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On Critical Branching Migration Processes with
Predominating Emigration

George P. Yanev* Nickolay M. Yanev*

Abstract

The branching migration processes generalize the classical Bienaymé - Galton - Wat-
son process allowing a migration component in each generation: with probability p the
offspring of one particle is eliminated (family emigration) or with probability ¢ there is
not any migration or with probability r a state-dependent immigration of new particles
is available, p + ¢ + r = 1. The processes stopped at zero are also considered. It is
investigated the critical case when the migration mean in the non-zero states is negative
(predominating emigration). The asvimptotic behaviour of the life-period, the probabil-
ity of non-extinction and moments is obtained and limit theorems are also proved.
branching migration:  stopped at zero;  life-period;  extinction:
moments;  limit theorems
60J80

1 Introduction

In this paper we investigate branching processes (with discrete time and one type ol par-
ticles) which development is not isolated and admits a random migration. These migration
models are particular cases of so-called controlled branching processes where in general the
evolutions of the particles are not independent.

Let us have on the probability space (€2, F, I’) two independent sets of non-negative integer-
valued random vanables § = {£,s(1)} and ¢ = {g;(L.n)}. For each j the offsprings {£,.(/)}
are i.i.d. and ¢ is the set of control functions. Then the general case of a controlled branching
process can be defined as follows

\n"".")

(1.1) Yir =3, 2 Ealt), t=0,1,2,..,

1€J k=1

where J is an index set and Yy 2 0 is independent of € and . As usual 31, - = 0.
The model (1.1) describes a very large class of stochastic processes (for example, all Markov
chains). Particular cases are classical Bienaymé - Galton - Watson processes for which J = {1}
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and @y(t,n) = n a.s., branching processes with immigraion where J = {1,2}, ¢1(t,n) = n
a.s., and ¢(t,n) = 1 as. or Foster-Pakes model with J = {1,2},¢(f,n) = n as. and
wa(t,n) = maz(0,1 — n) a.s. (see Athreya and Ney(1972)).

The controlled branching processes (1.1) are introduced and investigated by Sevastyanov
and Zubkov(1974), Zubkov(1974) and Bagley(1986) in the case of deterministic ¢. N.M.Yancy
(1975) investigate the case with random @, N.M.Yanev(1977) and G.P.Yanev and N.M.Yanev
(1990) - with random  and in random environments.

In the present paper, we consider the special case of (1.1) with J = {1,2,3} and

(1.2) wa(t,n) = max{0,n }(1 — du0),

eilt,n) = mar{min{n,n +y},0},

{ walt,n) = maz{0,n;}ém,

where 4, is the Kroneker delta and {5} are i. i. d. r. v. with distribution
Pipe=~-1)=p, Ppi=0)=gq, Plpe=1)=r, p+g+r=1

Let {Xi(t)}, {1(t)} and {[o(t)} are three independent sets of i. i. d. r. v. such that
Xi(t) = &ult), I(t) = &n(t) and Iy(t) = &x(t). Then by (1.1) and (1.2) it follows the
representation:

,.'
(13) }“l'fl e Z'\’ﬁ(')+"ll' ‘=0‘l’2Q""
k=1
where
-.\'1(1)1“; > 0} with probability p,
Mi=<{0 with probability q,
l(l)l{)-‘ > 0} e lo(l)l“-‘ = 0} with probability r, ptq+r=l1,

Further on we will suppose that };, = 0 a.s. (this is not an essential restriction).

Obviously, the process {};} is an homogeneous Markov chain which admits the following
interpretation. In each generation t three situations are possible: with probability ¢ the process
develops like a Bienaymé - Galton - Watson branching process (without any migration) or
with probability p the offspring of one particle is eliminated and does not take part in further
evolution (family emigration) or with probability r in the next (¢ + 1)-th generation there is
an immigration of /(t) or Iy(t) new particles depending on the state of the process.

Let F(s) = Es™ G(s) = Es" and H(s) = Es™". Then (1.3) is equivalent to the
following definition: for n,t =0,1,2,...

(14)  E(s" [ Yo=n) = Fs)pF " (s) + ¢+ rG(s)](1 = buo) + [p+ ¢ + rH(s)]bs0.

The definition (1.3) (or(1.4)) contains as particular cases some earlier investigated models.
For example, if ¢ = 1 then {Y;} is the classical Bienaymé - Galton - Watson process. If r = |
and [(t) = Ly(t) as. then {},} will be the well-known branching process with immigration (see
Athreya and Ney(1972)). The case r = | and /(1) = 0 a.s. was considered by Foster(1971) and
Pakes(1971). The process with p = | (proper emigration) is investigated by Vatutin(1977a)



and Kaverin(1990). A new particular case is when I(t) = 0 as. , i.e. the process with
emigration which admits an immigration component only in the state zero.

The process (1.3) with I(t) = I,(t) is introduced and investigated in some cases by
N.Yanev and K.Mitov (1980, 1931, 1983, 1981). They considered also some processes with
non-homogeneous migration when p = p,,¢ = ¢,,r = r, (see N.Yanev and K.Mitov(1985)).

Note that a similar model with homogencous migration is investigated by Nagaev and
Han(1980), Han(1980) and Kaverin and Atamatov(1988). A migration process with another
type of emigration is announced by Grey(1988) and also by G.Yanev and N.Yanev(1991).

In this paper, we will also study the process stopped at zero which is defined as follows:

Z,
(1.5) Z‘+] = Z .\’k(l) + 4‘[,0 ,t = 0' 1'2, veey
k=1
where
-—.\'.(l)l{z‘ > 0} with probability p,
M= 0 with probability q,
I(l)l{Z‘ > 0) with probability r, p+q+r=I1,

and Z, is independent of {Z,},t > 0.
Note that (1.5) is equivalent to the following definition:

(1.6) E(s*% | Z, = n) = F(s)[pF~"(s) + ¢ + rG(s))(1 = bmo), m,t=0,1,2,...

Note that the state zero is a reflexing barrier for {};} and an absorbing state for {Z,}.

The process {Z,} is studied in some cases by N.Yanev and K.Mitov(1983), N.Yanev,
V.Vatutin and K.Mitov(1986) and K.Mitov(1990). The particular cases of (1.5) (or 1.6) when
r = 1 are cousidered by Zubkov(1972), Vatutin(1977b), Seneta and Tavare(1983) and Ivanoff
and Seneta(1985).

In this paper, we investigate the processes {};} and {Z;} in the critical case EXy(1) = 1
when the random migration is with the so-called predominating emigration (this will be pre-
cised in the Section 2 where are given all main results). In the last case the asymptotic
behaviour of the life-period of {Y;} and the probability of non-extinction of {Z,} is obtained.
The asymptotics of some moments are investigated and limit theorems for both processes are
also proved.

Note that some of results with I(t) = [,(f) are announced in G.Yanev and N.Yanev(1989).

2 Equations and basic results
For the processes (1.3) and (1.5) (or (1.4) and (1.6)) we will use the following basic nota-
tions (| s [< 1)
d(t,s) = Es"',  W(t,s) = Es?,

F(s) = Es™ =3 fis's Fus) = F(Fa(s), n=12...; Fls)=8 Fo=F0)

aml)
((s) = Es'"" = zy.-": H(s) = EsP" = Z’l.s': Qs) = Es® = Zq..t‘:
v} r=l) =l

-‘



6(s) = ;—:’3—) +q+rG(s) = Zb.s'; n(s) = I:I 8(Fi(s)), 0(s) =1,7-1(5) = 0,9 = %(V).

=1 =0

One can obtain the following representations for 8(s):
l
(2.1) os) = m[p + ql'(s) + rG(s)F(s))

and for every n > 0

8(s) = 1=r(1=G(s))+pIi(1 = F(s)) + p(1 = F(s))"*'/F(s)

=]

(2.2) 1= r(l = G(s)) + pLzi(1 = F(s))"

Further on we will suppose that:

Fi(l)=1, 0<F"(1)=2b< o,
0<G'(l)=A<o00, 0<H(l)=p<oo, 0<Q(l)=a< oo,
0_6'(1)__r.\-p_E(;\I|}'>0)__E(M°|Z>0)<0

b b fvarX T varX '

(2.3)

By (2.3) it is clear that we consider only the critical case, i.e. when the offspring mean
F'(1) is 1. In this case 8'(1) = r\ — p can be interpreted as the expectation of the migration
in the non-zero states. Since 8’(1) < 0, i.e. in each generation the immigration mean rA is less
than the emigration mean p, then one can say that the emigration is predominating.

The critical case with @ > 0 (and I{t) = Iy(t) ) was investigated by N.Yanev and
K.Mitov(1980, 1981, 1983), N.Yanev, V.Vatutin and K.Mitov(1986) and K.Mitov(1990). Na-
gaev and Han(1980) proved a limit theorem for {};} in the case 8 = 0.

The critical case with @ < 0 seems to be more difficult and it was an open problem till
now.

By definitions (1.3) and (1.5) (or (1.4) and (1.6)) one can obtain the functional equations
for the p.g.f. of the processes {};} and {Z,}:

(2.4) Ot + 1,8) = (1, F(3))d(s) + ®(1,0)[1 = é(s) = r(1 — H(s))]
and
(2.5) Wit + 1.s) =@, F(s))d(s) + ¥(1,0)[1 - &(s)].

Now iterating (2.4) and (2.5) one obtains for each t = 0,1,...

