SUR LES ANNEAUX INFINIS NE CONTENANT QUE DES SOUS-ANNEAUX NONTRIVIAUX DE L'INDEX FINI

F. Szász (Debrecen)

Dans cet article est traité un problème de la théorie des anneaux Nous avons déterminé dans un article antérieur [5] tous les anneaux R n'ayant que des sous-anneaux qui sont les multiples nR, où nR est engendré des éléments $n\gamma$ ($\gamma \in R$ et n est un nombre rationnel entier). L'ensemble des anneaux cycliques épuise la classe des anneaux de cet attribut, où un anneau R est nommé anneau cyclique dès que son groupe additif R^+ est cyclique. A titre d'exemple l'anneau J des nombres rationnels entiers est évidemment cyclique.

Il est bien trivial que tous les sous-anneaux S d'un anneau fini R ont des indices finis dans R. Nous remarquons que Y. G. Fedorov (Ю. Г. Фёдоров) a déterminé dans son article intéressant [7] tous les groupes infinis G ne contenant que des sous-groupes non-triviaux de l'index fini. Puis I. Kovács a vérifié dans son article [1] que si un anneau infini R n'a pas d'idéaux à gauche infinis et non-triviaux, alors il est un corps ou bien un zéro-anneau avec le groupe additif du type P^{∞} , où $R^2=0$.

Au moyen de ces remarques nous allons introduire la suivante-Définition. Un anneau Rest nommé anneau de l'attribut A dès qu'il est infiniet ne contient que des sousanneaux non-triviaux de l'index fini. Par exemple l'anneau J possède l'attribut A.

On remarque que les notions les plus importantes de l'algèbre moderne sont accessibles e.g. dans les livres [2], [3] et [4]. Après cela nous approuvons le théorème suivant qui sert à caractériser les anneaux infinis cycliques. La preuve tâche d'être élémentaire et brève.

Théorème. Un anneau infini et associative R, possède l'attribut A dans le cas et uniquement dans le cas, où il est cyclique.

Démonstration. Si R contient un élément $a \neq 0$ de l'ordre fini, alors R^+ est de l'ordre borné, parce que R/R^* est fini, où R^* signifie un idéal constitué des éléments de l'ordre p (p est un nombre premier). Mais R est évidemment un p-anneau sur la base de l'attribut A et du fait que R est la somme directe de ses p-composants en raison de la théorie des

anneaux. Si $pR \neq \{0\}$, alors R/pR serait fini, mais c'est impossible à cause de la décomposition directe $R^+ = 2C(p^n)$ et du fait élémentaire $R^+/pR^+ = \Sigma C(p^n)/p \cdot C(p^n)$ puisque R^+/pR^+ a infini de composant C(p). C'est pourquoi nécessairement $pR = \{0\}$. On peut remarquer que n'importe quel sous-anneau S d'un anneau R d'attribut A possède à son tour l'attribut A, ainsi un p-anneau élémentaire $\{a\}$, engendré par l'élément a doit avoir l'attribut A. Conséquemment $\{a\}$ ne contient que des sous-anneaux non triviaux infinis, c'est-à-dire l'élément a est transcendent sur K_p à cause du fait $pR = \{0\}$, où K_p est un corps premier de la caractéristique p. Maintenant nous montrons l'existence des éléments algébriques sur K_p , et c'est ce qui se ferait pendant que $pR = \{0\}$. Soit $S = \{a^2\}$ le sous-anneau regardé dans $\{a\}$, c'est pourquoi $\{a^2\}$ est d'index fini dans $\{a\}$, ainsi il y a des éléments a^{2m+1} et a^{2n+1} dans la suite infini a, a^3 , a^6 , a^7 , ... pour laquelle $a^{2m+1} - a^{2n+1} \in \{a^2\}$, c'est-à dire il existe un polynome $f(x) \in x \cdot K_p[x]$ pour lequel $a^{2m+1} - a^{2n+1} = 1$ $= f(a^2)$, mais ce fait contredit à la transcendence de l'élément a sur K_{n} .

