SUR La Synthèse des schémas à relais polarisés

Gr. C. Moisil (Bucarest)

Nous nous proposons de montrer dans ce Mémoire comment on peut faire la synthèse d'un schéma à relais polarisés. Nous étudierons l'exemple suivant.

Cherchons un schéma à un bouton A et quatre lampes et à relais polarisés, tel que si on presse une fois le bouton deux lampes s'allument, dont l'une S s'éteint immédiatement et l'autre U reste allumée, même après avoir cessé de presser le bouton: si l'on presse le bouton la seconde fois, la lampe U s'éteint, la lampe S s'allume ainsi qu'une autre lampe V; la lampe S s'éteint immédiatement, la lampe V reste allumée, méme après avoir cessé de presser le bouton. Si l'on presse le bouton la troisième fois, la lampe V s'éteint, la lampe S, ainsi qu'une quatrième lampe W s'éteint immédiatement, la lampe W ne s'éteint que lorsqu'on cesse de presser le bouton; à cet instant le schéma reprend la position de repos.

Nous avons montré [1] que ce schéma

Fig. 1 nécessite deux relais polarisés X et Y.

Un relais polarisé est un relais dont l'électro-aimant à deux bobinages opposés ξ^{+}, ξ^{-}(fig. 1). Si le courant circule dans un sens, dans le bobinage ξ^{+}, le contact est attiré et prend la position 1; si le courant circule dans l'autre sens, dans le bobinage ξ^{-}, le contact est repoussé et prend la position 2. S'il n'y a pas de courant dans les bobinages, le contact prend la position neutre 0.

Nous associons au contact une variable x qui prend l'une des trois valeurs 0,1 , ou 2 suivant que le contact est dans la position 0,1 ou 2.

Nous associons au courant une variable ξ qui prend la valeur 0 si le courant ne circule pas dans les bobinages, la valeur 1 s'il circule dans le sens qui attire le contact, la valeur 2 s'il circule dans le sens qui repousse le contact.

L'action du courant influence le contact dans l'intervalle temporel suivant, donc [2], [3], [4], [5], [6]:

$$
\begin{equation*}
x_{N+1}=\xi_{N} \tag{I}
\end{equation*}
$$

Cette équation caractéristique est valable pour chaque relais polarisé.
Le passage du courant dans un sens ou dans l'autre sens est une fonction de la position dans l'intervalle temporel considéré des contacts du schéma:

$$
\begin{equation*}
\xi_{N}=f\left(a, x_{N}, y_{N}\right), \tag{II}
\end{equation*}
$$

$$
\eta_{N}=g\left(a, x_{N}, y_{N}\right)
$$

En éliminant les variables de courant s, η on obtient un système d'équations de récurrence

$$
\begin{align*}
& x_{N+1}=f\left(a, x_{N}, y_{N}\right), \\
& y_{N+1}=g\left(a, x_{N}, y_{N}\right) \tag{III}
\end{align*}
$$

qui décrit le fonctionnement du schéma.
L'analyse du schéma consiste dans la description du fonctionnement du schéma quand on connait sa structure, donc dans la formation du système d'équations de récurrence (III) quand on connait la structure du schéma.

La synthèse du schéma consiste en la détermination des fonctions f, g telles que le schéma ait un programme de fonctionnement donné.

Cette théorie imite celle que nous avons donné pour les relais ordinaires [7].

I

Supposons qu'on veuille exécuter le programme donné. Ce programme peut ètre décrit comme suit.

Il y a une position de repose pour $a=0$, que nous supposons être $x=y=0$; cette position est stable, donc

$$
\begin{equation*}
f(0,0,0)=0 \quad g(0,0,0)=0 \tag{1}
\end{equation*}
$$

et dans cette position les lampes sont éteintes
(2) $u(0,0,0)=0 \quad v(0,0,0)=0 \quad \boldsymbol{v}(0,0,0)=0 \quad s(0,0,0)=0$.