Ot +1,8) = &0, Fryr(s)a1(s) + Thao ®(t = k,0)q(s)[1 = 8(Fil(s))-

(2.6) ~r(1 = H(Fu(s)))]

and

(2.7) W(t+1,8) = W0, Fipa(s))rarls) + 3 W(t = k,0)n(s)[1 = 8(Fi(s))).
k=m0

For the process {Y;] we define the life-period r = r(T) starting at the moment 7" > 0 by
the condition:

r=inf{n: Yro, =0, Yr >0, 0S0<n, Yy =0}

i



If Zo £ Yz then by (1.3) and (1.5) it follows that

Zl-‘—-):r§‘l{2‘_‘>0}' 121.

Therefore if

(2.8) Q(s) = (H(s) — ho)/(1 = ho),

then we have

(2.9) uy=P(r>t)=P(Z >0)=1-¥(t,0).
Let now W, = ¥(t,0) and U(s) = oo ws', |s|< 1. Then from (2.7) and (2.9) it follows

t
(2.10) Ve=Q(F) e+ X Yeeil -1 — )
k=1
(2.11) ue=(1=Q(F))ve+ Y tei(re-1 — M)
k=1

Hence from (2.10) and (2.11) one obtains (see also (2.9))
Z 1Q(F)s' Z 1Q(Fy)s'
1=0

Zw,,' = =0 R
. =Y (-1 =70)s" (1 =35) Y %s'
(2.12) =0 - -
1 Z‘)t(l - Q(F))s' |
= — = = - U(s).
l-s l-s

(1= 9% s’
t=0

The asymptotic behaviour of the processes depends on the range of € and on the conditions:

(2.13) -1<0<0, Y fiktlogk < oo, Y gk < oo
k=2 k=1
o0 o0
(2.14) 0=-1, Y fiktlogik <o, Y giklog’ k < oo;
k=2 k=2
(2.15) 0<-1, Y Akt <o, Yokt <oo;
k=) k=1
2.16) -1 <0 <0, Z[.k‘ < 00, Zgnk"" < 00,
k=2 k=1
-1 <0<, 3 hik? < o0,
(2.17) )
<1, Y k0 < oo,
k=)
(2.17a) 0 < -1, Y hik'* < 0.
k=l

Now we can represent the following basic results.
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Theorem 2.1 Under the conditions (2.3)

Er = — It __E(Iollo>0)__EZo
oWl -H() T EM|Y >0 bW

(1) If additionally assume (2.13)-(2.13) then
(2.18) ug ~ ct®! c>0, t — oo.

(1) If one assume only (2.4C)and (2.17) then (2.18) holds where ¢ is replaced by a
s.of. L(1).
(ui) Let 0 < —1,532, gk~ < 00 and (2.18) holds for every initial p.g.f. H(s). Then

z: fgkl-' < 0.
k=1

Remark. From now on ¢; denote some positive constants.
Comment. In (2.18) the rate of convergence is faster than in the Bienaymé - Galton -
Watson process (¢ = 1,p = r = 0,8 = 0) for which P(Z, > 0) ~ E&at-.

Theorem 2.2 Under the conditions (2.3)

W E(M|Y >0)
“rh EM|Y>0)—-EM|Y=0)

(2.19) ¢l.i..'2, P(Y;=0)= 0 <l

If additionally suppose (2.13)-(2.17) then as t — oo

ot't? JJor =1 <0<,
EY, ~ c,l?l yJor 0 =1,

(2.20)
an‘ yJor 0 < 1.

Corollary 2.1 If one assume only (2.1¢)and (2.17) then (2.20) still holds with a s.v.f. L(1)
instead of the constant ¢; > 0.

Theorem 2.8 Under the conditions (2.5) there exists a stationary distribution
(2.21) v = lim P(Y, = k), Yu=1,
o k=0

whose p.g.f. V(s) = Siaotas®,| 8 |< 1, is the unique solution of the functional equalion

bo

(2.22) Vis) = V(F(s))d(s) + Ty

(1 = &(s) = r(1 = H(s))],

with the initial condition
(2.23) V(0) = b0/ (b8 = rp).
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Assume (2.13)-(2.13). Then as s 1 |

all —s)™* LJor =1 <0 <0,
(2.24) 1= V(s)~ ¢ el —s)log r-l—-; , for = -1,
c(l —s) yJor 0 < -1

If-1<0<0 then

i: ()|l = 8(Fi(s)) = r(1 = ll(l"a.(a)))l}-

(2.25) Vis)= ‘l_l‘lg {“Il(", + b — rp =

Corollary 2.2 If one assume only (2.4C)and (2.17), then (2.2§) still holds with a s.v.f. L({)

instead of the constant ¢, > 0.

Comment. In the case —1 < # < 0 it follows by (2.24) and Corollary 2.2 that the stationary
distribution {vg} belongs to the normal domain of attraction of a stable law with a parameter
(=0) (i.e. T2, vi ~ ct®) and if @ < —1 then V'(1) < co.

Theorem 2.4 Under conditions (2.3) and (2.13)-(2.15)
(2.26) EZ, ~ cbt®, t — oo,

where the constant ¢ > 0 has to be replaced by a s.v.f. L(t) when only (2.46)and (2.17) hold.
If additionally assume
(1) for m=|-0 EZi*' <o, F™Y(l)<oo and G™(1)< o0, O-noaiutt;
(ii) form 2] = 0[+1: EZ} <o, F™(1)<oc and G™)(1) < oo,
then as t — oo

(2.27) EZ™ ~ emWp™ ™+, m=23,..., ¢>0.

Comment. It is shown in the proof of the theorem that for 1 < m < [-#0), the positive
constant ¢ (or s.v.f. L(f) ) in (2.26) and (2.27) is the same as in Theorem 2.1, i.e.
¢ = iy P(Z, > 0)'-7.

Theorem 2.5 Assume (2.3) and (2.1{)-(2.1Fa)Then as t — 00

(2.28) E{\Z, | Z, > 0)~ bt

and )

(2.29) lim P »/:1‘(:]/ ‘-U)"l o 20
. ,_'.'2, " “ ~ = 1 = N Ir 2 U

Comment. Although the rate of convergence (2.18) of P(Z, > 0) is faster than in the
Bienaymé - Galton - Watson process, the limit results (2.28) and (2.29) on the non-extinction
paths are the same for the both processes,



It is interesting to compere the presented here results with those obtained in the critical
case with 0 2 0 and I(t) = Iy(t) (see N.Yanev and K. Mitov(1979, 1981, 1983) and N.Yanev,
V.Vatutin and K.Mitov(1986)). The constants ¢, below are positive and are calculated under
some additional conditions:

¢, U< <l | 0>1.
U~ ¢ 3/ logt . =1,
CJl‘-l , 0_<_0< l'
('“ ’ 0) l‘
EZ ~ < cst]logt 0=1,
Cgl' ’ 0 5;0‘< 1,
7 crl s 8 >0,
“'“‘{ ot/logt . 0=0,

1 : §-1_-y
l'(O)Ly e Vdy , 0>1,

.“JI\P(%SJ|Z.>0)=
- 1-¢% : 0<6<],

. Y 1 ol
— T — ¥
'luu P ( :) o) /o y e Vdy,0 >0,

liml’(—-log—}-'-s.r)=:. <<, 0=0.
(= Iogl

The last limit theorem (for {Y;} with @ = 0 ) was proved by Nagaev and Han(1980). Note
that in this case the asymptotic behaviour of the process {Y;} is similar to the Bienayme -
Galton - Watson processes with immigration only in the state zero which was investigated in
the critical case by Foster(1971).

3 Preliminaries

The results of this section are of independent interest and are also used in the following
sections.

Lemma 3.1 Assume conditions (2.3). Then for every s € [0,1)
(3.1) els) ~ 7% L(t, 5) , 1= 00,

where L(t,s) 1s a s.v.f. If additionally

(3.2) Y fiktlogk <o and Y giklogk < oo,
[ L0 k=)

then L(t,s) = ¢(s) > 0.



Proof. From (2.1) it follows that

(3.3) n(s) = I'[b(u $)) = Hl)(f (a))/IIF(F(s)),

=0

where D(s) = p+qF(s)+rF(s)G(s)isap.gl with0 < D'(1) =rA+1—p < oo and D(0) > 0.
On the other hand, for every s € [0, 1) there is k = k(s) 2 0 such that

(3.4) Fe €5 < Feqare
Then from (3.3) and (3.4) one obtains

(3.5) H D(F;(F))/ H F(F(Fes1)) € nuls) £ H D(Fy(Fi1))/ H F(F;(Fy)).
Let now
1d rA-p+1 1 1

(3.6) 0= 1 =D(Fan(8)) b= ===, 6= 3Fa()=7.

Then by Lemma 4 of Zubkov(1972) it follows that

(3.7) II D(Fj(Fisr)) = I] D(Fisi(Fy)) ~ La(t, )t~
and
(3.8) II F(Fy(F)) = II Fiar(Fy)) ~ Laft, s)t™",
=0

where L,(t,s) are s.v.f. as t — oo, such that L;(t,s) = ¢;(s) > 0 under the conditions (3.2).
Now (3.1) follows from (3.5)-(3.8).
Note finally that Lemma 1 of N.Yanev and K.Mitov(1983) is a particular case of
Lemma 3.1 under the condition s = 0.

Lemma 3.2 Let for eachn = 1,2,..