Donc R est de caractéristique 0. S'il existe un sous-anneau propre cyclique $C \neq \{0\}$, alors n $R \subseteq C$ pour un n > 0 à cause de l'attribut A. Mais ainsi nR est cyclique. On peut constater que la correspondance $\gamma \rightarrow n\gamma$ est un isomorphisme du groupe R^+ sur son sous-groupe $(nR)^+$, donc R est aussi cyclique. Ainsi cela suffit à vérifier

l'existence des sous-anneaux non-triviaux cycliques dans R.

Quand R est sans diviseurs de zéro, alors la correspondance $\gamma \to \gamma a$ ($a \in R$) est un isomorphisme du groupe R^+ sur $(Ra)^+$, où $a \neq 0$. Donc $nR \subseteq Ra$ à cause de l'attribut A avec un nombre convenable neJ. Soit maintenant $0 \neq beR$, pour lequel na = ba. On va considérer l'ensemble von-vide S de tous les éléments $c \in R$ pour lesquels il y a un nombre n_c — défini uniquement avec $c \cdot a = n_c \cdot a$. On peut approuver avec une calculation assez simple que la correspondance $c \to n_c$ est un isomorphisme du sous-anneau S sur un sous-anneau T de l'anneau S, c'est pourquoi S et R même sont cycliques.

Quand R contient des éléments $a \neq 0$ et $b \neq 0$, et ab = 0, alors l'intersection $Z = \{a\} \cap \{b\}$ est un zéro-anneau $\neq 0$ qui contient naturelle-

ment un sous-anneau cyclique $C = \{z\} \neq \{0\}$.

Inversement, il est bien évident que l'anneau infini et cyclique n'a que des sous-anneaux non-triviaux de l'index fini.

Ainsi le théorème est démontré.

Reçu le 26. 2. 1956

LITTERATURE

- 1. István Kovács. Infinite rings without infinite proper subrings, Publ. Math. Debrecen 4 (1955) pp. 104—107.
- 2. А. Г. Курош. Теория групп, Москва, 1953.
- 3. G. Pickert. Einführung in die höhere Algebra, Göttingen, 1951.
- 4. L. Rédei. Algebra I., Budapest, 1954.

- 5. F. Szász. On rings every subring of which is a multiple of the ring. Publ. Math. Debrecen 4 (1956), pp. 237-238.
- 6. T. Szele. On direct decompositions of abelian groups, Journal of the London Math. Soc., 28 (1953) pp. 247-250.
- 7. Ю. Г. Фёдоров. О бесконечных группах, все нетривиальные подгруппы которых имеют конечный индекс, Успехи Мат. Наук, 6:1 (1951), 187—189.

ВЪРХУ БЕЗКРАЙНИТЕ ПРЪСТЕНИ, СЪДЪРЖАЩИ САМО НЕТРИВИАЛНИ ПОДПРЪСТЕНИ С КРАЕН ИНДЕКС

Ф. Сас (Дебрецен)

РЕЗЮМЕ

Един пръстен R се нарича пръстен със свойството A, ако е безкраен и съдържа само нетривиални подпръстени с краен индекс. Авторът установява, че всеки безкраен пръстен само тогава притежава свойството A, ако е цикличен.

О БЕСКОНЕЧНЫХ КОЛЬЦАХ, СОДЕРЖАЩИХ ТОЛЬКО НЕТРИ-ВИАЛЬНЫЕ ПОДКОЛЬЦА КОНЕЧНОГО ИНДЕКСА

Ф. Сас (Дебрецен)

РЕЗЮМЕ

Кольцо R называется кольцом, имеющим свойство A, если оно бесконечно и содержит только нетривиальные подкольца конечного индекса. Автор устанавливает, что любое бесконечное кольцо обладает свойством А лишь в том случае, если оно циклично.