Si on presse le bouton la première fois, les contacts des relais prennent deux positions successives, que nous supposerons étre

$$
\begin{array}{ll}
x=0 & y=1 \\
x=1 & y=1
\end{array}
$$

donc
(3)

$$
\begin{array}{ll}
f(1,0,0)=0 & g(1,0,0)=1 \\
f(1,0,1)=1 & g(1,0,1)=1
\end{array}
$$

et dans ces positions on a :

(5)	$u(1,0,1)=1$	$v(1,0,1)=0$	$w(1,0,1)=0$	$s(1,0,1)=1$
(6) $u(1,1,1)=1$	$v(1,1,1)=0$	$w(1,1,1)=0$	$s(1,1,1)=0$	

La dernière position est stable
(7) $f(1,1,1) 1 \quad g(1,1,1) 1$.

Si on cesse de presser le bouton les contacts des relais prennent une position
donc

$$
x \quad 1 \quad y=0
$$

(8)

$$
f(0,1,1)=1
$$

qui est stable

$$
g(0,1,1) \quad 0
$$

(9)

$$
f(0,1,0)=1
$$

$$
g(0,1,0)=0
$$

et la lampe U reste allumée
$u(0,1,1)=1$
$v(0,1,1)=0$
$w(0,1,1)=0$
$s(0,1,1)=0$
(11) $u(0,1,0)=1$
$\boldsymbol{v}(0,1,0)-0$
$w(0,1,0)=0$
$s(0,1,0)=0$

Quand on presse le bouton la deuxième fois les contacts des relais prennent deux positions que nous supposerons être

$$
\begin{array}{ll}
x=1 & y=2 \\
x=0 & y=2
\end{array}
$$

donc

$$
\begin{array}{ll}
f(1,1,0)-1 & g(1,1,0)=2 \\
f(1,1,2)-0 & g(1,1,2)=2 \tag{13}
\end{array}
$$

et cette position est stable

$$
\begin{equation*}
f(1,0,2)=0 \tag{14}
\end{equation*}
$$

$$
\mathrm{g}(1,0,2)=2
$$

Dans ces positions

(15) $u(1,1,2)=0$	$v(1,1,2)=1$	$w(1,1,2)=0$	$s(1,1,2)=1$
(i6) $u(1,0,2)=0$	$v(1,0,2)=1$	$w(1,0,2)=0$	$s(1,0,2)=0$.

Si on cesse de presser le bouton, les contacts des relais prennent une nouvelle position stable, que nous supposerons être

$$
x=2 \quad y=2
$$

donc
(17)

$$
\begin{array}{ll}
f(0,0,2)=2 & g(0,0,2)=2 \\
f(0,2,2)=2 & g(0,2,2)=2 .
\end{array}
$$

La lampe V restant seule allumée on a
$\begin{array}{llll}(19) u(0,0,2)=0 & v(0,0,2)=1 & w(0,0,2)=0 & s(0,0,2)=0 \\ (20) u(0,2)=0 & v(0,2,2)=1 & w(0,2,2)=0 & s(0,2,2)=0\end{array}$
(20) $u(0,2,2)=0 \quad v(0,2,2)=1 \quad v(0,2,2)=0 \quad s(0,2,2)=0$.

Quand on presse le bouton la troisième fois, les contacts des relais prennent deux nouvelles positions, que nous supposerons être

$$
\begin{array}{ll}
x=2 & y=0 \\
x=2 & y=1
\end{array}
$$

la dernière étant stable

$$
f(1,2,2)=2 \quad g(1,2,2)=0
$$

$f(1,2,0)=2$
$g(1,2,0)=1$
(23)
$f(1,2,1)=2$
$g(1,2,1)=1$
et on aura
$(24) u(1,2,0)=0 \quad v(1,2,0)=0 \quad w(1,2,0)=1 \quad s(1,2,0)=1$
(25) $u(1,2,1)=0 \quad v(1,2,1)=0 \quad w(1,2,1)=1 \quad s(1,2,1)=0$.

