, = v,R+2Rv, =0,

gives Y19 g, on integrating logv,=log R ?*+logc
Uy
or else
(14) Rev,=c=k\a,)\1—e?\M+m,

But this equality expresses just the Keplerian law of areas for the
disturbing Jupiter, and simultaneously for this choice of the non uni-
form speed of the rotational system, the coefficient //, goes over into

R2(M~+m))

Rg ’
this equation expressing equality of accelerations. In this way we succeed
in transcribing the fundamental equations of motion (13) in the form

(15) Hy=R—-1?R= —

d (R?¢) a1 02

- dt _QTlRQn—R ()5’

(16) d (R®n) . _1 o
dt +201R25 R di) ’

d(R2)) +C2“ 1 0@
dt RQ R (): ’

where we have made use of the sameness

(7) R3s + 2RR § = 2 (R2g), ete.
and the identities
8 o BMEm) 2 | r?.+1 ko, | ) e
( ) - 20? _20? rJ 1| Qa? AJ
- i 24 2 1 _
Feoso— T ¥4y RBM + k2m, (._.A__’C(;S"), R-a,
2[11 r \J al

After multiplying (16) resp. by the factors 2R2§, 2/?27.7, 2/\’2;; and sum-
ming up we get the result:

e’ d(RQ) _ 0(RY)
o (Rt G Rempt TR+ —af 4 R
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The integration is carried out, if we combine the square as

(19) R‘(f -+-n +( )+c“’; —~2.()R-—L-—fdt2.()q—R>0

Let us limit ourselves this time to the questions of stability for r=0.
All throughout eyery real movement, defined by the equations of motion
the left-hand side of (19) must remain positive, representing a positive
square of the velocity of the asteroid. Consequently the limiting sur-
faces (or ovals) — if they exist — are defined by the last relation.

Now the integral equation can be written
(20) 20R—L— f dt?!.)dR 0.

And this equation is immediately solved by repeated substitutions.
The resulting development is always absolutely and uniformly conver-
gent, admitting the same dominating function as the exponential.

t
202 é‘{l-}-fdt;?‘;f +fdt ;?%It? dt;?%?)
t
3
1 OR 1 OR 1 0R
+f‘”[Ra:f‘” Rdtfdtht] N
[
R 3
(fd logR> (fd log R)‘ }
' +...

21) 20 {l+fdlog,R+ L s

Let us choose the startmg radius vector R=a, which corresponds

to the true anomaly cos v,-:e, t=1¢, For this choice we obtain put-
ting a, =1

(22) 20 g { | +logR + (log Ry

+ (log R)"‘

s
The series arrived at is mamfestl), uniforml), and absulutely

convergent, as having the same dominating function as the exponen-
tial function.

The convergency holds good for all points of the complex Gaus-
sian plane, with the exception of the point at infinity.

Moreover we can sum up the whole series in the form of an
exponential thus finding the result

L
23 20 =_exR=[,
(23) R
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The solving function is given by @, (18) — but by this it is not
said that the original unknown in (5), (8), (9), (18) namely the func-

tion U remains unchanged — and indeed we must return to the ori-
ginal variables, which means to put
(24) E=fRY, n=nR7, =(R7 &§=R m=p=0,

whereby the final solution of the general integral equation appears to
be given by

s ’+29( 1>__L o <R "R 5?)
R? R’ R/ 7 R

This important result gives the pulsations of the original Hill zero
velocity oval.

Summing up we gather from the preceeding analysis the follo-
wing theorem holding good for the case Il of an asteroidal elliptical
problem (meant in space and in a rotating system of coordinates).

The zero velocity surfaces (ovals) of the restricted circular pro-
blem I through the influence of the orbital excentricity of the distur-
bing planet Jupiter, undergo by passage to the more gene-
ral asteroidal elliptical problem strong oscillations
with the periodof revolution of thedisturbing planet.

The size of these oscillations is of the same order
as the orbital excentricity of the planet being in no
way lessened or factored by any disturbing small
mass m,.