(39)  R(1-s)=8(s)~1 —p-—n CWG_ah  RB-s)=86)-1.
=
(i) Ifn=1<-0<n 55, fik'* <o and ©F, gk < oo, then
(3.10) gk" | lr;(%) |< oo.
(1) If =, fik™ < 0o and £, aik™t' < 00, then
(3.11) }:k'n‘( )s* = ()(lug—-——), stl

k=)

(i) If S0 fuk™ log® k < 00 and 3770, guk” log® k < oo, then

|
3.12 Vl"ll‘( =)at =
( ) Foms? (1= s)log(l "")")

a



Proof. Let RE(1 —s) and R(1 — s) are defined by (3.9) with F(s) and G(s) respectively
instead of 8(s). Then applying (2.2) one obtains

R(1—38) =—r(l-G(s))+ piu ~F(s) + (1 = F(s))*"'-

) - \ F(s)
—2:( ) ‘”u-s)
(3.13) = f[RE(1 - )+ 3(- n———‘ﬂu— )+
=1
J)
Y- l)lR’(l—sHE( 1):5._“.!(1_ $FI'+ pr = )™=
usl =1
Ly - .G‘ (l) :
‘gl ‘| d’k(l'( ))IJSI(I ") gl( l) )'

From (3.13) applying Faa di Bruno's formula (see Abramowitz and Stegun(1970), p.823)
one obtains as s T 1

Ri(1 —3) =er(l-3)"PRf(| -’)(l+°(l))+0((l-,)'ﬂ)+
ﬂ’i:("l)'i:(—l)‘(l Zt (1)) [F(')(l)l-.-

= .,.. (1) (ay!)...(n!)*(an!)

-p = KF)©* ... [F™ )

(3.14) ¥ ’Z‘ VR ) (R )
' ‘-rlf"(l—s)—plf’(l~¢)(l+o(l))+0((l 5"+

N 1t — [FO™ .. PSP

“’?:?%‘ D=1/ - g(x!rn(a.!)...(n!)u(a;!)
NN vk ok LEDI L [FR (D))

PL L ey (e oy

where in ¥’ and 3" the sums are over (ay,..., a,) and (by,...,b) such that {a;}, {b.} are

positive integers, t < k < n,

|a|+a,+...+a.

U
-~

ay+2a; 4 ...+ na,

and
b.+blf+b. = '
by +2by+ ...+ kb = k

It is not difficult to see that the solution sets of these two systems of equations are identical.
Hence from (3.14) for every n = 1,2,... as s 1 | one gets

(3.15) Ry(1 = a) = e (1 = s) = pRE(E = 5)(1 + o(1)) + O((1 = 8)™*").

Now from (3.15) using Lemmas 24 of Vatutin(1977a) one obtains the conclusions (3.10)-
(3.12).
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Comment. The Lemmas 2 and 3 of Vatutin(1977a) are only formulated without any proofs.
The careful proof of Lemma 3 shows that the lemma is true under the condition (iii) instead

of 02, k"gi log k < oo.

Corollary 3.1 Assume Z k'™ < oo.
k=1

(i)lfn=1<—=0<n, and ik" | lf:(%) |< 0o, then ank"' -

k=1 k=1
(1) If 0 = —n and Z k"h‘f.(l)s" ~ clog(l —s)™",s 11, then Z].k"‘ < oo.
k=1 k k=1

The proof follows from (3.15) applying again Lemmas 2 and 3 of Vatutin(1977a).
Further we will use also the following result.

Lemma 3.3 (Vatutin(1977a), Corollary 2) If }: ap ~t7PL(t), a;10,8>0, then
' k=t41
ag~ ct" "9 [(t), where L(t) is a s.v.f. as t — oo and c is a positive constant.

4 Migration processes with bounded immigration in
the state zero

In this section we will consider the process (1.3) with bounded immigration in the state
zero, i.e. for some N > 1

(4.1) io(f) = 10“)1{10(‘) < 1\} + .‘\'1‘10“) 2 ‘,\r) a.s., t= 0,1.2,.-.

Further we will assume also (2.8) which implies (2.9).

Note that in this case we will use the notations {Y;} and {Z} for the processes (1.3)
and (1.5). Also for the corresponding parameters we will use the same notations adding
only " = ", If it is necessary we will point out the dependence on N. It is clear that some
characteristics of {Y;},{Z} and {};},{Z} are identical. For example, 5, = 7, 0 = =2 = 0,
etc.

Hence from (2.12) one has

t=0 (1-3s) zﬁo‘)-s‘

(4.2) U(s) = 3 st = tme 21 = Q)
where Q(s) = Es? = f!{—’_fiﬁ and H(s) = CNohs', hi=h, 0<i<N-1,

}’N - Z:a.\' h“
We will use also the following relations

. . = . ! = . )
(4.3) yUy = z_ Uk, asllly = z wlip, n=]12,...
kmt4l kmt4)

As usual [r] =sup{n: *r2n, n-integer } and Jz{=inf{n: z<n, n-integer }.

11



Lemma 4.1 Assume (2.3) and (2.13)-(2.15). Then

(4.4) 3w < o, k=0,1,2...,]=-0[-1,
t=0
and fors 11 :
— . O((1 = 5)~U=%1+%))  if 0 is not integer
y t '
\.9) 2 1-spihs’ = { O(log(l —s)')  if 0 is integer .

If one assume only (2.3) and (2.16) then
(4.6) i s’ = O((1 - s)'““’)L(—L-). stl,
ta0 l -5

where L(x) 1s a s.v.f. as  — oc.
Proof. Let v = [-0] + | and

f*"( 1)

(4.7) R:(s)= Fu(s) -1 - i(—l) k=1,2...;R(1-s)=s-1,

where Fi(s) = F(Fioi(s)) = £ fa(k)s™ and F{'(1) = £ Fu(s) |o=1 -
It is well-known (see Sevastyanov(1971), Th.6, p.66) that 2, fun'~? < co implies

(4.8) Z falkn'* <o, k=12,...; 0<0.
n=0

From (4.8) and Lemmas 2 and 3 of Vatutin(1977a) it follows that for every k = 1,2,...

(4.9) Z - R"( -) |< oo, 6-non-integer,
n=3
and N l l
(4.10) z n~? | RY(=) | s" ~ clog = s 11, 0O-integer.
n=3 B .
On the other hand, for t > v and 1 = 0,1,..., v one obtains from (4.7) that
v 4‘,(|) ‘
(4.11)  Fo=Fo(F-v)=1+ Y (-1)'==—01 - F.)" + B(1 - F.,).
k=l
From (4.2) one has
- Wils)
" b U(s) = .
(4.12) (s) Ws00)

where

Wi(s) -Zm(l - Q(F))s" -Zw‘zq.(l-F‘)

(1.13) =3 o }:v-Z(j)(—l)’"(l—F«)'

a-l y=\

= Zw 2.“:“ - ).

=\

12



Here a, = L‘-‘},"-‘E{&(&- 1)...(Zo—j+ 1))
Now using (4.11) with 1 = 0 and (4.7) one obtains from (4.13)

Wi(s) = Zisg nes 2,.. a,(1 = Fi)P+
(4.14) +Zt-v 7es' Z)q( l)"d,[”"(l I’._,) + Zhl l:‘u_[-‘(*)(l)(l . }‘_v)ilJ
: o' Tieyay(1 = F)Y+
+ Z,.. 218 [Ty AL = Fiou)* + O(RE(1 = Fioy) + (1 = Fio)*H),

where AY) = ALP(N) = SLEEO() TN (=1Va,, k=1,2,...,0
From (4.2) and (4.12) applying (3.9),(4.7) and (4.11) with : = 1 one gets

W(s) = (l - 3)27,3' =1- Z‘)ll_-:iv(.ﬂ:'!lh
t=0 t=0 é("l-l) !
B — (J=8F) & e v (L =8(Fy))
_1—§m mb(l“-) —'g;‘)..s (‘g‘(x-a(r,_,) + F) ]
Z h‘ = X Ft) "i%s'{i(-l)"[”:(l-ﬂ-n)-i—
t=1 ( 6(1." ) t=» k=1
L 6. L -
+3 (=1 ——= “’ - F)')t 16—(‘}5‘—)—'1
=] -
(4.15) =1-}: " -a(F.-.)_

t=1 ’ 6(F"l) )
- { S ~DHR = Fioy) + D1y 28 ()( ”‘

t=y k=1 =1

- 8(Fiq))!
8(Fi-1)

et

HRE 1= Fo) + 3 SR 0 - Ry ¥
=1 )
v=1 v
‘-'-'l—z‘h 6(’; l) z '{ZB}O’(I-E-.«)"‘"
t=1 6(f - ) t=y k=1
+O(R (1 = Fioy) + n:"(l = Fe) + (1= Fo )™M},

where B k = 1,2,..., v, are some coustants.