Si on cesse de presser le bouton, le schéma entre en repos

$$
f(0,2,1)=0 \quad g(0,2,1)=0 .
$$

Les équations (1), (3), (4), (7), (8), (9), (12), (13), (14), (17), (18), (21), (22), (23), (26), ne définissent pas complètement les fonctions f et g. car leurs valeurs pour $a=0$ et $x=0, y=1 ; x=1, y=2 ; x=2$. $y=0$ ne sont pas connues.

Posons

$$
\begin{array}{ll}
f(0,0,1)=a_{1} & g(0,0,1)=\beta_{1} \\
f(0,1,2)=a_{2} & g(0,1,2)=\beta_{2} \\
f(0,2,0)=a_{3} & g(0,2,0)=\beta_{3} .
\end{array}
$$

On a donc 3^{8} schémas différents qui remplissent le programme donné.

II

Dans le corps des classes des restes modulo 3 les fonctions interpolatrices de Lagrange sont

$$
\begin{aligned}
& L_{0}(x)=2 x^{2}+1 \\
& L_{1}(x)=2 x^{2}+2 x \\
& L_{2}(x)=2 x^{2}+x .
\end{aligned}
$$

Elles donnent

$$
\begin{array}{lll}
L_{0}(0)=1 & L_{0}(1)=0 & L_{0}(2)=0 \\
L_{1}(0)=0 & L_{1}(1)=1 & L_{1}(2)=0 \\
L_{2}(0)=0 & L_{2}(1)=0 & L_{2}(2)=1 .
\end{array}
$$

Une fonction d’une variable $f(x)$ peut être développée

$$
f(x)=f(0) L_{0}(x)+f(1) L_{1}(x)+f(2) L_{2}(x) .
$$

De la mème manière on peut développer une fonction de deux variables:

$$
\begin{aligned}
& f(x, y)=f(0,0) L_{0}(x) L_{0}(y)+f(0,1) L_{0}(x) L_{1}(y)+f(0,2) L_{0}(x) L_{2}(y) \\
& \quad+f(1,0) L_{1}(x) L_{0}(y)+f(1,1) L_{1}(x) L_{1}(y)+f(1,2) L_{1}(x) L_{2}(y) \\
& \quad+f(2,0) L_{2}(x) L_{0}(y)+f(2,1) L_{2}(x) L_{1}(y)+f(2,2) L_{2}(x) L_{2}(y) .
\end{aligned}
$$

Par exemple, les fonctions $f(0, x, y), g(0, x, y)$ définies par les conditions (1), (8), (9), (17), (18), (26), (27), (28), (29) et les fonctions $f(1, x, y), g(1, x, y)$ définies par les conditions (3), (4), (7), (12), (13), (14), (21), (22), (23) sont:

$$
\begin{aligned}
& f(0, x, y)=L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)+2 L_{0}(x) L_{2}(y)+2 L_{2}(x) L_{2}(y) \\
& \quad+a_{1} L_{0}(x) L_{1}(y)+a_{2} L_{1}(x) L_{2}(y)+a_{3} L_{2}(x) L_{0}(y)
\end{aligned}
$$

$$
g(0, x, y)=2 L_{0}(x) L_{2}(y)+2 L_{2}(x) L_{2}(y)+\beta_{1} L_{0}(x) L_{1}(y)+\beta_{2} L_{1}(x) L_{2}(y)
$$

$$
+\beta_{3} L_{2}(x) L_{0}(y)
$$

$$
f(1, x, y)=L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)+2 L_{2}(x) L_{2}(y)
$$

$$
+2 L_{2}(x) L_{0}(y)+2 L_{2}(x) L_{1}(y)
$$

$$
g(1, x, y)=L_{0}(x) L_{0}(y)+L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y)+2 L_{1}(x) L_{0}(y)
$$

$$
+2 L_{1}(x) L_{2}(y)+2 L_{0}(x) L_{2}(y)+L_{2}(x) L_{0}(y)+L_{2}(x) L_{1}(v)
$$