On the contrary no secular changes appear to be ascertained.
But this circumstance does not exclude a very probable possibility of
secular changes of the orbits themselves. Another expression of the
result, just obtained, could even be worded as follows:

The original zero velocity surfacesof thestarting
restricted circular problem undergo, by passage to the
more general elliptical asteroidal problem in the XV
plane for =0, merely such changes as may arise by the
corresponding oscillations of the original constant

of energy C, which goes over into Ik
As the consequences of the theory explained herewith appear to
be farreaching, it will be not out of place to try and prove the
equation (23), etc. of the strongly pulsating ovals once more directly.
For that purpose let us start with the equations (13), multiply by

the factor f: and use the integral of areas R?v,=—c, (14)
c=k)a,V1—e2yM+m,.

Let us now introduce the true anomaly v, of the disturbing
planet instead of the time as independent variable. The original deriva-
tion with respect to the time will be replaced by resp.

b HasecTus ma MatemaTrwueckns mmwcrmryTt, T. II, un. 2
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a’: R dg €, ds _ 6 dn

£ dv? R — 26 R av) $ TRe av,’ "—R'-’ dv, (25)

After all computations have been carried out, we get the equations of
Prof. Petr and Nechvile (13) in the form

d’: dn R 00

dv? 2d'v, et gs]
dar/ d: [\, g0
(2(‘ i 2 = ’
26) dv? t dv, «c? gy
d - R 00 c . .
~ - - Q bein iven by (18
do: Fooo o-' ¢ R g 8 y (18)

Hence by multiplying respectively by (;l,';’ :.;,)' :{:
1 1 1

L]

adding and put-
ting o 2’, we obtain:

d’: d; d®y dy a’s d¥: . L 4a: d (Q)w o (-.)

«.‘z";‘ “v, + dv? duv, _ dvi dv, s duv, dv, \ o ov,
after integration with respect to ¢,
(4} () 1
2 2 \2
ds dng d- LA ¥ f 0
27 ( ‘) : ‘)f“ ~—I—— 20 T dv 0,
( ) (11" * (\d‘l'l) }_(“I’l ! = L (11'] ¢ !

Tn
which integral equation in case of the extreme, namely the equation

of pulsating curves for = -0 is solved by repecated substitution, as
previously and leads to the result:

o ()(1) T o l, v, ()ln
‘
awr s tove fleg o te flan o2 fane] +

If we change simply the necessary quadratures from
1
d
1

|
oo dz-lzd(a) o

and remember that

3
(29) e e o] log “+(log of ,(los‘lo) + ..

the same method, as all previous ones gives the result

(30) 20(5,n) 292 (r, N)=ole ke =/
which leads to the resulting pulsating oval
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(31) 2!.)(’ ) 29(1?’ -1)_

or else

my

(32) (4 m, £2); +2R( +-5«) L—0,q.e.d.

In the picture p. 68 the original Hill-Darwin ovals for C  3.491, 3.888,
4.018 have been drawn by means of a Nomogram. The method chosen
uses three parallel axes at the following distances: 0, 1, 11.

The unity of length on the middle axis was chosen ten times
longer than that used on both the others, in order to avoid the detri-
mental condensation of the peculiar coordinates.

By means of this Nomogram the fixed ovals of the restricted
1 1
100710

Then all pulsating increases and especially those belonging to a
Maximum and a Minimum, can be achieved by merely shortening and
lengthening to the extent of 109/, every vector radius — all starting
from the origin (the Sun).

And indeed, on beginning with the original Hill-Darwin oval of
equation (30) (In the picture full line, while the extreme ovals are
drawn iIn e—— ),

circular asteroidal problem were obtained for m,

. . r fo)
and putting r=:u. J=d=nu 1e. ¢ RS
u u
. 1 m, 1 u mu
we easily get =+ or else + -1,
r A4 U r N
S m, .
which is 4 " 1 a fixed hyperbola,
0 9 2
then r’—+m, 1~+u = L
. 2
gives (£24-mn?)u? = L—u ,

+mn® (lu—2)u*
or else - : 4+ _’,7“
(" VIu—2)2" (my7u=" [y—2)
1 7=110 = 31622777.
The axes of the changeable ellipse are resp.
a,=3163u""V,Lu—-2, f:=u"VL[u—2,

where we put successively u==1,2,3...
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while the hyperbola l: 3- ":l‘ =1 remains fixed for all. In the case of
the general pulsating s‘urface, oval (32), we easily find

a, (1 —e))
1 4+¢,cosv,’

1
(72 + m, 42) R +2R<lr +”_1;>:L’ R =

- . 1 l m . . l 5
Putt —_— = [ 1 y - ) ) - <
Ing again R(r p ), which is (r2+m, 1?) L_u'

we replace this time, resp. by:
Ru 1 Ru 1 1 o d

thus obtaining »]:——}— ”';‘ = 1 the fixed hyperbola

-

and a movable curve

(et m ) =L~

when transcribed

=2 7?