Applying Lemma 3.1 (see (3.1) for s = 0 ) and the well-known fact that 1 — F, ~ (bt)~",
t — oo, one can obtain as s T 1 (see Feller(1971), Ch.VIII, §9, Th.1 and Ch.XIII, §5, Th.5)
that

(4.16) Sl = Fls~ (=P (=), = 00,200,
t=0 -8

where L,(r) is a s.v.f. as r — o0 such that L,(r) — ¢; > 0 under the conditions (2.13).
Now from (4.12)-(4.16) it is not difficult to obtain that

10)

(4.17) limU(s) = Z“‘ = = -% >0, sTL
=0

13



From (4.3) applying (4.12)-(4.15) and (4.17) one can show that

) Z (Ut = -——l-(z Uy — Z tes')
t=0 R Rverd

t=0

1 o~ -
= T {@i(s) + X 0 [ AL - FL)+
(4.‘8) (l . ‘)3 Z ‘h“' t=p k=2
t=0
min(l.v~1)

+O(R,(1=Fo)+ Y R7(1=Fo)+ (1= Fo)™)))

where pi(s) = ¢; >0as s 11 and A(,,” = A(,”(N) are some constants.
(1) Let =1 < 0 <0, i.e. v = 1. Then from (4.18) applying Lemma 3.2, (4.9) and (4.16)
one obtains as s T 1 that

(4.19) )f.ﬁ.s'=0((l—s)“"'"L:( : )
e l—-s

where L,(z) is a s.v.f. as £ — oo such that L;(r) — ¢; > 0 under the conditions (2.13).
Note that (4.17) and (4.18) prove the lemma in the case —1 < 0 < 0.
(ii) Let 0 = —1, i.e. v = 2. Then by Lenuna 3.2, (4.10) and (4.16) it is not dillicult to
obtain that for s T 1
T2, 18 (A (1 = FL ) + O(R(1 = Fioy) + RE(1 = Fooy)+

-

(4.20) +RV (1= Fo) + (1= Fio.)")] = O(log T-!-.')

On the other hand, using Lemma 3.1 with s = 0 it is not difficult to show that
(l-"):z:‘)l“:o(l)v JTl,
t=0

Hence from (4.18) applying also (4.20) one has

x

, |
Y pies =U(l°8r_—:). sT1,

t=l

which proves the lemma in this case.
(i) Let @ < =1, r.e. v > 2. Using (3.9), (4.7) and (4.11) with ¢ = 1,2, one obtains

(1=38)? Y 38" =1+(8(0) = 2)s+
=l

N AV =F ] - [ = M)+ [ = (Fia))[) = 8(Fily))
+ 3 YT 5 -
(4.21) ,};‘,7" : . M Fi-3)8(Fi)
= p(s) + Z."‘.'l}.: ":”“ o I"l-v)‘ + O(I‘:(l il l."")+
tmy kwl)

+H:-'(l - Fieo) + ll’:'l(l - l-'._.) +(1 - F'_.)Nl)l’

where limy(s) = c> 0,8 T L.

4



Since 0 < =1, then by Lemma 3.1, (L.16) and (1.21) 1t follows that B‘(,” = U:” = 0 and
B #0.

On the other hand, AY" # 0 bhecanse i it is not true, then from (4.16), (4.18) and (1.21)
one obtains that 372, yu, = 0, which is not possible obviously.

Therelore, from (4.18) and (1.21) one gets

. o s . .‘ . \
|lluz .u,.~' = Ln, == ———:—,—’ < 00, sT 1.
t=0 t=0 ,}1

Repeating these procedures (¢ — 1) and v times respectively one obtains

o 1 e
Zv—li‘l-" = _ {re-1(s) + Z'Ih"(l‘?-”(l - F)'+
t=0 - v .'.‘_! t=w
(4.22) (1-9) .z.:u ’
=1 v—1
+O(L R(1 - F) + Y R = Fo) + (1= Fo)™)l)
=1 1=t
and
. 1
er‘b“ = ~ ‘V.l'(“""
t=0 — ) ! s'
(4.23) (1= 2
~ » v—1
+Y 9"+ O R = Fo)+ + Y R = Fo) + +(1 - Fo)™)))

t=v =1 =0

where p,(s) are polynoms and himp,(s)=¢,>0. sT1l, 1=v-1wn
If 0 1s not integer, then by Lemmas 3.1 and 3.2, using (4.9), (4.16) and (4.23) one can

show that

~

Z,i[.s' =l - .ﬂ)'("“’), sTL

=0
If 0 1s integer, then by Lemmas 3.1 and 3.2, applying (4.10) and (4.22) one obtains

ke - |
Y lettes' = Oflog ——),  sTL.
=0 I -

This means that the lemma is completely proved.
Lemma 4.2 Assume (2.3) and (2.13) (2.15). Then as s 11

: —~ . a_)all- )79 110 is mot integer, ¢ > 0,
(4.24) ,2_‘01"'""‘ - { cplogll =)™ if 0 15 integer, ¢ > 0.

If one assume only (2.3) and (2.16), then

(4.25) }: yigs' = (1 - 'Y M A """L‘)- sT1,
pord | - &

where Ly(r) 15 a .-.r.[, a8 r = 00,

-
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Proof.  Let 0 1s not anteger. ‘Then lrom Lemma 4.1 and the representation

U(s )—z_un _Zu,—(l—w)\ yig 4 ...-+(~|)""(1-.«.)l"'}:(-,,a,+(—l)""z,-.,u.,'
t=0 t=0

=0

it follows that
(-9

U(s)= 3 M1 =) + Mol = 5)™ +o((1 = 5)™*),

=)

where M, = him,yy 3,5, s’ 1 =0,1,....[-0].
Therefore to prove the lemma in this case is equivalent to show that M, # 0.
_ Remember that u, = u,(N), M = M;(N) and M, = M,(N) for N > 1, where
Zo B Zol{zﬂ S N} + Nl ‘Zu > ‘\-). Since for a‘\'l S Ng one has I.Ag(Nl) S ﬁ.(Nz) and for s T |

Y e Na)s" 2 Y qid No)s' ~ Ma(Ny)(1 = s)~0-0+0)

t=0 t=0

then M;(N;) # 0if Ma(N,) # 0.
First we wish to prove that M(] — 8]) # 0.
Let us assume that My(] = 0[) = 0. Therefore Mg(N)=for 1 S N <] -0[+ 1 and

. -4 ,
(4.26) Un(s) = Y MANY = 5) +o((1 = 5)7%).

1=t}

On the other hand, from (4.2), (4.12) and (4.13) one has

T (V)T ull - Fys' ~ ~ia;(N)A(s)
(1 —3) 020 s (1 =3)Aq(s)

For .V equal to 1 and 2 it follows from (1.26) and (4.27) that

(4.27) Un(s) =

5 q
(4.28) ﬁéﬂf‘-_\l‘% Y M(1)(1 = s) +of(1 - 8)™*)
and

a2 (s) a2 A(5) ‘\"‘i‘ .
._'_~ elinipitbiiyeiivens - —- “ 5 '_’ — . -— .
(4.29) (l—-):.m'n—ﬂ!.{ 9 & LE2) (T = ) +o((1 = 8)7")

(et =1 <0 <0, e | =041 =2 Then from (1.28) and (4.29) as s T 1 one has that

| #
=3 il = s) +o((1 —8)7").

(R L)

..\:‘f
(1= 8)d(s

(1.30)

On the other hand, using Lemma 3.1 with s = 0 one obtains that Ay(1) =
gy 3 2l 1l = FPst < ocand 300 w1 - 970 ep > 0. The obtained contradiction

of (1.30) shows that Me(2) # 0 lor =1 < @ < 0.



()Let 0 < —1, re. | = 0]+1 > 3. Similarly to (4.30), putting N = 2,3,...,] - 0|+
and using (4.16) 1t 1s not diflicult to see that for s 71

Ail(s) 4 , B o
———(l—s).;u(.)'—'z-d'“”“) +o((l —s)7"), k=23,...,] - 0[+1.
N =0

Using Lemma 3.1 with s = 0 and the fact that | — F; ~ 1/bt then one obtains

Apg(l) = l'i:l'n'z;q,(l ~ )t ¢ oo

Al'ﬂ s
(1- *)A(o;l) ~ Qster(l = )7 Q-spr(1 = 3)7* > 0.

The obtained contradiction shows that Ma(] — @[+1) # 0.

This proves (4.24) for non-integer 8 and N >] — 0[+1.

Let now NV =1, i.e. Zo =1 a.s. Then for every —oo < @ < 0 there exists T' such that
P(Zr >]-0[+1| Zy=1) > 0. Hence for t > T

w(l) =P(Z>0|Z=1)=P(Z >u.7:r=k|{l.,= 1)
2Nl PZ >0 Zr =\ P(Zr = k| Zo = 1)
>P(Z>0|Zr =] =04 1)P(Zr 2] -0+ 1| Zo=1)
> cotig(] = 0[+1), cp > 0.

Therefore ” o
Tiol-ae(1)s' 2 co T2y ue(] — O[+1)s'
~ coMy(] = 0] + 1)(1 — 5)0-¥1+0),

which complete the proof of (1.24) for # non-inheger.
The proof of (4.24) for integer @ is similar, i.e. using Lemma 4.1 and the procedure
for non-integer @ one has

-8-1

Yo' = 3 M(1—s) + Ml = 5)"log l—_'_-;u +0(1)), M #0.
t=t

i)

Lemma 4.3 Assume (2.3) and (2.13) (2.15). Then
(4.31) ity ~ ! e >0, t — oo,
If one supposes only (2.3) and (2.16) then
(4.32) g~ L{p" ! Lit) s.ef., 1= o0

Proof. (i) Let 0 ws non-integer and v =] - 0], Then by Lemma 4.2 (sce (4.24)) and the
Tauberian theorem (see Feller(1971), Ch.XITHLL §5) one has

. B I
wlly = }__ petlly ~ .| . c, >0, 1=+ 00.
waldl



Since v + 0 — 1 < 0 then by Lemma 3.3 it follows that
,_.ll'l.‘\d(‘.,-ﬂ"“h... Cp} > 0, { — oo.

