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A STATISTICAL CONVERGENCE APLICATION FOR THE HOPFIELD NETWORKS 

Víctor Giménez-Martínez, Gloria Sánchez–Torrubia, Carmen Torres–Blanc  

Abstract: When Recurrent Neural Networks (RNN) are going to be used as Pattern Recognition systems, the 
problem to be considered is how to impose prescribed prototype vectors ,..., ,, p21 ξξξ as fixed points. The 
synaptic matrix W  should be interpreted as a sort of sign correlation matrix of the prototypes, In the classical 
approach. The weak point in this approach, comes from the fact that it does not have the appropriate tools to deal 
efficiently with the correlation between the state vectors and the prototype vectors The capacity of the net is very 
poor because one can only know if one given vector is adequately correlated with the prototypes or not and we 
are not able to know what its exact correlation degree. The interest of our approach lies precisely in the fact that it 
provides these tools. In this paper, a geometrical vision of the dynamic of states is explained. A fixed point is 
viewed as a point in the Euclidean plane R2. The retrieving procedure is analyzed trough statistical frequency 
distribution of the prototypes. The capacity of the net is improved and the spurious states are reduced. In order to 
clarify and corroborate the theoretical results, together with the formal theory, an application is presented 

Keywords: Learning Systems, Pattern Recognition, Graph Theory, Recurrent Neural Networks.  

1. Introduction 
As is well known, a RNN is a discrete time, discrete-valued dynamic system which at any given instant of time t is 
characterized by a binary state vector ( ) ( ) ( ) ( ) { }= ⎡ ⎤ ∈⎣ ⎦

n
1 i nx t x t ,...,x t ,...,x t 1,  -1 . The behavior of the 

system is described by a dynamic equation of the type 

 θ
=

⎡ ⎤
+ = − =⎢ ⎥

⎣ ⎦
∑

n

i ij j i
j 1

x ( t 1) Sgn w x (t )    i 1,2,...,n  (1) 

A point x  is a fixed point if all its components remain unchanged when (1) is applied. The aim is to get the 
network parameters, namely the synaptic matrix W  and the threshold vector θ, for which the prototype vectors 
ξ ξ ξ1 2 p, ,  ..., ,  are fixed points. In our approach ( ) { }= nx t 0,1  and, as the components of ( )x t  may only be 
zero or one, we will refer to them as the null and unit components in ( )x t . Associated to the network there will be 
a complete graph G , with n  vertices { }1 nv ,...,v , and one bi-directional edge ija  for every possible pair of 
different vertices (1). Initially, at the training stage a null value ijw  is assigned to every edge ija  in the graph; 
afterwards, when μξ  is presented to the net; the weight ijw  is updated by: 

 

μ μ

μ μ

ξ ξ
Δ ξ ξ

⎧+ = = ≠
⎪= − = = ≠⎨
⎪
⎩

i j

ij i j

1   if   1, i j,
w 1   if   0,  i j,

0                  otherwise.
 (2) 

This idea may be much more easily understood using the next graphical interpretation of the training algorithm: At 
the first step, a null value is assigned to all the edges ija , then, when a learning pattern μξ  is acquired by the 

net, it is superposed over the graph G. The components { }μ μξ ξ1 n,..., , are going to be mapped over the vertices 

{ }1 nv ,...,v  of G. This mapping may be interpreted as a coloring of the edges in G, in such a way that, if 
μ μξ ξ= =i j 1 , the edge ija  (whose ending vertices are iv  and jv ) will be colored with a certain color, for 
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example red. On the other hand, if μ μξ ξ= =i j 0 , then ija  will be colored with a different color, as for example 
blue. The rest of the edges in G remain uncolored. Once this coloring has been done, the value assigned over 
the, also complete, graph of red edges are positively reinforced and the value assigned over the edges of the 
blue graph are negatively reinforced. The value over the rest of the edges remains unchanged. Once the pattern 

μξ   is acquired, the colors are erased and we repeat the same color assignation with the next pattern to be 
acquired by the net, and so on. When every vector in the training pattern set has been integrated in the net, the 
training stage is finished, the resulting graph G has become edge-valued and its weight matrix is the synaptic 
matrix W  of the net. 