N +
(@ YV Llu--2)2  m, 'u Yy Lu—2)?
The semiaxes of this ellipse being fixed by

a,=3162V, u—2u-"", #g: VIiu—2u '

1—e? Il—e';'
r=uil—e d—nuil—e
I+e! L1+
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EOHO HWHTENPAMTHO YPABHEHHE 3A IMYICAIIHHTE
HA OBAJIHMTE HA HYJIEBATA CKOPOCT B
ACTEPOHMIAHATA EJIMIITHYHA 3AJ1AYHA

B. B. Xaftupux ([1para)

PE3IOME

Ilo6pe u3BecTHaTa TeOpHs HAa YCTOHYMBOCTTA no Xua 3a cnenuan-
HaTa acTepoOHIHA KpPbIOBa 3aaauda ce€ YCJOXXHHB4A, aKO IlIpeMHHEM KLM
CJly4yas Ha no-06ula'ra €JIHINITHYHA aCTepPOHJIHA 3a1aud, IIPH KOATO €KCll€H-
TPHIIHTETDHT HA OPGHTaTﬂ Ha CMYylllaBaulaTta I1JdHeTa € Ppa3fuuyeH oOT
Hyna. JloceraulHuTe TCOPHH JOBEXKJaXa BHHArH JI0 KJACHYECKHTE CeMH-
KOHBEPreHTHH Pa3BHTHA. Te3H METOAHM NPaBHT 00aye BCCKH KPUTepUl 3a
YCTORYHUBOCT HECHTYPEH.

ABTOp’bT H3NnoJ13yBa €J/1Ha 1106p€ H3BeCTHA TeOopeMd 3a XOMOI'€H-
HHUTe (PYHKIIMH M VCNSABA J1a PeUIH HAN'bJHO MHTErpaJHOTO YpaBHEHHE,
KOeTO HWrpae poJsi B Ta3n 3anauda. Taka nsaata npodaeMd ce cBeXaa 1o

KBaAPaTVPH H Ce€ BHACY MPErJeaHOCT HAa CHIAHMTE 1VJACAIHM H3 OBAJHTE
Ha Hy.JneBaTa CKOPOCT.



OJIHO HUHTEI'PAJIBHOE YPABHEHHE O MYJIbCALIUSIX OBAJIOB
HYJIEBOM CKOPOCTH B ACTEPOUIHOM
SJVIMNTHUYECKOM 3AIAYE

B. B. I'efinpux ([1para)

PE3IOME

Xopomo H3BeCTHas TeOPHS YCTOAUHBOCTH NO XHANY AAN  ClelH-
anLHOA acTepOHAHOR KPYrOBOH 3a/1a4H YCJIOXKHHETCH, €CJU Mbl nepeiaem
K cayuai Gonee o6ilefi 3MHNTHYCCKOR acCTepPOHNHOA 3anaun, NpH KOTO-
pPOAl 3KCUEHTPHIIHTET OPOHTH CMYUlaloUled MN1aHeTh He CcoBnaaaetr ¢
Hynem. CyulecTBOBaBIlIHE 0 CHX [MOP TE€OPHH MNPHBOAHJIHM BCeraa kK
KJACCHYECKHM CEMHKOHBEPreHTHHM pa3BuTusiM. B peayabrate npumene-
MU STHX METONOB, OJHAKO, NI6OI KPHTEPHA YCTOHYMBOCTH CTAHOBHTCS
HeHAJle XKHBIM.

ABTOpP HCNOAL3YeT ILUHPOKO H3BECTHYK) TeopeMy 006 OILHOPOAHBIX
(QYHKIIHAX H €My YA3aeTCH PEeIIHTL MOJHOCThIO HHTerpaJnLHOe ypaBHe-
HHe, Hrpawiilee poab B 3TON 3anave. Takum 0O0Opa3oM, Bcs npobaema
CROIUTCH K KBaAPaTypaM H MOAYYAETCH HAIASAHOCTb CHAbHBIX NYJAbCAlHA
OBa/lOB HYJeBOR CKOPOCTH.
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