Repeating this procedure v times one obtains (1L.31) for @ non-integer.
The conclusion (4.32) can be proved similarly using (4.25).
(1) Let 0 1s integer. Then from (1.22) (1.21) it follows that

e 4 ) l
Z-’u(.ﬁl — - [’,-‘(3)+
- (1= )73 e
~ . ::Il ""
tc Z Yl = Frpo) s (1 + o(1))] = 1’(8)'
t=—0+¢1 (3)
where ¢ # 0.
Note that .
o 2 -oita'™" = i‘f.‘-:‘*,!“"(s)\'(s) — W(s)V'(s)].
t=1 E |

Using Lemma 3.1 with s = 0 and (4.16) one can prove that as s T 1
(4.34) W(s)~eclog(l —s)""' W'(s)~e(l =35)", V(s)~acs,

where ¢, > 0,1 = 1,2,3.
(a) Let now @ = —1. Then from (1.21) one gets

Viis) = :;—i:((l - s)'z‘},s'] = (&0) = 2)+
(4.35) T U= 8Fis) = [V = 8(Ficy)) + [1 = 8(Fca)lll = 6(Fi)] )
8(Fi-2)8(Fi-1)

% o
+ 38" (4 e

t=]
On the other hand, from (3.9) and (1.7) it lollows that in the case 0 = —1
L=8(F—) = [l =&F 0+ [T = 8(F2))[l = 8(Fiy)) =

(4.36) = =1 = Fo g WF = Fooy )+ _
FOURL = Fo) 4+ 1500 = Fo 4 RE() = Fooy) + (1 = Fiay)?).

Sinee (Fy = Foo )l = Fooy) ~ 1 "as 1 x (see Athreva and Ney(1974), p.23,
Corollary 1), then from (4.33), (4.36) and (3.11) it follows that

1
(4.397) Vi(s) = of ~ sT1L

(1= s)log(l —a)-1 "
Now from (4.33), (1.34) and (4.37) one obtains in the case @ = =1 and s 1 1

(1.33) 3yt ¢ 0.

et e

IN



(b) Let 0 = =2, <3,... In this case one has

’t d - "< '
Vi(s) = -—I(l - 8)~* \ Yes')

(4.39) =0(1 - *)"L‘m + (1 - q"—-(l . Zv.-.(é(h- ) = 1)s']
lzu =1
=0(1 - )" 'wa (1 - .~r'2u+ 1)ye(8(Fr) = 1)s".
t=0 t=0

It is well-known that under the condition F™(1) < o

. | |ugl
(4‘0) l"-l‘g=‘b-‘+¢‘—l—;—'(l+0(l)). c> 0.

Now using Lemma 3.1, (3.9), Lemma 3.2, (1.39) and (4.40) one can obtains that as s 1 |

- 0 clogt el +oll))
o < - - -8 < - ‘\ _v 'os 2
(an? ) =ol =9 Z.‘n HU =0 N Dl + =+ S+

+R(1 - h)lx = O(log ).

Hence from (4.33), (4.34) and (1.11) one has as s T 1

(4.42) Y siets' ~ : T >0

t=] -3

From (4.38) and (1.42) applying the Tauberian theorem and Lemma 3.3 one obtains (1.31)
for integer 0.

5 Proof of Theorem 2.1.

Applying Lemma 3.1 with s = 0 one obtains
(5.1) el —»Q(F.n~%'»lﬂ)l"". t — oo.
)

By (5.1) using Theorem 1 of Feller( 1971), ChoVIL §9 it is not difficult to show that

(5.2) Y 0l - QUF) ~ ;‘:'Ilu)n"". » — 00.
f2t)

Therefore (see Feller(1971), ChXTL 45, Th, 5)

o ial . nl { l. |
(5.3) ?;;').(l - QU F)) '“'I"”““""‘” - ‘) ”_—) sTL
Sitnilarly
i (2 -0 i
- \ ..' PP, R - 8 -1 X
(5.4) 727-‘“ 7 -8 l.(l_a). sl
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Now from (2.12) using (5.3) and (5.4) one has

[ \J T - Z::-o“"(l -Q(E))“' . .2..
(5.5) Er = I:HIU(.;) = 1‘1:1‘\ (1= 8) 52, st - x

Using (2.3) and (2.8) it is not difficult to see that (5.5) is equivalent to (2.17).

(i) Let now {Z.} is the process defined in Section 4 (i.e. with bounded immigration (4.1)
in the state zero). Then

P(Zi = 2,) = Tizo P(Zo = k)P(Zy = 2, | Zo = k)
- Ek‘:l G+ ians ‘lkf:-& =1 -Tana ull - fo-N)-

From (2.9) and (5.6) it follows that

(5.6)

s ¥

(5.7) lie—ue |=| P(Ze>0)=P(Z>0)|SP(Z#2)S Y
k=N+1
Since (2.17) hold then for N — oo
, e NAYE v KMo . -1<0<0,
(5.8) .,§+. o < °{ Ny =g, <1

Now it follows from (5.7) and (5.8) that one can choose 0 < & < | and N = O(t'**) such
that
(5.9) | Gt — ue |= O(t*), t — oo.

From (5.9) and Lemma 4.3 (see (4.31)) one obtains (2.18).

Similarly, applying (4.32) one proves (ii). i

(i11) In this case it is enough to consider the process {Z;} .

Let 0 s not integer and v = [—68] + 1 > 2. Then from (2.12) and (2.18) one obtains

o0 v=1
(5.10) YW (N)s' = T ai(N)(1 =) + ae(N)(1 = )7*(1 + o(1)),
t=0 =]

where ag(N) # 0 and W(N) = P(Z =0),N = 1,2,...
On the other hand, from (2.12) and (4.27) we have

. N = L Zm a(N)A(s)
(5.11) go\l',(z\'). = G=aa0e)

3

where a,(N) = S E{Z(Z = 1)...(Zo - j + 1)} and A,(s) = T n(l - F)s.
Putting in (5.11) N = 1,2,3,... and applying (5.10) and (4.16) it is not difficult to see
that as s T 1
Auls) =

= Y di(l=s) +da(1 =3)"*(1 +0(1)), k=12,...,

e TR W R d

where as usual 000, =0if k > v,



Let N = 2. Then by (2.12) it {ollows that

i"i’t(z)-" = E" 20 "”” ) L n }:1_3» Wl + qa Tieg 1 kls'
(=0 (' '1)-3(0‘ ’ (l"")Ao(J)

. ,_‘!_!__ N --J’,'_'}!‘ s) 3y
TR "*Z:," RS (1= 8)A(s).

(5.13)

On the other hand, one has as t — ~

FR(Fiey) = (1= (1= Fioy) + b1 = Fioy)? 4 RE(L = Fey)P[1 = 50(1 — Fioy)+
+ 50— Fo)2+ By - Foy)
= 1= (24 b0)(1 = Fioy) + ("2 4+ 1+ 200)(1 = Foey)*+
+{RY(1 = Fooy) 4 2R (1 = Fo))(1 + o(1)).

(5.14)

Now from (5.12) and (5.11) one obtains

T = )5 (1= 5)Ae(s) (1 = 5)Ao(s)

~ [ . F o0 4 - F. ‘l
(5.15) Z W (2)s" = s : als) 0 adals) + Lm0 V(1 e ]
I
where ¢, = ¢, + 2¢; + @200, ¢; = ¢, (;-‘"( h+ 1+ -.mo) and

Wl = b)) = [quty(1 = Fo) + 28500 — F)ltl 4 o 1)), 1 = oo.
Let 1 < =0 < 2. From (5.10), (5.12) and (5.15) using also that

(5.16) Wl = F)=ol(l - F)*) { — oo,

one obtains as s 11

(5.17) n—m.,( )lzmh‘,(l Fos' + Y uly(l = F)s'| ~ (1 -5),  e20.

Now ftom (3.15), (4.16) and (5.17) it follows that for s T 1

(5.18) Y wRE(1 = Fs' = Y050~ F)s' ~ r.L.(-l-i—;). o> 0.

Using the condition 50, &' "¢ < x, (3.1) and Lemma 2 of Vatutin(1977a) one obtains
that

(5.19) Yol - ) < oo

=t

Therefore from (5.18) and (5.19) one has as < T 1

Z“n”’“ - F)s' ’*“3’0(_—)

=0

Since RE(1 = s) < 0, then

(5.20) S ul By = F) s ~Mellg—)h a1l

[E L)



Ou the other hand, | #5(1 = 5) | w a monotone function and from (5.20) and Lemma 3.1
applying the Tauberian theorem one obtains

Lea | La(t) ~icom LBV - Fo 12] RE(L = F) | Thoo %
~('l'"'l.|(!)|h'i|| - Fo) t — oo.