2. Parameters of the Net  
According with the theorem proved in [1], If any setξ ξ ξ1 2 p, ,  ...,  of prototype vectors are acquired by the net, 
then for any possible four different components " i ",  " j ",  " r "   y  " s",  then the relation: 

+ = +ij rs is rjw  w w w  is satisfied, and solving the system  

 { = + ≠ij i jw p p , i j  (3) 

(in n unknown 1 2 np ,p ,...,p ) a solution and only a solution is obtained [1].. The training algorithm could be 
revisited in order to obtain the weight vector p

ur
 without the necessity of obtaining the weight matrix W  first and 

then solving the system (3). In the graphical interpretation of the training algorithm, we may consider { }i jp ,p as 
the ending vertices of the generic edge ija . Just when the pattern μξ  has been acquired, if ija  has been colored 
by red, its weight ijw  has been incremented by one. As = +ij i jw p p j, we may consider that ip  and jp  have 

both been incremented by ”½”. If 1n  and 2n  are the number of unit and null components of μξ  and if 1i =μξ , 
then obviously the number of red edges with one end in pi is equal to (n1 –1). Consequently just when the pattern 
ξ μ  has been acquired pi has been incremented by ½(n1 –1). In the same way, it could be proved that if 0i =μξ , 
then pi is incremented by -½(n0 –1). The training algorithm in (3) could then be designed as follows: 

 ( )
( )

μ

μ

ξ
Δ

ξ
⎧ − =⎪= ⎨− − =⎪⎩

1
1 i2

i 1
0 i2

n 1    if   1
p

n 1    if   0
 (4) 

(n1 and n0 are the number of unit and null components of ξ μ ). When all the learning patterns have been 
acquired, the training is finished. Considering ½ a scale factor and since the inner product μμ ξξ  .  is equal to n1 

and the inner product   . μμ ξξ is equal to n0,, it can be interpreted that when the learning pattern ξ μ  is acquired 
the weight vector p

ur
 is modified as follows: 

 
μ μμ μξ ξ ξ ξ← + − ⋅ − − ⋅

ur ur
p p (  .   1) I (  .   1) I , where I  is the unitary vector (1,1,.., 1) (5) 

The above expression realizes the updating of the weights pi, for i from 1 to n, when ξ μ  is acquired. The 
computational time of the training algorithm, is then highly optimized. 
2.1. Energy 
The state vector x at time t could also be interpreted as a coloring of the edges in G, but now this coloring is going 
to be used to retrieve the stored data. If the graph G is colored with the coloring associated with the pattern 

( )x t , it is easy to understand (taking into account how the training algorithm was designed), that the bigger the 
summation of all the edges in the red graph and the lower the summation of all the edges in the blue graph are, 
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then the more correlated the pattern ( )x t  must be, with those that were used during the training stage. So, if W 
is the weight matrix of G, the energy point EP of the net is defined as a pair of numbers. The first of them 
represents the summation of all the values on the edges of the red graph, and the second one represents the 
same summation, but on the blue ones. So if G is colored with the color associated to x(t), then {I (t), O(t)} may be 
defined as the pair of quadratic forms: 

 
( ) ( ) ( )
( ) ( ) ( )

⎧ = ⋅ ⋅⎪
⎨

= ⋅ ⋅⎪⎩

t1
2

t1
2

I t x t W x t

O t x t W x t
 (6) 

If n1 is the number of unit components of ( )x t and n0 is the number of the null ones (in other words n1 is the 
Hamming distance from x(t) to the zero vector). By other hand, it is obvious [1], that if ( ) ( ){ }i iI t ,O t , is the EP, 

when ( )= ijW w , is the matrix with all its values equal to zero except those in file or the row I, then 

 ( ) ( )
( ) ( ) ( )

( )
⎧ − = ⎧ − =⎪ ⎪
⎨ ⎨= =⎪ ⎪⎩ ⎩

1 i 0 i
i

i i

n 1    if  x t 1 n 1    if  x t 0
I t ,    and    O t

0         if  x t 0 0          if  x t 1
 (7) 

So, if 
11 2 ni ,i ,...,i  and 

01 2 nj , j ,..., j are the places where the unit and null components of x(t) are respectively 
located, the equations (13) could be written as 

 ( ) ( ) ( )= − + +
1 n11 i iI t n 1 p ... p    and   ( ) ( ) ( )= − + +

1 n00 j jO t n 1 p ... p  (8) 

Which means that 

 ( )
( ) ( ) ( )

( ) ( )= + + = + +
− −1 n 1 n1 0i i j j

1 0

I t O t
p ... p   and   p ... p

n 1 n 1
 and  (9) 

in other words 

 ( )
( )