Appelons a la fonction d'une variable bivalente a telle que

a	0	1
a	1	0

Nous pouvons écrire:

$$
\begin{aligned}
f(a, x, y) & =a\left[L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)+2 L_{2}(x) L_{2}(y)\right. \\
& \left.+2 L_{2}(x) L_{0}(y)+2 L_{2}(x) L_{1}(y)\right]+a\left[L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)\right. \\
& +2 L_{0}(x) L_{2}(y)+2 L_{2}(x) L_{2}(y)+a_{1} L_{0}(x) L_{1}(y) \\
& \left.+a_{2} L_{1}(x) L_{2}(y)+a_{3} L_{2}(x) L_{0}(y)\right] \\
g(a, x, y) & =a\left[L_{0}(x) L_{0}(y)+L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y)+2 L_{1}(x) L_{0}(y)\right. \\
& \left.+2 L_{1}(x) L_{2}(y)+2 L_{0}(x) L_{2}(y)+L_{2}(x) L_{0}(y)+L_{2}(x) L_{1}(y)\right] \\
& +a\left[2 L_{0}(x) L_{2}(y)+2 L_{2}(x) L_{2}(y)+\beta_{1} L_{0}(x) L_{1}(y)\right. \\
& \left.+\beta_{2} L_{1}(x) L_{2}(y)+\beta_{3} L_{2}(x) L_{0}(y)\right] .
\end{aligned}
$$

On a pu donner, de cette manière, une forme algébrique aux fonctions de travail des deux relais.

III

Pour pouvoir construire un schéma à relais polarisé qui satisfasse aux conditions données, nous devons décrire la structure d'un pareil schéma.

Les contacts d'un pareil schéma seront liés en série et en parallèle. Chaque relais X a trois espèces de contacts: les contacts x^{0} pour la position 0 , les contacts x^{1} pour la position 1 et les contacts x^{2} pour la position 2. Ces contacts seront mis en série pour former des circuits. Si on forme un circuit avec les contacts $x_{i_{1}}^{\mu_{1}}, \ldots, x_{i_{r}}^{\mu_{r}}\left(\mu_{i}=0,1,2\right)$ des relais $X_{i_{1}}, \ldots, X_{i_{r}}$, mis en série, ce circuit sera noté

$$
x_{i_{1}}^{\mu_{1}}, \ldots, x_{i_{r}}^{\mu_{r}}
$$

Un schéma $/ /$ ̀̀ contacts tripositionnels est formé de pareils circuits montés en parallèle. Un pareil schéma sera noté

$$
x_{i_{1}}^{\mu_{1}} \quad x_{i_{r}}^{\mu_{r}} \cup x_{j_{2}}^{\nu_{1}} \ldots x_{j_{s}}^{v_{s}} \cup \ldots \cup x_{h_{1}}^{\alpha_{1}} \ldots x_{n_{t}}^{o_{t}} .
$$

Comme l'a montré A. Duschek [8] un pareil schéma à ní contacts peut être écrit sous la forme normale

$$
\begin{equation*}
U \lambda_{a_{1}} \ldots a_{n} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}} \tag{*}
\end{equation*}
$$

où $\lambda_{n_{1}} a_{n}$ est 0 ou 1 , suivant que le circuit $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ existe ou non dans le schéma; on pose

$$
\mathrm{U} \boldsymbol{v}_{t}=v_{1} \cup v_{2} \cup \ldots \mathrm{U} \boldsymbol{v}_{m}
$$

Nous appellerons formule de structure du schéma Π la formule (*). On voit que, si le dessin du schéma est connu, on peut écrire la formule de structure et réciproquement. Un exemple sera donné plus bas.

Nous appellerons fonction de travail bivalente d'un schéma II à n contacts tripositionnels une fonction de n variables x_{1}, \ldots, x_{n} qui, pour des valeurs données (0,1 , ou 2) aux variables ($x_{i}=0,1,2$ si le i-ème contact est dans la position $0,1,2$) prend la valeur l si le courant peut passer par le dipole et la valeur 0 s'il ne peut pas passer par le dipôle.