Hence for every e, | <z < -0,

(5.21) YR - F) < oo

Using again the monotonicity of R (r) from (5.21) it follows that
. |
Y R (=) < o0
=1 t
and by Lemma 2 of Vatutin(1977a) one obtains

(5.22) }_:]_,A“‘ < oo,
k=|
Therefore 302, fik?logk < o and from Lemma 3.1 it follows that in (5.20)
Ly(t) — ¢ >0, t = oc. Henee
: l
(5.23) St Y (5) < oo
=0 ! .
Now from (5.23) and Corollary 3.1 one obtains the conclusion (iii) of the theorem in the
case —2 < 0 < —1.
Let now consider the case 0 < 2 and 0 noninteger. We will prove at first that
F™(1) < oc. From (5.10), (5.12), (5.15) and (5.16) one has as s T 1

R l “ vy ! \‘*_ F ; - 2 .
(5.24) (’T—:m['z‘;‘“lr;“ ~ F)s" 4 '}:u“lfl(l-",).q‘lfvc(l-—s), c> 0.

Now from (5.24), Lemma 3.1 and (5.19) it follows that for s T 1
! ) . ) l
(5.25) ?;oa.uju = F)s' = all =)™ L(—), a2 0.

Assume F™(1) = oo, Therefore (1~ <) " BY(1 —5) |1 oo as s T 1 and for each M < ~
there is ' < oo such that

(5.26) [ R | M, (>7.

But (5.26) imphes a contradiction of (5.25). Henee F™(1) < oo,

Applying induction it is not difhcult to obtain the conclution (iii) of the theorem for every
noninteger 0 < =2,

The proof in the case of an mteger 0 < 1 i similar using the representation

\‘ . -l ) ) y ‘ l
‘\_ W N)s' = \ a (NN =) + [ost N )1 - .l)-. log -———l ’]“ +o(1)), s11,
=) (T | o

and Corollary 3.1,



6 Proofs of Theorems 2.2 and 2.3.

Further we will use the taboo probabilities for the migration process {Y;}, where zero s

the taboo state:

(6.1) {up,,(l) =P, =nm), >0.1 <1 <t]Yy=0), t=1,2,...

opa(t) =0, n=012...

Proof of Theorem 2.2. Applving (6.1) and (2.9) one gets

ol + 1) . 0‘\)(‘ +1)
I —omll) (1 =ho)’

because of opy(1) = P(Y; =0 Yo=0) =1 = r(]l = hg).
Let &, = P(}; = 0) = &(1,0). Then

(0.2) Plr=l)=uyy —u =

1

(()J) ‘bo = |, 4’1 = Xul\’(k’@l-tv t = l|2v"'
k=1
Therefore |
6-" S = .
(6.4) ) = 5

where ®(s) = T2, @,s' and 3(s) = 50, ool k)st.
On the other hand, from (6.2) one has

x

(6.5) d(s) = Zul'a(“"* = s[l = r(1 = ho)U(s)(1 — s)}.
k=0
Now from (6.4) applying the renewal theorem (see Feller(1979), Ch.XII1L, §10, Th.1) one
obtains ,
(6.6) 'IilI: "’, = ‘—‘:(—r)'
Note that by Theorem 2.1 (see (2.17)) and (6.5) one has
rp

(6.7) .r(l)=l—-r(l—/vu)l'(s)=l—w

Obviously (2.19) follows from (6.6) and (6.7).
The derivation of (2.4) for s = | implies

(6.8) 4+ 1,1) =@ 1)+ b1 - $(1,0)) + rud(L,0)
B =wxz-:u,,()i > u"""‘:;ﬂ’,();:o)'

On the other hand, from (6.1) it follows that for n > |

apa(t + 1)

(6.9) opull 1) = PiYisr=n), >01 <, \fl‘. >U.“)=0)= r(1 _hﬂ)‘
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because of P(Y) >| Yo = 0) = r(l = hy).
Now from (6.9) using that u, = 37, op.(1) it is not difficult to obtain

P'(Ye > 0) }: P(Ye=n) = L)_upnml(h-. =0)
(6.10) 1 e}

k
= I‘(l o ,'0) 2‘ Zul’n(' o l)q’k—l = '(l o hO)Z ui—lol-l-
n=1a=1 =1
Remember that by (2.17), Z u; = ~—L  Then from (6.8) and (6.10) it follows
=0 w“ o ho)

EYiyn = bor(l “ho)zzﬂu |¢t—.+"l‘z¢’b

k-ll =l

|
= bor(1 —I:U)Zu, Z ¢, +I’lz¢k
(6.11) =wr(|—hu)(zu,§:¢ Z.:.}:c» Zu. Z d»)
=0 =0 =t =t—1
HpL‘h = ~bihr(] - h..l}_‘b L u,

1=t-

= —blr(1 — he) Z b Z u;.

k=0 1=k

From Theorem 2.1 (see(2.18)) it follows (see Feller(1971), Ch.VIII, §9, Th.1) that
(6.12) Yu~ak, >0, k- oo

Now from (6.11) applying (2.19) and (6.12) it is not difficult to obtain (2.20).

Lemma 6.1 Under the conditions (2.3) and (2.13)-(2.15) for 0 < s < 1

(6.13) : )Zu( 1= H(Fi(s)) = —— = 2(1)(1 + o(1)), { — oo,
T k=0

u'/u e
cy(s)tf ., =1 <0<,

0= -1,

(6.14) o(1) =
|
ﬁ(-‘)"' v 0< -], ols) >0, 1=1,23.

Proof. (1) First we will consider the case s = 0. Note that from (2.8) and (2.11) we have

(6.15) Uy = Y —eeameme 2‘ Ui (V-1 = %)



Hence

: ”("k)

(6.16) 2 Uy = z ‘7'! 2(7) 1 '7))2: Uy — z: Uk(Ye—k — )

k=0 1=0 k=1

Now from (6.16) it is not difficult to show that

t
(6.17) Y ue= ——'—,T—'Zh(l - ”(h))-—Zm(‘n-k-m)
=0 (1 = ho) V=
On the other hand from (6.17) it follows
. 2‘ ~ l t
(618) 'l Z‘)g(l l’(lﬁ)) = 2—"‘ - z u§+"20k("(-b"1¢).
(1= ho)ve § k=0 k=41 t k=1
From (6.18) applying Theorem 2.1 (see (2.17)) one obtains
(6.19) -'-'z-j' (1= H(F)) = -5 —w()
. Tt k=0 B k w )
where
(6.20) V(t) = ).
k=t41 T k=
Note that as t — oo
(6.21) I-HF)~£ and ¥ w~ct, c>0.
M k=t+1

On the other hand, using Lemma 3.1 for s = 0 and Theorem 2.1 (see (2.18)) it is not
difficult to obtain

CleSf ’ 0=-l,

!
(6.22) — ) ua(Ye-r — 7) ~ c/‘ (= 2) — 7 )dx ~
1 csl-'-l N 0 < —lv

k=]

{Cl N —l<0<0,

where ¢, > 0,1 = 1,2,3.

Now the conclusion of the lemma for s = 0 follows immediatly from (6.19)-(6.22).

(11) \\'c- will prove now (6.13) for 0 < s < |. Let consider the sequence ui(s), 0 < s < 1,
k=1,2,... defined as follows

ll(h( Fils))

(6.23)  uo(s) =1, u.(s)—n(*) Z"k-:(-’)hh»l(’)"'b(’)]

=1

Then similarly to (6.18) it is not difficult to obtain

1 . )
m 2_ nls)|l - Il(h(s))]

(6.24) N - |
= 5: upls) - z_ up(s) 4+ — “i(-“,('h-b(’) - n(s)).
k=0 ki '( ) (]



Note that as t — o

1 r
1 = Fy(s) = 5{—4_7—;—1‘3:—. where 'lilg“;t:;()l ags) = 0.

Now applying Lemma 3.1 and following the proof of Theorem 2.1 it is not difficult to show
that for0 < s < 1

X - M -1
(6.25) ug(s) = ————— and us) ~c(s)t"", ¢fs) > 0.
From (6.24) and (6.25) one can prove (6.13) for 0 < s < 1 similarly to the case s = 0.

Proof of Theorem 2.3. Let p,,(t) = P(Yi;i = j | Y = 1). Note that py(t) = &, and
Poo(l) = @, =1 —r(1 = hg) > 0. Therefore the state zero has a period 1.

On the other hand, by the definition of the process {};} it follows that the set of its states
Z consists of all states which can be reached by the state 0, i.e. for each j € Z there exists {,
such that py,(t;) > 0.

Hence for all1,) € 2

pi;(t; + 1) 2 pol(1)po,(t;) >0

because of po(1) = pfor""" + ¢fs + rfigo > 0.
Now by Theorem 2.2 (see (2.19)) and the well-known results for Markov chains (see

Feller(1979), Ch.XV) it follows that the aperiodic and non-decomposable Markov chain {};}
i1s ergodic, i.e. there exits a stationary distribution {vg}, k=0,1,...
Therefore

lim ®(t,s) = V(s), Vis) = Z ust, |s|<1,
e i=0

and putting t — oo in (2.4) one obtains the equation

(6.26) V(s) = V(F(s))d(s) +

11 = 8(6) = {1~ H(&))

with the initial condition (see Theorem 2.2, (2.19))

. o 'O) = '
(6.27) V(o) vk
Now, we will prove that under the conditions (2.3) the equation (6.26) with initial condition
(6.27) has a unique solution V(s) with lim,;, V(s) = 1.
Iterating (6.26) one gets

w t=1
(6.28) V(s) = V(F()nls) + =3 ($)A(Fils)),
= Th ka0

Whvrr

A(s) =1 =8(s) = r(1 = H(s)).
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It is not difficult to see that for0 < s < | and t —

bo — rp
(6.29) M) = g (1 + )

On the other hand, from (6.27) and (6.28) for s = 0 one has

bo -1
6.30 V(F) = |1 - .
(6.30) (F) = G [t — L ma R

Now, from Lemma 3.1 and (6.29) for s = 0 and t — oc it follows that

(6.31) Y WA(F) ~ L wt"L(l).
= bo

where L(s) is a s.v.[.