( )
( )

+ =
− −1 0

I t O t
K   

n 1 n 1
     ( )= + +1 nbeing  K p ... p    (10) 

As all state vectors ( )x t  with the same Hamming distance ”i” to the zero vector contains the same numbers n1 

and n0 of unit and null components, the energy points ( ) ( ){ }I t ,O t , associated to all of them, will be placed in 
the same line ir ri, whose equation expressed in (x,y) is  

 ( ) ( ) ( ) ( )≡ − + − − − ⋅ − ⋅ =i 0 1 0 1r n 1 x n 1 y n 1 n 1 K 0   (11) 

In other words, all the EP´s associated with state vectors with the same number of unit components are placed in 
the same line of the energy field, and the equation of this line is the one represented in (11). In this way the state 
vector space is classified in as many classes as the dimension n of the space. 
2.2. Dynamics 
On the other hand, and as we said in the introduction, the nature of the algorithm here proposed let to know how 
the value of ( )x t affects the whole energy of the state ( )x t . We may define the relative weight of the neuron i 
when the net is in state x(t) as the contribution of this neuron to the component ( )I t , if ( ) =ix t 1 ; or as the 
contribution of this neuron to the component ( )O t , if ( ) =ix t 0 . So, if ( ) =ix t 1 , we define the relative weight 

( )w t  of the neuron i when the net is in state ( )x t  as: 
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 ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

⋅ −−
= + = +

− − ⋅ − ⋅ −
1 i i

i
1 1

x t x t 2n 2 p p1 1w t . .
n 1 n 1 p.x t x t x t 1 x t x t 1 p.xx t

 (12) 

If in time t the state vector ( )x t is in class [ ]j , then for any i from 1 to n, the dynamic equation is defined as 

 ( ) ( )( ) ( )( )θ⎡ ⎤+ = −⎣ ⎦i h b i i jx t 1 f f x t  . w t  (13) 

where hf  is the Heaviside step function and bf  is the function defined as ( ) = −bf x 2x 1 , which achieves the 
transformation from the domain { }0,1  to the domain { }−1, 1  
 
It can also be stated that the sum of the relative weights ( )iw t for the unit components of ( )x t is equal to 2. 
The same could be proved for the null components. We have then that the relative weight vector 

( )w t associated to any state vector ( )x t may also be interpreted as a sort of frequency distribution of 
probabilities [2]. The reason is that  

 ( ) ( )
= =

= ⇒ =∑ ∑
n n

1
i i4

i 1 i 1
w t 4    w t 1  (14) 

For any relative weight vector ( )w t  The “uniform distribution vector” would be the one with all its components 
equal to 4

n . For any state ( )x t  we could then define its deviation ( )( )D x t as  

 ( )( ) ( )
=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑

2n

i
i 1

4D x t x t
n

 (15) 

The deviation of a given vector to the prototypes has been used for avoiding the parasite fixed points.  
 

3. Application 
We take, as an example for validating the performance of the algorithm we propose, the problem of the 
recognition of the Arabian digits as the prototype vectors: 
 

 
 

Where the dimension n, of the pattern space is 28, and  

 

[ ]
[ ]

[ ]

ξ
ξ

ξ

⎧ =
⎪ =⎪⎪
⎨
⎪
⎪

=⎪⎩

1

2

10

0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1  
1,1,1,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,1,1,1,1

.

.
1,1,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,,1,1,1,1

 

and { }p = 1/14 53, 25, 25, 53, 11, -73, -73, 39, 11, -73, -73, 39,  39, 25, 25, 67, -17, -73, -73, 53, -17, -73, -73,  53, 11, 11, 11, 67 . In figure 
1 the reader may see the energy lines and theirs associated PE´s. The Arabian digits are in this way placed on 
the lines: 7 16 16 13 16 15 10 20 15 18r ,  r ,  r ,  r ,  r ,  r ,  r ,  r ,  r ,  r . The associated PE´s are 1 / 7 {1113, -3710 },1 / 7 { 3420, -2508 },  
1 / 7 { 4470,-3278 },1 / 7 { 3210,-3745 },1 / 7 { 4050,-2970 },1 / 7 { 2821,-2418 },1 / 7 { 2133,-4029 }, 1 / 7 { 5548,-2044 },1 / 7 { 4095 ,-3510 }, 1 / 7 { 4539,-2403 }  ,  
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Figure 1 Arabian Digits Projections 
 

The problem now is how to obtain in an adaptive way the capacity parameters θ θ θ1 2 28, ,..., , in order to obtain 
the Arabian digits as fixed points with the least number of parasitic points as possible.  
 