Considérons les trois fonctions interpolatrices de Lagrange $L_{a}(x)$. On voit que lafonction

$$
\begin{equation*}
f=\sum \lambda_{a_{1}} \ldots a_{n} L_{a_{1}}\left(x_{1}\right) \ldots L_{a_{n}}\left(x_{n}\right) \tag{**}
\end{equation*}
$$

est la fonction de travail du schéma ayant laformule destructure (*).

En effet, si les contacts du schéma ayant la formule de structure (*) sont dans la position

$$
x_{1}=y_{1}, \ldots, x_{n}=y_{n}
$$

le courant ne peut passer dans le schéma (*) que par le circuit

$$
\lambda_{y_{1}} \quad y_{n} x_{1}^{y_{1}} \ldots \ldots x_{n}^{y_{n}}
$$

Or ce circuit existe dans le schéma si $\lambda_{r_{1}} \ldots r_{n}=1$. Ceci équivaut à dire que dans l'expression (**) on a un terme

$$
\lambda_{r_{1} \ldots r_{n}} L_{r_{1}}\left(x_{1}\right) \ldots L_{r_{n}}\left(x_{n}\right)
$$

avec $\lambda_{r_{1} \ldots r_{n}}=1$; or $L_{r_{1}}\left(\gamma_{1}\right) \ldots L_{r_{n}}\left(\gamma_{n}\right)=1$, donc ce terme est 1 . Les autre termes de (**) sont nuls. Donc (**) est la fonction de travail du schéma (*).

IV

Dans le § II nous avons construit les fonctions trivalentes de travail des deux relais. Leurs relations avec les fonctions bivalentes sont faciles à établir.

Soient ξ^{+}, ξ^{-}les deux bobinages opposés du relais X, f^{+}, f^{-} leurs fonctions de travail bivalentes

$$
\begin{aligned}
& \xi^{+}=f^{+}(a, \ldots, c, x, \ldots, z) \\
& \xi^{-}=f-(a, \ldots, c, x, \ldots, z) .
\end{aligned}
$$

La fonction de travail trivalente est

$$
\xi^{+}+2 \xi^{-}=f(a, \ldots, c, x, \ldots, z) .
$$

Réciproquement

$$
\begin{aligned}
& \xi^{+}=L_{1}(f) \\
& \xi^{-}=L_{2}(f) .
\end{aligned}
$$

En effet

$$
\begin{aligned}
& \begin{aligned}
& L_{1}(\xi)=2\left(\xi^{+}+2 \xi^{-}\right)^{2}+2\left(\xi^{+}+2 \xi^{-}\right) \\
&=2\left(\xi^{+}\right)^{2}+2 \xi^{+} \xi^{-}+2\left(\xi^{-}\right)^{2}+2 \xi^{+}+\xi \\
&=2 \xi^{+}+2 \xi^{-}+2 \xi^{+}+\xi^{-} \\
&=\xi^{+} \\
&\text {(on a } \left.\left(\xi^{+}\right)^{2}=\xi^{+},\left(\xi^{-}\right)^{2}=\xi^{-} \text {et } \xi^{+} \xi^{-}=0\right) .
\end{aligned}
\end{aligned}
$$

De même

$$
L_{2}(\xi)=2\left(\xi^{+}+2 \xi^{-}\right)^{2}+\left(\xi^{+}+2 \xi^{-}\right)=\xi^{-} .
$$

Remarquons que

$$
\begin{aligned}
L_{y}(t) & =L_{r}\left[\sum \lambda_{a_{1} \cdots a_{n}} L_{a_{1}}\left(x_{1}\right) \ldots \ldots L_{a_{n}}\left(x_{n}\right)\right] \\
& =\sum L_{r}\left(\lambda_{a_{1} \cdots a_{n}}\right) L_{a_{1}}\left(x_{1}\right) \ldots \ldots L_{a_{n}}\left(x_{n}\right) .
\end{aligned}
$$

En effet $L_{y}(f)$ est la fonction qui prend les valeurs $L_{r}(f(x))$ pour toute valeur de $x \in G F$ (3), donc elle est donnée par la formule d'interpolation ci-dessus.