Hence from (6.30) applying again Lemma 3.1 and (6.31) one obtains lim_.. V(F;) = 1,
which proves that
(6.32) l.i'll.l Vis) = V(1) = 'l_i_lg P(t,1)=1,

i.e. the stationary distribution {vg} is a proper one.

Let now W(s) is some solution of (6.26) with (1) = 1. Then from (6.28) it follows

W(s)  W(F(s)(s) + ey Tico w(s)A(Fils))
Vis) — V(Fs)nls) + sy Timo m()A(Fils))

(6.33)

Now, putting t — oo in (6.33) and applying Lemma 3.1, (6.29) and (6.32) one gets
W(s) = V(s) for 0 < s <1 which proves the uniqueness of the solution of (6.26).
Let now for 0 < s < | define

n-1
(6.34) Vals) = 1m(s) + V(0) X wl(s)A(Fi(s)), n=12,...
k=0

To prove (2.25) it is enough to show that for =1 < @ < 0 there exists lim, .., V.(s) = W(s)
and W(s) satisfies the equation (6.26).
Indeed, from (6.34) and (6.27) applying Lemma 3.1 and Lemma 6.1 for -1 < 8 < 0 it

follows

ne-1

lim Vi(s) = Jim {ya(s) + V{0) Z nls)[l = 8(Fils))]-
k=0

n=|
(6.35) ~rV(0) X (sl = H{Fu(s))]}
k=0

= lim {7a(8) + V(0) = V(0)a(s) - r“’(O)[-ﬁ;w.(a) - ey(s)e(s)]}
= V(0)[1 4 rey(s)e(s)] = W(s) < oo,
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On the other hand, from (6.34) one gets

Vasr(8) = 1ns1(3) + V(0) 3 n(s)A(Fils))

k=0

(6.36) = 8(s)1m(F(s)) + V(0)A(s) + V(0)5(s) Z n(F(s))A(Fi(F(s)))

= 8(s)Va(F(3)) + V(0)A(s). e

Since (6.35) then putting n — oo in (6.36) one obtains that W(s) satisfies (6.26).
Now to prove (2.24) we note that from (6.30) and Lemma 6.1 it follows

b9 -1 o
(6.37) Vik) = (b0 — :ﬁ-" {1- g‘h[l - 8(Fu)] + rg‘nll - H(Fy)]}

= 1= o1 +o(1))

Since 1 — Fy ~ (bt)~! as t — oo then from (6.37) and (6.14) one has

a(l-F)* & -l<0<0,‘
(6.38) 1-V(F)~ { a(l = F)log(l-F)™ , 0=-1,
a(l - F) , O<-1

On the other hand, for each 0 < s < | there is k > 0 such that
(6.39) Fi <5 < Fupr.

Now, from (6.39) it follows that

| = V(Fin) 1 - V(s) 1 - V(F)
040) T Ryiog(l - Faon)® = (T=s)log(l =3 = (1= Fag)log(1 - Fo)!
o 1 = V(Fisr) 1 - V(s) 1 - V(F)
6. = Vi il - Vs o k :
(6.41) =Ry (U= ~(-Rny °*°
Since F'(1) =1 and F"(1) = 2b < oo then
(6.42) l=Fen=1=-F-0((1-F)"), k- o

Now, from (6.41) and (6.42) one has

| = V(Fis1) < 1 - V(s) < 1 - V(Fy)
(1=Fpp(l+0(1)) = (1=35) = (1= Fo)*(1 +0(1))

and similarly for (6.40).
The relations (6.38)-(6.43) obviously prove (2.24).

(6.43)



7 Proof of Theorem 2.4.

Further we will use the notations

a"v(t,s)
ds®

Derivating (2.5) for s = 1 and iterating it is not difficult to obtain

I..l, n=l,2,...

EZM = E{2(2,-1).. (Zi=n+1)} = ¥™(¢,1) =

W(t+1,1) =W (e, 1)+ b0(1 —¥(t,0))
(7.1) =EZo+ W05, o P(Zi > 0)
= EZo+ 0 00 us — B0 S0y .

Now, from (7.1) applying Theorem 2.1 one gets

LA

f __ [
gL = bL()e,

(7.2) EZ,=VW'(t,1)=-b0Y up ~ -

: k=t

where L(t) is a s.v.f. and L(t) = ¢ > 0 if additionally 732, fuk? log k < oo.
Let consider the inequality (see Sevastyanov(1971), Lemma IX.1.1)

(E)?  (E¢)’
&+ E§ — 2E£’

PE>0)2 &

which is valued for non-negative integer valued r.v.
Hence from here, (7.2) and (2.18) it follows

EZ} A _ EZ b

7 A
{73) EZ > 3P(Z>0) " 2

Applying the well-known Lyapounov inequality to (7.3) one obtains for n > 2 and t large
enough

n+l cgn 2
(74) _ EZM EZ  EZ

N 2 =T 2 20
EZ} EZ} EZ,
Now, from (7.2) and (7.4) it is not difficult to show by induction that for large enough ¢

g c > 0.

(7.5) EZ} > ™!, ¢>0, n=1.2,...
A formal derivation of (2.5) (n + 1)-times in s = | implies
WD (g4 1, 1) = W F(1) + (0 + 1)00¥™(t, F(1))+

(7.6) +'§ ( B )5‘““"(1)*“’“. F(1)) + 8"*(1)(1 - ¥(t,0)).
S\n+l-k

Applying Faa di Bruno's formula (see Abramowitz and Stegun(1970), p.823) one gets

L |
(7.7) WO ()= WY (1) 4 n(n + 1)0M(,1) + zqgn)w“’(t,x).
Sa ket
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Now, from (7.6) and (7.7) applying also an iteration it is not difficult to show that
EZEDY = w41, 1) = (g, 1) + (n + 1)b(n + 0)¥™ (8, 1)+
n-1
+ 3 cxn)¥ M (2, 1) + 6HD(1)(1 = ¥(¢,0)
k={

7.8 oS ‘
(7.8) = EZ8* 4 (n 4 1)bn + 0) Y EZ + Y chn) 3 EZ+
k=4 J=0

=0

t
+6"*(1) S P(Z; > 0).
=0
(1) First we will prove (2.27) in the case 2 < m < —0. Assume now (2.27) for m = n < —4.
Then all series on the right side in (7.8) converge as t — oo and therefore

(7.9) lim EZ"Y = ¢, > 0.
t—0

We will prove that C,=0 i mtl<-6.

If one aﬁ;vumes that c{ > O,fthen chan
as t — oo, which is imposible. Therefore ¢; = 0 in (7.9).

Now, from (7.8), (7.9) and the induction predicate it follows that

ging in (7.8) n with n+ 1 one obtains Bz 2, 00

EZY = EZf* +(n+ )bn+0) | S EZM - 3 EZ}"’) +
y=0

I=t+1

n-1 o0 o0 o0 o0
+3 ) (,): EZM - Y Ez,’-"’) +60+1)(1) (zj uj— Y u,-)
k=4 =0 ;=0 J=t41

y=t+1

o0 n-1 00
= lim EZ* — (n 4+ 1)bin+0) 3 EZ -3 axp) 3 EZ)-

=t+1 k=4 J=t+1

(7.10)

_6("»”(1) i uj ~ __(" '*l' l):(; ro)bnn!dnﬂ =c(n+ l)!bu+ltn+l,
n

=i+l

where ¢ = limy—, P(Z, > 0)t'~* > 0 (see Theorem 2.1).
Since (2.27) is fulfilled for m = n+ 1 < —#@ then by induction it is true foralll <m < —#.
(i1) Consider now the case m = —6. Let n+ 1 = —0. Then it follows that (2.27) is true for

EZ!™ and from (7.8) one has
(7.11) lim EZ{™" = ¢, 2 0.

On the other hand, from (7.8) for n 4 1 = —8 one obtains
t
EZit) = EZP*Y + (n+2)0(-0+0) Y EZ+
(712) " ' J-o'
5 B0
by =0 4

and similarly to (7.9) one gets

(7.13) lim EZ,'"" = 3 < 0.
{0
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If one supposes now that ¢, > 0 in (7.11) then from (7.13) it follows that

Ezu+2 l“"’zl

%EZ"“ = const. lim —r— EZ( ] < ©

which is a contradiction with (7.4). .
Therefore ¢, = 0 in (7.11) and similarly to (7.10) one obtains

(7.14) EZIMY ~ o(—0)17%

for n +1 = —0 and ¢ = limy—oo P(Z > 0)t'~%. . '
(iii) Now we will prove (2.27) for m > [—0] + 1. If @ is an integer, then we suppose

m = —60 + 1. Hence from (7.5) one has

lim EZ™ > ¢ > 0.

From here and (7.12) for n + 2 = m one gets
(7.15) lim EZ{™ = ¢; > 0.

One can assume ¢; = ¢;(=0 + 1)!67**',¢; > 0, in (7.15) and from (7.8) it is not difficult

to obtain (2.27) by induction for all m > —#6. :
Let 0 is not integer. As we already proved, (2.27) istruefor2<m < [-0]=v -1 < —0.