When the dynamic equation in (13) is considered, a point ( )x t whose energy projection belongs to the jr  line, is 
a fixed point if, and only if, the (capacity) parameter θ j  is an upper bound for all the relative weights 

( )iw t associated to the components of ( )x t . Once the training has finished, the relative weight vector of the 
prototypes could then be calculated. If the energy projection of the prototype μξ  belongs to jr  and the largest of 
the components of ( )iw t is taken as θ j : it is clear that the prototype μξ  will be a fixed point. But the problem is 
how to avoid that points with high degree of correlation with a prototype but with all its relative weights 
components lower than the capacity parameter to skip away from this prototype. The idea proposes in this paper, 
made use of the deviation defined in (15). When, in time t, the dynamic equation is applied to a component of the 
vector ( )x t , this component will change its state not only if the relative weight ( )iw t  is lower that the capacity 
parameter of its class. The deviation of the new state, in the case of change of sate, must be similar to the 
deviation of the prototypes in the new class. The degree of similarity may be measured by a coefficient �. The 
coefficient �� is handled in a dynamical way (the more is the time the higher is the coefficient). 
Besides the weight vector, there are other set of parameters of the net. For every one class ir , the capacity 
parameter �i and the deviation of the prototypes in this class are obtained. So the algorithm control not only if the 
new state is strongly correlate with some prototype in its class, the algorithm also control that the components in 
the new state must, with a high degree of probability, be placed in similar places as some prototype of the class. 
We have applied with to our example, obtaining that almost all the points inside a neighborhood of radius 1, of the 
prototypes, are attracted by these prototypes. The 10 Arabian digits are fixed points of the system, and almost all 
the 28 neighbor of any one of them were attracted by its attractor prototype. In figure 2, the number of points 
inside a neighborhood of radius 1, of the prototypes are expressed. 
 

⎧ → → → → →⎪
⎨

→ → → → →⎪⎩

24 1  23 2  25 3 22 4 27 5  
  

22 6  25 7  25 8  22 9  21 0
 

 
Figure 2. Prototypes belonging also to 15r  

4. Conclusion 
The weight parameters in the Hopfield network are not a free set of variables. They must fulfill a set of constrains 
which have been deduced trough a new re-interpretation of the net as Graph Formalisms. Making use of this 
constrains the state-vector has been classified in n classes according to the n different possible distances from 
any of the state-vectors to the zero vector. The (n×n) matrix of weights may also be reduced to a n-vector of 
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weights. In this way the computational time and the memory space, required for obtaining the weights, is 
optimized and simplified. The degree of correlation from a pattern with the prototypes may be controlled by the 
dynamical value of two parameters: the capacity parameter θ which is used for controlling the capacity of the net 
(it may be proved that the bigger is the θj component of θ, the lower is the number of fixed points located in the rj 
energy line) and the parameter μ which measures the deviation to the prototypes. A typical example has been 
exposed, the obtained results have proved to improve the obtained when the classical algorithm is applied. 
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NEURAL NETWORKS DIAGNOSTICS IN HOMEOPATH SYSTEM  

Larysa Katerynych, Alexander Provotar 

Abstract: We suppose the neural networks for solution the problem of the diagnostic in Homeopath System and 
consider the algorithms of the training.  

Keywords: artificial intelligence, neural networks, training of neural networks, information granules.  

Introduction 
As a rule, as a consequence of the cerebrum study and mechanisms of its functioning there have been created 
new computer models, namely artificial neural networks (NN). The tasks of the office automation processes 
based upon the research in the sphere of the artificial intelligence (AI) are of current importance to present day. 
NN permit to solve applications such as pattern recognition, modeling, fast data conversion (parallel 
computational processes), identifications, management, and expert systems creation [Терехов, 2002, Барский, 
2004]. 
Theoretically, NN can solve a wide frame of tasks in the specific data domain. (as it is the human brain model 
prototype), but it is still not practically possible to create the integrated universal NN for the specific data domain 
at present, since there is no integrated construction algorithm (functioning) of the NN. The moment to date the 
specific structure NN and with the defined learning algorithms are used for the solution of the concrete group of 
tasks out of the fixed data domain.  