Appliquons ces principes aux fonctions f et g du \S II. Nous remarquons que

a	0	1
a	1	0
$2 a$	0	2
$2 a$	2	0

donc

$$
\begin{array}{lll}
L_{0}(a) a & L_{1}(a)=a & L_{2}(a)=0 \\
L_{0}(a)=a & L_{1}(a)=a & L_{2}(a)=0 \\
L_{0}(2 a)=a & L_{1}(2 o)=0 & L_{2}(2 a)=a \\
L_{0}(2 a)=a & L_{1}(2 a)=-0 & L_{2}(2 a)=a .
\end{array}
$$

On a donc

$$
\begin{aligned}
\xi^{+}= & L_{1}(f)=a\left[L_{0}(x) L_{1}(y)\right. \\
& \left.+L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)\right] \\
& +a\left[L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)\right] \\
& +L_{1}\left(a_{1} a\right) L_{0}(x) L_{1}(y) \\
& +L_{1}\left(a_{2} a\right) L_{1}(x) L_{2}(y) \\
& +L_{1}\left(a_{3} a\right) L_{2}(x) L_{0}(y) \\
\xi^{-}= & L_{2}(f)=a\left[L_{2}(x) L_{2}(y)\right. \\
& \left.L_{2}(x) L_{0}(y)+L_{2}(x) L_{1}(y)\right] \\
& +a\left[L_{0}(x) L_{2}(y)+L_{2}(x) L_{2}(y)\right] \\
& +L_{2}\left(a_{1} a\right) L_{0}(x) L_{1}(y) \\
& +L_{2}\left(a_{2} a\right) L_{1}(x) L_{2}(y) \\
& +L_{2}\left(a_{3} a\right) L_{2}(x) L_{0}(y) \\
\eta^{+}= & L_{1}(g)=a\left[L_{0}(x) L_{0}(y)\right. \\
& +L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y) \\
& \left.+L_{2}(x) L_{0}(y)+L_{2}(x) L_{1}(y)\right] \\
& +L_{1}\left(\beta_{1} a\right) L_{0}(x) L_{1}(y) \\
& L_{1}\left(\beta_{2} a\right) L_{1}(x) L_{2}(y) \\
& +L_{1}\left(\beta_{3} a\right) L_{2}(x) L_{0}(y) \\
\eta_{1}= & L_{2}(g)=a\left[L_{1}(x) L_{0}(y)\right. \\
& \left.+L_{1}(x) L_{2}(y)+L_{0}(x) L_{2}(y)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +a\left[L_{0}(x) L_{2}(y)+L_{2}(x) L_{2}(y)\right]+L_{2}\left(\beta_{1} a\right) L_{0}(x) L_{1}(y) \\
& +L_{2}\left(\beta_{2} a\right) L_{1}(x) L_{2}(y)+L_{2}\left(\beta_{8} a\right) L_{2}(x) L_{0}(y) .
\end{aligned}
$$

Par exemple, pour $a_{1}=\quad=\beta_{3}=0$ on a

$$
\begin{aligned}
\xi^{+}=a\left[L_{0}(x) L_{1}(y)\right. & \left.+L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)\right] \\
& +a\left[L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y)\right] \\
\xi^{-}=a \mid L_{2}(x) L_{2}(y) & \left.+L_{2}(x) L_{0}(y)+L_{2}(x) L_{1}(y)\right] \\
& +a\left[L_{0}(x) L_{2}(y)+L_{2}(x) L_{2}(y)\right]
\end{aligned}
$$

$$
\eta^{+}=a\left[L_{0}(x) L_{0}(y)+L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y)+L_{2}(x) L_{0}(y)+\right.
$$

$$
\left.+L_{2}(x) L_{1}(y)\right]
$$

$$
\eta^{-}=a\left|L_{1}(x) L_{0}(y)+L_{1}(x) L_{2}(y)+L_{0}(x) L_{2}(y)\right|
$$