Now first we will prove (2.27) for m = v. From (7.8) one has

(7.16) lim EZM=¢ >0.

Assume ¢; > 0. Then from (7.8) it follows

(7.17) EZ¥ ~ (v + 1)b(v + 0)cyt.

Since EZM ~ EZ} then applying Lyapounov inequality for n < v + 1 one obtains

0 <e(l+0o1) =(EZ) < EZ""IEZ_:;'.l
~ [(v + 1)b(v + O)ct][cy (v — 1)16"~"t* ]
- C"'-'*‘ — 0 t — 00.
The obtained contradiction shows that ¢; = 0 in (7.16). Now similarly to (7.10) it is not

difficult to obtain that
EZM ~ clb e,

From here and (7.8) it follows by induction that (2.27) is fulfilled for all m 2 [-0] + 1,
which complete the proof of the theorem.
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8 Truncated processes. Proof of Theorem 2.5.

Let Ci = {w: Xi(t) = k},k=0,1,2,... Then P(Cx) = fx and T2, fi = 1.
Let now for every 0 < ¢ < | define Dy C Cy such that P(Dg) = fo(l —¢€). Hence we can
define the i.i.d.r.v. {X;(t)} as follows: for N > 1 and 0 < ¢ = ¢(N) < 1 we put

B 0 ) wel)ﬂ )
(8.1) Xit)=¢{Xit) , weDy , k=1,2,...,N-1,
N N “"EDN )

where Dy = Cy, k= 1,2,.. ,N-1and Dy = Uiy  Ci U(Co\Dy).
One can also consider

52 Zo=tliz, < N-1) Nz > N)

and

(8.3) l(t)=l(‘)1{l(l)SN—l}+N1{](t)ZN}'

Now, we can define the truncated process {Z;} by the following recurent formula:

2 _ .

(8.4) Zia =Y Xi(t) + MY w012
k=1

where

—.‘](l)l{z' > 0) with probability p,
M) =40 with probability q,
l(l)l{z > 0) with probability r, p+q+r=1,

pteg+r=1, t=01,2...; Zo>0.

From (8.1) one gets

N o0 o0
EXi(t)=Y kfi + N (e]o + X f.) =1- 3 (k=N)fi+NJfee.
k=1 k=N+1 k=N+1
Further on we will assume that
l o0
(8.5) O<e=¢e(N)=5+ Y (k=N)fi
Nju k=N+1

Note that ¢(N) < ;JI— and e(N) = 0, N — oco. Now, from (8.5) it follows that
S R

(8.6) EXi(t) = 1 = EXi(?).
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Now, from (8.5) and (8.6) one has

N 0
2 = VarX.'(l) = Z"’fk + N? (ejo+ Z fk) -1

k=) k=N+1
(8.7) =2- Y Kh+Nefo+N Y fi
k=N+1 bl
=2%- Y fuk(k—N)<2b.
k=N+1

Similarly from (8.3) one gets

o0 00 o0

N N N
A =Elt)=3 ka+N Y ax=r- Y ka+N Y a
(8.8) o k=1 k=N+1 k=N+1 =N+1
=A- Y (k-N)g <A

k=N+1
Now, from (8.5)-(8.8) it follows that {Z,} is a critical branching migration process and for
every N > 1 one has

- rA=p rA-p
= =60<0.

Lemma 8.1 Assume (2.3), (2.14)-(2.132)and (8.5). Then there exists N = N(t)=dt)>os as
t — 0o such that

= ().

= :
'li_.lgIP(%SIIZg>0)-P(-l;t—'SIIZ¢>0)

Proof. Note that

P(Z,>0) =P(Z:>0,Z=7)+ P(Z > 0,2 # 7))
(8.10) < P(Z>0)+ P(Z # Zy).

" -

Similarly to (8.10) one gets

» PZ>0) |_|PZ>0-P2>0]|_ PZ#2Z)
(&1 ’P(Z. >0) ",‘ P(Z, >0) = P(Z; >0)
Now, similarly to (8.10) and (8.11) one obtains
4 Z 5 P(Z # Zi)
(8.12) -2%#72()’7)5P(%51|Z.>0)—P(7”—'.<_rlZ¢>0) S
]
Let now
Ai(t) = {w: X;(t) # X;(0)} , J= 1.2.‘. t=012,...;
B, ={w:I(t)# I(t),Z2, >0} , t=0,1,2,...;
c = {w: 2y < Z) .



From here, (1.5), (8.4) and (8.1) it follows that
(-1

=1
(8.13) P2 # 2) < P(C) + 3By 4 o) | 2} + 30 P(Be).
i=0 =t k=0

On the other hand
(8.14) EEL 2 4y | 21} < Ex, P(f‘:'(i))_ .
= EZP(X;(1) # X;(2)),

where from (8.1) and (8.5) one gets

o0

N o0
(8.15) P(X;(i) # X;(i)) =1 = Y P(Ds) = % Y k=N)fi+ Y fiu=O0(Un(f)),
k=0 k=N+1 k=N+1
where
NSy 3 h ; ~1<0<0,
Un(f) =14 (Nlog N)' Tiinia K Sk 0=-1,
N-U-Asne . REEL Bl =1,
Similarly e
(8.16) P(Bi) = P(I(k) # I1(k))P(Z; > 0) = P(Zx > 0)O(Un(g)).
and W
(8.17) P(C)=P(Ze2N+1)= ) q=O0(Vn(q))
N+1
where
N2 k? . -1<<0<0,
Vn(g) = { N-ug?;fgmﬁ“'qk : el
Now from (8.13)-(8.17) one obtains
t-1 -1
(8.18)  P(Z # Z;) = O(Vw(q)) + O(Un(f)) X EZ: + O(VN(y))kz_:0 P(Zi > 0).
=0 =

Note that from Theorem 2.4 (see (2.26)) it follows that

t=1 C|f'+‘ , —1 <0<,
(8.19) S EZ~W(t)={ clogt , 0=-1,
=0 C3 . 0 < -1.

Similarly from Theorem 2.1 (see (2.18)) one has

t=1
(8.20) 3" P(Z > 0) = 0(1), t — oo.
k=0
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Hence from (8.18)~(8.20) and (2.18) one obtains

(8.21) P(Zi # 2/ P(Z > 0) = O (t'~*[Vn(q) + Un(g) + Un(/)W (1))
Now one can choose N = N(t) = ot) — oo, such that

(8.22) t'~*[Vn(q) + Un(g) + Un(f)W(t)] = O, t — oo.
Therefore, from (8.22) and (8.23) one gets

(8.23) lim P(Z, # 2| Z:>0) =

Since {Z,} is also a critical migration process with 8 < 0, (see (8.9)) then
(8.24) lim P(Z# 2| 2> 0) =
Hence (8.11), (8.12), (8.24) and (8.25) implies the lemma.

Proof of Theorem 2.5. (2.28) follows from Theorem 2.1 and Theorem 2.4 because

EZ, bL(t)t*

P(Z >0) L -

E(Z|Z,>0)=

First we will prove a similar relation to (2.29) for the process {Z,}, when N is fixed i.e.

(8.25) 'limP(%-S:IZ.>O> =]1-¢°%, x> 0.

Note first that from Theorem 2.1 (see (2.18)) and Theorem 2.4 (see (2.27)) applied to the
process {Z} (with (8.4) and (8.5)) it is not difficult to obtain that
¢ - & Z " ) ﬂ! ’ 1 S n S [-alv
(8.26) ."..'25{ (ﬁ) |Z¢>0}={ %‘-n!:&n! , n2[-0]+1,

where ¢; > 0 and ¢ = limy—o P(Z¢ > 0)t'~* > 0.
We will prove that § = 1. Let ¢,(a) be the Laplace transformation of the function

Wiz)=P(§ 2|2 >0),z20.
It is well-known (see Feller(1971)) that for a > 0

-1
(8.27) Y ( kl') 2M(0)a* € pila) € z:( i w!k)(ﬂ)a*.
k=0

Now, from (8.25) and (8.26) it follows that for0 < a<1-u, 0<u<l,

k=|-f+1

(-8 o
limga) =pla)=Y (-)'a*+6 3 (~1)'a*
(8.28) : im0 e
S B » '—l k&
I +a il 6).2_:0( 39
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From (8.27) it follows that lim,_. g (a) = ¢(a) for @ > 0 because vi(a) aud p(a) are
analytic functions. Since w(a) = 1,a | 0, then ¢(a) is a Laplace transformation of a proper
distribution (see Feller(1971)).

If now assume that & # 1, then as a — oo

[ (@) |~ 1 -6]al,

which is a contradiction with well-known properties of the Laplace transformations.
Therefore § = 1 and

pla) = B

which implies (8.24) by the Continuity theorem (see Feller(1971)).
Since from (8.7) b 1 b, then from (8.24) one obtains for some N

(8.29)1’(%5:]200)=P(§135z|2.>0)—»l—c il P oy

Now (2.29) follows from (8.28) and Lemma 8.1. . e
Let n(ow 1’3 = N(t) = o((l) as in Lemma 8.1. Using Lemma 4 and Lemma 5 of Kaverin

(1990) one can obtain (8.25) for N(t) = o(t). Therefore (8.28) is fulfiled for N() = of?).
Now (2.29) follows from Lemma 8.1.
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