$$
+a\left[L_{0}(x) L_{2}(y)+L_{2}(x) L_{2}(y)\right]
$$

ce qui donne les formules de structure suivantes: pour le dipóle alimentant ξ^{+}

$$
a\left(x^{0} y^{1} \cup x^{1} y^{1} \cup x^{1} y^{0}\right) \cup a\left(x^{1} y^{1} \cup x^{1} y^{0}\right)
$$

pour celui qui alimente ξ^{-}

$$
a\left(x^{2} y^{2} \cup x^{2} y^{0} \cup x^{2} y^{1}\right) \cup a\left(x^{0} y^{2} \cup x^{2} y^{2}\right)
$$

pour celui qui alimente η^{+}

$$
a\left(x^{0} y^{0} \cup x^{0} y^{1} \cup x^{1} y^{1} \cup x^{2} y^{0} \cup x^{2} y^{1}\right)
$$

et pour celui qui alimente η^{-}

$$
a\left(x^{1} y^{0} \cup x^{1} y^{2} \cup x^{0} y^{2}\right) \cup a\left(x^{0} y^{2} \cup x^{2} y^{2}\right)
$$

donc on a le schéma de la figure (p. 128).
Pour construire les fonctions de travail des lampes, nous devons employer les équations (2), (5), (6), (10), (11), (15), (16), (19), (20), (24), (25) du § I. On trouve

$$
\begin{aligned}
& u(1, x, y)=L_{0}(x) L_{1}(y)+L_{1}(x) L_{1}(y) \\
& u(0, x, y)=L_{1}(x) L_{1}(y)+L_{1}(x) L_{0}(y) \\
& v(1, x, y)=L_{1}(x) L_{2}(y)+L_{0}(x) L_{2}(y) \\
& v(0, x, y)=L_{0}(x) L_{2}(y)+L_{2}(x) L_{2}(y) \\
& w(1, x, y)=L_{2}(x) L_{0}(y)+L_{2}(x) L_{1}(y) \\
& w(0, x, y)=0 \\
& s(1, x, y)=L_{0}(x) L_{1}(y)+L_{1}(x) L_{2}(y)+L_{2}(x) L_{0}(y) \\
& s(0, x, y)=0 .
\end{aligned}
$$

On a donc

$$
\begin{aligned}
& u(a, x, y)=L_{1}(x) L_{1}(y)+a L_{0}(x) L_{1}(y)+a L_{1}(x) L_{0}(y) \\
& v(a, x, y)=L_{0}(x) L_{2}(y)+a L_{1}(x) L_{2}(y)+a L_{2}(x) L_{2}(y)
\end{aligned}
$$

Fig. 3

$$
\begin{aligned}
& w(a, x, y)=a\left[L_{3}(x) L_{0}(y)+L_{2}(x) L_{1}(y)\right] \\
& s(a, x, y)=a\left[L_{0}(x) L_{1}(y)+L_{1}(x) L_{2}(y)+L_{3}(x) L_{0}(y)\right],
\end{aligned}
$$

donc le montage des lampes est celui de la figure 3.
Requ le 7. 4. 1956

litterature

1. Gir. C. Moisil et Gh. Ioanin. La synthèse des schémas à contacts et relais avec des conditions de travail données pour les ééments exécutifs, Revue de mathématiques de l'Académie de la R. P. R. (sous presse).
2. Cir. C. Moisil. Intrebuinfarea imaginarelor lui Galois in teoria mecanismelor automate. III. Scheme cu relee po'arizate. (Emploi des imaginaires de Galois dans la théorie des mécanismes automatiques. III. Schémas à relats polarisés.) Comunicärlie Academiei R. P. R., t. V. Nr. 6, 1955, p. 959.
3. (ir. C. Moisil. Ecuatiile caracteristice ale unuil releu (Equations caractéristiques d'un re'ais). Studii si cercetïri stiinjifice: Filiala Cluj a Academiei R. P. R., t. V. Nr. 1-2, 1955.
4. Gr. C. Moisil. Intrebuintarea imagtnarelor tui Galois, in teoria mecanismelor automate, IV. O teorie trivalenta a releelor polarizate (Emploi des imaginaires de Galois dans la théorie des mécantsmes automatiques. IV. Une théorie trivalente des relais polarisés). Comunicirile Academiei R. P. R., t. VI, 1956 (sous-presse).
5. Gr. C. Moisil. Sur la théorie algébrique des mécanismes automatiques; synthése des schemas a relais polarises, Communication faite au Congres de Dresde en novembre 1955.
6. Marek Greniewski et Gr. C. Moisil. Intrebuintarea logicelor trivalente in teoria mecanismelor automate. I Realizarea prin circuite a functiilor fundamentale. II. Ecuatile caracteristice ale unui releu polarizat. (Emploi des iogiques trivalentes dans la théorie des mécanismes automatiques. I. Réalisation par des circuits des fonctions fondamentales. II. Equations caractéristiques d'un rehils polarisé. Comunichrile Academiei R. P. R., t. VI, 1956 (sous presse).
7. Cr. C. Moisil. Teoria algebrică a functionării schemelor cu contacte de relee ni mal multitimpi. (Théorie algébrique du fonctionnement des schémas à contacts et relais à plusieurs temps.) Studil şi cercetări matematice, Academiei R. P. R.. t. VI, Nr. 1-2, 1955, p. 7.
8. Adalbert Duschek. Die Algebra der clektrischen Schaltungen, Rendiconti di matematica c delle sue applicazioni (Roma), s. V, vol. X, 1951, p. 114.

ВЪРХУ СИНТЕЗАТА НА СХЕМИ С ПОЛЯРИЗОВАНИ РЕЛЕТА

Г. Мойсил

PE3ЮME

Авторът показва в тази работа как може да се направи синтеза на една схема от поляризовани релета. Той разглежда следния пример. Вземаме една схема с бутон A и четири лампи на поляризовани релета, така че ако натиснем един път бутона, светват две лампи, от които едната S угасва веднага, а другата U остава да свети, даже и след като сме прекъснали да натискаме бутона. Ако натиснем бутона втори път, лампата U угасва, а лампата S светва, както и една друга лампа V; лампата S угасва непосредствено, лампата V остава да свети даже и след като престанем да натискаме бутона. Ако натиснем бутона трети път, лампата V угасва, лампата S, както и една четвърта лампа W се запалват: лампата S угасва веднага, а лампата W не угасва в момента на освобождаване на бутона; в този момент схемата взема положението на покой.

В една по-раншна работа [1] авторът е показал, че тази схема изнсква две поляризовани релета x и y. В настояшата работа авторът изследва функционирането на схемата при формиране на система рекурентни уравнения.

О СИНТЕЗЕ СХЕМ С ПОЛЯРИЗОВАННЫМИ РЕЛЕ

> Г. Мойсил

PE 3 KME
Автор показывает в этой работе, как можно осуществить синтез одной схемы с поляризованными реле. Он рассматривает следуюший пример. Берем одну схему с кнозкой A и четырьмя лампами на поляризованных реле таким образом, что если мы нажмем один раз на кнопку, загораются две лампы, одна из которых, S, угасает немедленно, а вторая, U, продолжает гореть даже после того, как мы перестали нажимать на кнопку. Если мы нажмем вторично на кнопку, то лампа U угасает, а лампа S, как и вторая лампа V, загорается; лампа S угасает непосредственно после этого, лампа V продолжает гореть даже после того, как мы перестали нажимать на кнопку. Если мы нажмем ма кнопку в третий раз, то лампа V угасает, лампа S, как и четвертая лампа W, загорается: лампа S угасает немедленно, а лампа W не угасает в момент освобождения кнопки; в этот момент схема принимает положение покоя.

В одной нз более ранних своих работ [1] автор показал, что эта схема требует двух поляризованных реле x и y. В настояней работе автор изучает функционирование схемы при формировании системы рекурентных уравнений.

